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ABSTRACT Five Duganella sp. bacterial isolates that synthesize violacein were cul-
tured from a central Pennsylvania waterway. Violacein has antimicrobial potential, in-
cluding chytrid-killing effects, relevant to amphibian declines worldwide. Whole-
genome analysis of these five microbial isolates may provide insights to better
protect amphibian communities from fungal infections using bioremediation.

Water samples were obtained from streams in eastern Pennsylvania, along the
Marcellus Shale formation, where salamanders have been impacted by Batra-

chochytrium dendrobatidis (1). B. dendrobatidis can cause chytrid infections and con-
tributes to the decline in worldwide amphibian populations. Bacterial strains BJB475,
BJB476, BJB480, BJB488, and BJB489 were isolated by plating a single water sample
(150 to 200 �l) from Crooked Run in North Union Township, Pennsylvania, on Reason-
er’s 2A (R2A) agar and incubating at 22 to 25°C for 48 h. Five violet-pigmented colonies
were subcultured for genomic analysis.

Genomic DNA extraction was completed with the Gentra Puregene yeast/bacteria
kit (Qiagen) following the manufacturer’s protocol. Library preparation was performed
using Illumina’s Nextera XT library preparation kit. The multiplexed, paired-end Illumina
libraries (150 bp) were run using HiSeq sequencing technology on the Illumina HiSeq
4000 instrument. Data were then demultiplexed by sample, and raw data were sent for
analysis (Wright Labs, Huntington, PA). Reads were assembled using a previously
published local pipeline (2–4). Sequences were quality filtered using BBDuk from the
BBMap package version 37.50, maintaining a Q-score cutoff of 10 (https://sourceforge
.net/projects/bbmap). A draft whole-genome assembly was built using SPAdes version
3.11.0 (5) with k-mer sizes of 21, 33, 55, 77, 99, and 127. Contigs shorter than 500 bp,
or consisting of fewer than four reads, were filtered out of the assembly.

Draft whole-genome assemblies of the five strains averaged 40.6 contigs, with a
high of 48 (BJB489) and a low of 35 (BJB475) (Table 1). The average N50 value for all five
assemblies was 576,048 bp (Table 1). The average genome size is predicted to be 7.207
Mb, with an average G�C content of 64.358% (Table 1), comparable to the OxaII cluster
of Duganella previously described (6). The three genomes of BJB480, BJB488, and
BJB489 are nearly identical in length and G�C content and are likely closely related or
clonal isolates.

Assembled contigs were annotated using three methods, a local pipeline running
Prokka (7), RASTtk, via the PATRIC pipeline (8, 9), and the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) (10). BLAST search results for fragments of 16S rRNA for all
five isolates were 99 to 100% identical to those of other Duganella species, specifically
HH01 (6), and RAxML analysis further clustered these isolates with those in the earlier
study (6). Annotations across the three annotation platforms yielded an average of
6,292 coding DNA sequences (CDS), with a high of 6,401 (BJB489) and a low of 6,234
(BJB475). As expected, the violacein biosynthetic operon (vioABCDE) was present in all
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annotations for all strains. Additionally, all genomes contained genes involved in
swarming and gliding motility, as well as biofilm production, correlating with the
growth phenotypes observed on solid agar growth medium.

Future work may reveal if different phylogenetic groupings of violacein-producing
strains provide unique phenotypic benefits when colonizing particular environments.
Research into native violacein-producing strains may also suggest optimal bioremedia-
tion strain candidates for amphibians, should chytrid infections worsen in this water-
shed.

Data availability. The whole-genome sequences have been deposited at DDBJ/
ENA/GenBank (Table 1). The bacterial strain genome sequences described in this paper
include QVIP00000000 (BJB475), QVIO00000000 (BJB476), QVIN00000000 (BJB480),
QVIM00000000 (BJB488), and QVIL00000000 (BJB489).
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TABLE 1 GenBank accession numbers of isolates from water from Crooked Run in North Union Township, Pennsylvania

Isolate
No. of
contigs

Genome size
(Mb)

G�C content
(%) N50 (bp)

Median read
depth (�)

Avg no. of
CDS

GenBank accession
no.

BJB475 40 7.0 62.92 483,567 545 6,234 QVIP00000000
BJB476 35 7.23 63.88 725,652 274 6,284 QVIO00000000
BJB480 37 7.268 65 655,410 925 6,400 QVIN00000000
BJB488 43 7.268 65 469,376 334 6,389 QVIM00000000
BJB489 48 7.2695 64.99 546,234 394 6,401 QVIL00000000
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