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ABSTRACT Genomic selection has the potential to increase genetic progress. Genotype imputation of
high-density single-nucleotide polymorphism (SNP) genotypes can improve the cost efficiency of genomic
breeding value (GEBV) prediction for pig breeding. Consequently, the objectives of this work were to: (1)
estimate accuracy of genomic evaluation and GEBV for three traits in a Yorkshire population and (2) quantify
the loss of accuracy of genomic evaluation and GEBV when genotypes were imputed under two scenarios:
a high-cost, high-accuracy scenario in which only selection candidates were imputed from a low-density
platform and a low-cost, low-accuracy scenario in which all animals were imputed using a small reference
panel of haplotypes. Phenotypes and genotypes obtained with the PorcineSNP60 BeadChip were available
for 983 Yorkshire boars. Genotypes of selection candidates were masked and imputed using tagSNP in the
GeneSeek Genomic Profiler (10K). Imputation was performed with BEAGLE using 128 or 1800 haplotypes
as reference panels. GEBV were obtained through an animal-centric ridge regression model using de-
regressed breeding values as response variables. Accuracy of genomic evaluation was estimated as the
correlation between estimated breeding values and GEBV in a 10-fold cross validation design. Accuracy of
genomic evaluation using observed genotypes was high for all traits (0.6520.68). Using genotypes imputed
from a large reference panel (accuracy: R2 = 0.95) for genomic evaluation did not significantly decrease
accuracy, whereas a scenario with genotypes imputed from a small reference panel (R2 = 0.88) did show
a significant decrease in accuracy. Genomic evaluation based on imputed genotypes in selection candi-
dates can be implemented at a fraction of the cost of a genomic evaluation using observed genotypes and
still yield virtually the same accuracy. On the other side, using a very small reference panel of haplotypes to
impute training animals and candidates for selection results in lower accuracy of genomic evaluation.
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Genetic improvement through breeding for lean growth, reproductive
performance, meat quality, and health traits is an important tool in the
pig-breeding industry to assure its continued competitiveness and suc-

cess. Traditional estimated breeding values (EBVs) derived from pedi-
gree information have resulted in continuous genetic improvement but
have several limitations (Dekkers et al. 2010). Notably, some important
phenotypes are difficult and expensive to observe, impairing estimation
of accurate EBV.

The use of genomic breeding values (GEBVs), estimated using
a large number of genetic markers across the genome, is expected to
overcome a number of those limitations (Meuwissen et al. 2001; Dekkers
et al. 2010) and allow for the selection of animals at a young age, thereby
shortening generation intervals (Hayes et al. 2009a; Vanraden et al.
2009; Wiggans et al. 2011). Several papers have reported the progress
and success of genomic selection in dairy cattle (Hayes et al. 2009a;
VanRaden et al. 2009; Wiggans et al. 2011), and it is expected to be
equally useful in pigs (Tribout et al. 2012). High-density genotypes in
pigs can be obtained from the PorcineSNP60 BeadChip (Illumina, San
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Diego, CA) containing roughly 62K single-nucleotide polymorphisms
(SNPs) (Ramos et al. 2009).

First implementations of genomic prediction in pigs included
evaluations for total number of pigs born in a litter and percent
stillborn (Cleveland et al. 2010). The results of this study indicated that
GEBV in pigs can reach accuracies comparable with those observed in
dairy cattle if the training population is large enough (Cleveland et al.
2010). In addition, several strategies to increase cost efficiency through
the use of low-density genotypes have been explored, but the accuracy
of GEBV was reasonable only for certain traits, likely due to differences
in the genetic architecture of the traits (Cleveland et al. 2010). How-
ever, when genotypes were imputed with high accuracy, results for
genomic evaluation were promising for several traits in a commercial
pig population (Cleveland and Hickey 2013).

A question that was not investigated in those papers and that we
want to answer in this study is how different imputation scenarios (of
varying cost and accuracy) translate into accuracy of genomic
predictions. The posed question is important because the relatively
high genotyping cost per animal currently limits the widespread
commercial use of high-density genotypes for genomic selection
purposes in pigs. One strategy to improve the cost efficiency of
genotyping schemes is the use of genotype imputation for a portion of
the population. In the interest of cost efficiency, it is likely that
selection candidates will not be genotyped using a high-density array
such as the PorcineSNP60 but rather will be genotyped on a low-
density array like the recently released GeneSeek Genomic Profiler for
Porcine LD (GGP-Porcine: GeneSeek Inc., a Neogen Co., Lincoln,
NE), a subset of the PorcineSNP60 containing roughly 10K SNP. We
showed (Badke et al. 2013) that genotypes in pigs can be imputed
from the GGP-Porcine to the PorcineSNP60 with accuracy of R2 =
0.88 using linkage disequilibrium (LD)-based imputation algorithms
with a small reference panel of haplotypes (N = 128 haplotypes). We
also showed that imputation accuracy can be further improved by
adding animals to the reference panel (Badke et al. 2013), or in case
of a pedigreed population, by exploiting Mendelian segregation and
population-wide LD (Huang et al. 2012; Gualdrón Duarte et al. 2013).
In this paper, we use genotypes imputed based on population wide
LD, offering a strategy that can be applied universally in any popula-
tion, for which a suitable reference panel can be assembled.

Our objective was to estimate the accuracy of genomic evaluation
using observed or imputed genotypes. Moreover, we consider two
contrasting imputation scenarios: (a) a higher-cost and high-accuracy
scenario in which high-density genotypes from training animals and
from a reference panel are used to impute genotypes in candidates for
selection and (b) a low-cost and lower-accuracy scenario in which
a small reference panel of high-density haplotypes is used to impute
genotypes in training animals and candidates for selection.

MATERIALS AND METHODS

Materials

Animals and genotypes: Data used in this study were collected from
983 Yorkshire sires. A pedigree of 4092 individuals spanning 22
generations and including all 983 sires and their registered ancestors
was available from the National Swine Registry (NSR). Of 983
genotyped sires, 575 had their sire genotyped as well, 341 had a grand
sire, and 597 animals had at least one half sib among the 983 animals.
The number of full sibs was much lower, and only 110 sires had a full
sib genotyped. Details on these quantities can be found in Supporting
Information, Figure S1. High-density genotypes for these animals

were obtained from samples provided by the NSR. Genotyping was
performed at a commercial laboratory (GeneSeek) using the Illumina
PorcineSNP60 BeadChip. The same dataset was previously used to
assess the effect of genotype imputation (Badke et al. 2013) and is
publicly available at: https://www.msu.edu/~steibelj/JP_files/imputa-
tion.html. Animal protocols were approved by the Michigan State
University All University Committee on Animal Use and Care
(AUF# 03/09-046-00). Genotyping rate of at least 90% of both animals
and SNP and a minor allele frequency (MAF) of at least 5% were
required for genotypes to be included in the analysis, leaving a total of
41,248 markers in 983 animals. SNPs that were not assigned to an
autosomal position in map build 10.2 were excluded from the analysis.
It was our goal to estimate the GEBV of male offspring of a sire and
since sires will not pass an X chromosome to their male offspring,
these SNP do not contribute to the sons’ GEBV (VanRaden et al.
2009). In addition to genotypes for 983 Yorkshire sires, a set of 128
Yorkshire haplotypes was available as a reference panel for genotype
imputation from a previous study (Badke et al. 2012). These haplo-
types are also freely available at https://www.msu.edu/~steibelj/
JP_files/LD_estimate.html, and details on the design and phasing
can be found in Badke et al. (2012).

Phenotypes: For every animal and their parents, EBVs and accuracies
were obtained for three traits from NSR through their traditional
genetic evaluation. These traits were: backfat thickness (BF), number
of days to 250 lb (D250), and loin muscle area (LEA). Descriptive
statistics of EBV and accuracies are presented in Table 1. All code and
data used in this paper have been assembled into an R package,
accessible at: http://tinyurl.com/MSURGEBV.

Methods

De-regression of breeding values: De-regressed breeding values
(dEBVs) were used as response variables throughout the analysis.
We computed individual animal dEBVs and their weights (wi) with
the parent average removed by following the procedure outlined by
Garrick et al. (2009). We discarded records with a negative weight.
The weight of an animal will only be below 0 if the unknown in-
formation content on this particular animal and its offspring is below
0, such that there is no individual information observed. This would
be the case in a young animal, where all observed information came
from ancestors and parents of this animal. To avoid double counting,
these animals were eliminated from the analysis because they did not
contribute individual information. After de-regression and filtering
a total of 965, 936, and 938 animals remained for the traits BF,
D250, and LEA, respectively.

Estimation of genomic relationship matrix: The genomic relation-
ship matrix was estimated from observed or imputed high density
(~41 K) SNP genotypes. Genotypes were expressed as allelic dosage,

n Table 1 Descriptive statistics of EBVs

BF D250 LEA

E�BV 20.03 4.57 0.61
�r2EBV a 0.74 0.67 0.75
N b 965 936 938
h2 0.45 0.26 0.47

EBV, estimated breeding values; BF, backfat thickness; D250, number of days to
250 lb; LEA, loin muscle area.
a

Average reliability of EBV.
b

Number of animals with usable EBV.
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which is the number of copies of the minor allele, such that genotypes
were entered into a marker matrix W as a decimal number in the
interval [0, 2]. We obtained matrix Z by subtracting twice the allelic
frequency of the minor allele (pi), from columns of W (VanRaden
2008). The genomic relationship matrix was then calculated as:

G ¼ ZZ9

2
PM

i¼1 pi
�
12 pi

� (1)

where 2
PM

i¼1pið12 piÞ is a normalizing constant (Wang et al. 2012)
summing expected variances across markers scaling G toward the
numerator relationship matrix (VanRaden 2008). The allele fre-
quency pi was obtained using all available animals (N = 983). Av-
erage relatedness between animals was obtained from the row/
column vectors of G. We quantified relatedness in this study as
the average of the top 10 relationships observed within the G matrix
(re/10). The choice of top 10 as opposed of another number is
arbitrary but driven by the fact that each animal had a very limited
number of close and distant relatives in the training set (Figure S1).
Moreover, other studies have used this measure and proposed its
inclusion in future work on genomic selection to promote compa-
rability (Daetwyler et al. 2013).

Implementation of prediction model: Using the genomic relation-
ship matrix from equation (1), an animal-centric model for genomic
evaluations can be written as:

y ¼ 1nmþ aþ e (2)

where y is the vector of dEBV, m is the overall mean, a is the
vector of n animal effects ða � Nð0;Gs2

aÞÞ, and e is a vector of
random residuals ðe � Nð0;Rs2

e ÞÞ. The variance of the dEBV is
varðyÞ ¼ Gs2

a þ Rs2
e , where R is a diagonal matrix with diagonal

elements Rii ¼ 1
wi
, the inverse of the weights of the dEBV (VanRaden

et al. 2011). Equivalently, the information in G can also be included
in the incidence matrix of the animal effects a as follows (Vazquez
et al. 2010):

y ¼ 1nmþ Ca� þ e (3)

where C is the Cholesky decomposition of G, such that G = CC9, m
is the overall mean, a� is the vector of animal effects with
a� � Nð0; Is2

a� Þ noticing that a = Ca�, and e is a vector of residual
effects e � Nð0;Rs2

e Þ such that varðyÞ ¼ CC9s2
a� þ Rs2

e ¼
Gs2

a� þ Rs2
e . The variance terms for models (2) and (3) are equal,

such that the two models are in fact equivalent if variance compo-
nents are assumed known. Likewise, when estimating the parameters
under these two models, we found virtually identical results, but
model (3) was computationally more efficient resulting in a twofold
reduction in compute time (results not shown). The BLR package
(Pérez et al. 2010) in R (R Development Core Team 2011) was used
to fit the mixed model equations. Model parameters s2

e and s2
a� were

sampled from their corresponding full conditional distribution using
a Gibbs sampler. Prior distributions were elicited based on equations
presented by Pérez et al. (2010). The prior distribution of s2

e and s2
a�

were an inverse x2 distribution with degrees of freedom df and scale
S. To ensure proper priors with finite expectations, we set df = 3. The
scale parameters were obtained as a function of the df and assuming
values of the genetic variance (Va) and error variance (Ve) (Pérez
et al. 2010):

s2
e � x22�dfe ¼ 3; Se ¼ Ve

�
dfe þ 2

��

s2
a� � x22

 
dfa ¼ 3; Sa ¼

Va
�
dfa þ 2

�
�Aii

!

where �Aii, is the average inbreeding coefficient, set equal to 1 in this
case, assuming no inbreeding. Heritability was assumed to be h2 =
0.5, such that after the value for Ve was arbitrarily set to 0.4, Va was
estimated Va ¼ Veh2

12 h2 . The Gibbs sampler implemented in BLR
(Pérez et al. 2010) was used to obtain a total of 100,000 samples,
10,000 of which were discarded as burn-in. The reported estimates
of s2

e , s
2
a�, animal effects (a�), and GEBV ðŷÞ were based on the

posterior means of the remaining 90,000 iterations. We assessed
convergence of the Markov chain Monte Carlo method as well as
sensitivity to priors to ensure robustness of estimates to priors
(results not shown).

Genomic prediction under cross-validation
Accuracy of genomic evaluation was estimated in a 10-fold cross-
validation design. Approximately 10% of the animals were randomly
assigned to a validation panel (V) in which predictions would be
made, whereas the remaining 90% were used as the training panel
(T) to estimate the parameters necessary for prediction. A total of 10
separate datasets were created such that each animal would be used
for validation once. Across cross-validation datasets we fit model (3)
to the training animals; we refer to that subset by adding a subindex T:

yT ¼ 1nT mþ CTa
�
T þ eT (4)

to estimate the BLUP of â�T (VanRaden et al. 2011):

â�T ¼ C9
T

�
GT þ RT

s2
e

s2
a

�21�
yT 2 1nT m̂

�
(5)

where the matrices G and C are partitioned into block structure such
that �

GT G9
TV

GTV GV

�
¼
�
CT 0
CTV CV

��
C9
T C9

TV
0 C9

V

�

¼
�
CTC9

T CTC9
TV

CTVC9
T CTVC9

TV þ CVC9
V

�
(6)

The relation between the BLUP for a based on model (2) and â�

based on model (3) can be expressed as:�
aT
aV

�
¼
�
CT 0
CTV CV

��
a�T
a�V

�
(7)

The GEBVs of training animals in model (2) were computed as:

âT ¼ CT â
�
T ¼ CTC

9
T

�
GT þ RT

s2
e

s2
a

�21�
yT 2 1nT m̂

�

¼ GT

�
GT þ RT

s2
e

s2
a

�21�
yT 2 1nT m̂

�
(8)

Subsequently, the GEBVs of the validation animals âV were esti-
mated from âT using the following equation:

âV ¼ GTVG
2 1
T âT ¼ CTVC

9
T

�
GT þ RT

s2
e

s2
a

�21�
yT 2 1nT m̂

�
(8)

where s2
e , s

2
a, and m̂ are estimated using model (4), which is equiv-

alent to applying model (3) to the training animals.
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Estimation of accuracy: Accuracy of genomic evaluation is the
correlation between the estimated GEBV and the unknown true
breeding values (TBVs) (Hayes et al. 2009a). However, the TBVs are
unknown. Consequently, the accuracy of genomic evaluation has to be
approximated using the available information. Hayes et al. (2009a)
proposed to express the correlation between GEBV and TBV as a func-
tion of the correlation between GEBV and EBV:

rðGEBV;TBVÞ ¼
corðGEBV ; EBVÞ
corðEBV ;TBVÞ ¼ corðGEBV ; EBVÞffiffiffiffiffiffiffiffiffi

r2EBV

q (9)

where r2EBV is the estimated reliability of the EBV. VanRaden et al.
(2009) replaced r2EBV with the arithmetic mean of the reliability of
the EBV. Daetwyler et al. (2013) proposed to report a simple Pear-
son correlation coefficient between GEBV and EBV to allow for
comparability of results across studies. We estimate accuracy of
genomic evaluation as the Pearson correlation coefficient between
GEBV and EBV (r(GEBV, EBV)) and the Pearson correlation coefficient
adjusted for the average accuracy of the EBV to facilitate such com-
parison

	
rðGEBV ;EBVÞ

�rEBV



.

Accuracies of individual GEBV were obtained analogous to the
accuracy of EBV in an animal model (Goddard et al. 2011) through
inversion of the mixed model equations (Mrode 2005; VanRaden
2008; VanRaden et al. 2009; Strandén and Garrick 2009; Clark et al.
2012). The accuracy of âV of the model (2) can be expressed as
(Mrode 2005; Strandén and Garrick 2009; Clark et al. 2012):

râV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
GTV

	
GT þ RT

s2
e

s2
a


21
G9
TV

�
ii

fGVgii

vuuut
(10)

This equation and its derivation can be found in Strandén and
Garrick (2009) and VanRaden (2008) and was used to estimate
the accuracy of individual GEBV for validation animals.

Genotype imputation: LD-based genotype imputation was performed
with BEAGLE version 3.3.1 (Browning and Browning 2009). We used
the standard settings for BEAGLE: 10 iterations of the phasing algo-
rithm, drawing four samples per iteration. Previous results from our
group (Badke et al. 2013) and other studies (Hayes et al. 2012) showed
negligible improvement in imputation accuracy as a result of an in-
crease in iterations or samples per iteration. Imputation of 10K SNP
chip [6890 SNP after filtering for minor allele frequency (MAF) and
missing rate] were used as tagSNP to impute 60K SNP (41,248 after
filtering).

We implemented two separate imputation experiments that differ
in the size of the high-density reference panel used for imputation: (1)
a reference panel of 128 Yorkshire haplotypes or (2) a reference panel
combining the 128 Yorkshire haplotypes with the haplotypes of all
animals that are part of the training panel (~1700 additional
haplotypes) in the respective cross-validation dataset. To assess the
effect of genotype imputation on genomic prediction we considered
the following four scenarios: (1) the reference scenario in which
genomic evaluation was based on observed genotypes in training and
validation animals, (2) genomic evaluation based on observed
genotypes in the training animals and genotypes imputed from a large
reference panel (~1800 haplotypes) in the validation animals, (3)
genomic evaluation based on observed genotypes in the training
animals and genotypes imputed from a small reference panel (128
haplotypes) in the validation animals, and (4) genomic evaluation

based on imputed genotypes in training and validation animals using
a small (128 haplotypes) but representative reference panel for
imputation. All genotype imputation and subsequent estimation of
imputation accuracy was implemented using the R package impute.
R (Badke et al. 2013). To compare average accuracy of genomic eval-
uation across these four scenarios, we fitted a linear model with the av-
erage accuracy of genomic evaluation as response variable and the
genotype imputation scenario as independent variable, adding the
effect of the random cross-validation dataset in which accuracy of
genomic evaluation was estimated as a random blocking factor.

RESULTS

Accuracy of genomic evaluation and GEBV
using observed genotypes
When genotypes were observed in both training and prediction animals,
the accuracy of genomic evaluation, measured as the weighted mean of
the Pearson correlation coefficient between EBV and predicted GEBV
across 10 cross-validation datasets, was 0.68, 0.66, and 0.65 for BF,
D250, and LEA, respectively (Table 2). When the measure of accuracy
was adjusted for the average reliability of the EBV of the training
animals, the observed accuracy of genomic evaluation was 0.80, 0.82,
and 0.76 for BF, D250, and LEA, respectively (Table 2).

We observed a significant difference between the estimates of
accuracy of genomic evaluation across 10 randomly assigned cross-
validation datasets for three traits (Table 3). That variation across
cross-validation datasets was partially explained by a significant effect
of the average EBV accuracy of validation animals on accuracy of
genomic evaluation (Table 3) in three traits and a significant effect
of top 10 relatedness on accuracy of genomic evaluation in D250. In
general, D250 had slightly lower average EBV accuracy due to an
increased frequency of EBV with intermediate accuracy (rEBV close
to 0.6, Figure S2). As expected, this resulted in slightly lower correla-
tion of EBV and GEBV because the ‘true value’ (EBV) is subject to
more uncertainty. Another source of difference of accuracy of geno-
mic evaluation across cross-validation datasets could be the population
structure. This would be revealed through differences in estimated
variance components. We did not expected differences in variance
components estimated from randomly assigned validation datasets.
We confirmed this assumption by studying the distribution of estimated
heritability

	
s2
a

s2
aþs2

e



and included the obtained results in Figure S3.

We observed that the posterior distributions of heritabilities did not
change across folds. Conversely, in the presence of population struc-
ture, the relationships of animals of different cross validation data-
sets will change (depending on who else is in the training set), and
we expect that to affect the estimate of heritability.

The average accuracy of the genomic evaluation and the assess-
ment of the accuracy of individual GEBV using equation 10 is equally
important in a practical implementation of genomic selection.
Average accuracy of individual GEBV was 0.69, 0.66, and 0.69 for
BF, D250, and LEA, respectively with a 95% highest posterior density
interval ranging from roughly 0.51 to 0.80 across all traits (Table 2).

As can be seen in Figure 1, the accuracy of GEBV (rGEBV) and
accuracy of EBV (rEBV) are not linearly related. The accuracy of EBV
was higher than the estimated accuracy of GEBV for most animals in
three traits, especially when rEBV . 0.8. For a few animals with rEBV
between 0.4 and 0.8, the accuracy of GEBV was higher than their re-
spective EBV accuracy. Hypothetically, individual differences in rGEBV
can be explained by the presence or absence of relatives of the predicted
animal in the training set (Clark et al. 2012; Pérez-Cabal et al. 2012).
We investigated this assertion in two ways: (1) by computing average
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rGEBV for animals with different number of relatives in training panel
and (2) by regressing rGEBV on the average top 10 relatedness in the
genomic relationship matrix. Following Pérez-Cabal et al. (2012), we
defined close relatives as sires and full sibs and distant relatives as
maternal grand sires and half sibs. We found that increasing the num-
ber of close relatives from one to four in the training panel increased
average rGEBV by about 0.1 decimal points (Figure 2) across the three
traits in this study (from an average of = 0.63 to = 0.73 regardless of the
trait considered). The presence of distant relatives in the training set also
resulted in an increase of rGEBV of similar magnitude when comparing
individuals without any distant relative to individuals with at least five
distant relatives in the training set (Figure 2). A similar relationship was
observed when comparing rGEBV with the average relationship to the 10
most-related individuals in the training set. We observed an almost
linear increase in rGEBV as top 10 relatedness increased (Figure 2), which
was statistically significant (P , 0.01). To further investigate the effect
of relatedness between training and validation animals, we selected the

youngest 87 animals (approximately 10% of the population) that in-
cluded 82 animals with at least a sire or a grand-sire in the training
panel. We repeated genomic evaluation with this validation panel and
estimated the accuracy of GEBV. As expected, average accuracy of
GEBV for this validation panel was higher than the average observed
across the cross-validation datasets with 0.72 for BF and LEA, and 0.54
for D250. However, when looking at the range of accuracies observed
for all 10 cross-validation datasets these values do not exceed the max-
imum accuracy observed. One interesting finding was that estimates of
individual accuracy, or accuracy of GEBV predicted through the geno-
mic relationship matrix, were much larger than the observed accuracy
of genomic evaluation in all three traits (Table 2). Goddard et al. (2011)
proposed to use this measure of accuracy of individual GEBV when
using them for selection but also to screen for animals whose GEBV
could be expected to be highly accurate. Our results show that while it is
true that individuals with close relatives in the training panel will have
on average more accurate GEBV, the individual accuracies obtained
from the G matrix would be overestimated.

Effect of genotype imputation on accuracy
of genomic evaluation and GEBV
Accuracy of imputation (R2) for each animal was measured as the
squared correlation between the observed and imputed allelic dosage
across all SNP (Badke et al. 2013). Average accuracy of imputation
was R2 = 0.88 for the scenario using a small (128) haplotype reference
panel, and it increased to R2 = 0.95, when a larger reference panel
(~ 1800 haplotypes) was used. In our previous study (Badke et al.
2013), we found that increasing the size of the reference panel led to
an improved imputation, especially of SNP that appear difficult to
impute, such as SNP with low (,0.1) MAF and those located in
the chromosomal extremes. These results were repeated in this study
(Figure S4). For BF we found that the average accuracy of genomic
evaluation under scenario 2 (rGEBV, EBV = 0.68), where genotypes in
the validation animals were imputed with high accuracy (R2 = 0.95),
was not significantly different from the accuracy (rGEBV, EBV = 0.68)
estimated in the reference scenario, where all genotypes were observed.
However, average accuracy of genomic evaluation was significantly

n Table 2 Estimates of accuracy for genomic evaluation and individual GEBV across imputation scenarios

Trait Scenarioa Imputation Accuracyb rEBV, GEBV
c rEBVd

rEBV ;GEBV
�rEBV

�rGEBV HPDe

BF 1 (1, 1) 0.68101 0.8510 0.7998 0.6852 [0.5395, 0.8211]
2 (1, 0.95) 0.67951 0.7981 0.6861 [0.5467, 0.8164]
3 (0.88, 0.88) 0.65982 0.7749 0.7014 [0.5727, 0.8267]
4f (1,1) 0.7210 0.8405 0.8560 [0.8174, 0.8768]

D250 1 (1, 1) 0.66031 0.8020 0.8229 0.6575 [0.5073, 0.7948]
2 (1, 0.95) 0.65551,2 0.8170 0.6585 [0.5187, 0.7962]
3 (0.88, 0.88) 0.64632 0.8054 0.6750 [0.5345, 0.7985]
4f (1,1) 0.5354 0.6550 0.8438 [0.8048, 0.8704]

LEA 1 (1, 1) 0.65161 0.8529 0.7639 0.6859 [0.5386, 0.8325]
2 (1, 0.95) 0.64911 0.7610 0.6868 [0.5377, 0.8214]
3 (0.88, 0.88) 0.63642 0.7461 0.7040 [0.5667, 0.8330]
4f (1,1) 0.7165 0.8201 0.8549 [0.8223, 0.8787]

GEBV, genomic breeding value; EBV, estimated breeding values; HPD, highest posterior density; BF, backfat thickness; D250, number of days to 250 lb; LEA, loin
muscle area.
a

Scenarios 1: all observed genotypes, 2: genotypes in prediction animals imputed with large reference haplotype panel (~1800), 3: genotypes in prediction animals
imputed with small haplotype reference panel (128), and 4: validation animals with at least one close relative in the reference panel.

b
Accuracy of genotype imputation R2 for training and validation animals: ðR2

T ;R
2
V Þ.c

Tukey honest significant difference post-hoc comparison of accuracy of genomic evaluation across imputation scenarios.
d

Average accuracy of EBV in the validation panel.
e

95% HPD interval of GEBV accuracy across validation animals.
f

Scenario with young animals in the validation panel that almost all have at least one close relative in the training panel.
1,2Means with different superscript differ significantly according to Tukey post-hoc tests with a = 0.05.

n Table 3 Significance of variables affecting accuracy of genomic
evaluation

dataseta rel10b �rEBV c

trait Fd p Fe p Fe p
BF 258 , 0.001 2.83 0.1013 11.73 0.0016��

D250 229 , 0.001 5.18 0.0291� 7.238 0.0109�

LEA 311 , 0.001 2.06 0.1605 3.430 0.0725

EBV, estimated breeding values; BF, backfat thickness; D250, number of days to
250 lb; LEA, loin muscle area.
a

Accuracy of genomic evaluation was estimated for a total of 10 randomly
assigned datasets of the cross-validation, such that we could assess whether
accuracy of genomic evaluation was significantly different across these 10
datasets.

b
Accuracy of genomic evaluation by average of the top 10 genomic relation-
ship estimates of animals in the validation set.

c
Accuracy of genomic evaluation by average accuracy of EBV of validation
animals by cross-validation dataset.

d
df = c(9, 27).

e
df = c(1, 35).

�P , 0.05, ��P , 0.01.
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lower (rGEBV, EBV = 0.66), when genotypes were imputed in both
training and validation with lower accuracy (R2 = 0.88 using a small
reference panel of haplotypes (scenario 3). For D250, there was no
significant difference in accuracy of genomic evaluation between the
reference scenario (rGEBV, EBV = 0.66) and the scenario where gen-
otypes were imputed in the validation animals (Table 2). However,
when genotypes were imputed in both training and validation (sce-
nario 3), the accuracy of genomic selection was significantly lower
(rGEBV, EBV = 0.65). For LEA there was also no difference in accuracy
of genomic evaluation between the reference scenario (rGEBV, EBV =
0.65) and scenario 2 (rGEBV, EBV = 0.65). There was a significant
decrease in accuracy of genomic evaluation when genotypes were
imputed with lower accuracy (R2 = 0.88) in scenario 3 (rGEBV, EBV =
0.63). To assess the effect of genotype imputation on the results of
a genomic evaluation, we compared the top 5% sires (n = 46), ranked
by their estimated GEBV across imputation scenarios. Again, scenario
1 was used as a reference scenario to compare how many of the top
5% ranked animals were also top ranked under the imputation sce-
narios. The proportion of top 5% ranked sires that were conserved
when genotypes were imputed in validation animals with high accu-
racy (scenario 2) was 0.96 for BF and 0.98 for D250 and LEA. When

genotypes were imputed with low accuracy in training and validation,
the proportion of top 5% sires conserved in comparison with the
reference design showed a small decrease compared with the design
with only validation animals imputed for BF (0.88) and for D250
(0.89), and a more substantial decrease for LEA (0.81). Accuracy of
individual GEBV is estimated using the genomic relatedness between
training and validation animals. Using genotypes imputed with high
accuracy (R2 = 0.95) the estimated rGEBV remained constant in all
traits, compared with estimates obtained from observed genotypes.
Accuracy of imputation was correlated with rGEBV (Figure S5). How-
ever, this does not imply that high imputation accuracy caused an
increase in rGEBV. Another possibility is that genotypes from animals
with relatives in the reference panel will be imputed with high accu-
racy and their GEBV will also be predicted more accurately. We
believe that this was the case for our population because the correla-
tion between GEBV and EBV did not differ significantly when impu-
tation was used (Table 2, compare scenario 1 and 2). Moreover, when
genotypes were imputed with less accuracy (R2 = 0.88), the observed
accuracy of GEBV was increased even with respect to the reference
scenario (Table 2, compare scenario 3 to 1 and 2). This result is
counterintuitive, and we investigated the reason for this increase.

Figure 1 Accuracy of GEBV by observed accuracy of EBV for (A) BF, (B) D250, and (C) LEA rGEBV in relation to the animals rEBV, with the 1-1 line of
the regression (green line) and a loess smoother (red line), which is a local weighted mean of the rGEBV. GEBV, genomic breeding value; EBV,
estimated breeding value; BF, backfat thickness; D250, number of days to 250 lb; LEA, loin muscle area.

Figure 2 Accuracy of GEBV by average top 10 relatedness between the individual and training panel for (A) BF, (B) D250, and (C) LEA rGEBV in
relation to the animals rel10, a loess smoother (red line), which is a local weighted mean of the rGEBV. GEBV, genomic breeding value; BF, backfat
thickness; D250, number of days to 250 lb; LEA, loin muscle area.
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Examining the estimation procedure for rGEBV we found that the in-
crease was due to smaller estimates of the diagonal elements of the
genomic relationship matrix between the validation elements (GV) in
the scenario with all imputed genotypes. This is the result of all
imputed animals conditional on a small reference panel looking ge-
netically more similar than they really are (because they are all im-
puted toward the haplotype frequencies in the small panel). Those
diagonal elements of G were used to scale values of rGEBV (equation 10),
and smaller values in the denominator resulted in the larger estimates
of rGEBV we saw for animals in scenario 3. Comparing unscaled values
of rGEBV individual accuracy was higher in the reference scenario for
all animals.

DISCUSSION

Accuracy of genomic evaluation and GEBV
using observed genotypes
The size of the training population used to train the prediction
equation in this study was small compared with previous genomic
evaluations published in swine (Cleveland et al. 2010, 2012), and
especially compared with studies applying genomic evaluation in Eu-
ropean (Dassonneville et al. 2011) or US dairy cattle (Weigel et al.
2010; Wiggans et al. 2012). Observed accuracy of genomic evaluation
in this study was in good agreement with previously published results
for genomic evaluation in pigs, assessing five unspecified commercial
traits with comparable heritability (Cleveland et al. 2012) and earlier
results for two reproductive traits (Cleveland et al. 2010). Accuracy of
genomic evaluation was high across three traits (BF: rGEBV = 0.6810;
D250: rGEBV = 0.6603; LEA: rGEBV = 0.6516). In addition, we report
accuracy adjusted for the fact that the Pearson correlation between
EBV and GEBV will underestimate the true quantity of interest (Luan
et al. 2009). Assessing the variation in accuracy of genomic evaluation
across datasets of the cross-validation, we found that the �rEBV of the
validation animals and their relatedness to the training animals were
significantly associated to the average accuracy of genomic evaluation.
Higher accuracy of genomic evaluation of prediction animals with
close relatives in the training population (Habier et al. 2010; Clark
et al. 2012) and within closely related populations, with relatively
small effective population size, has been previously reported (Daetwyler
et al. 2013). Accuracy of genomic evaluation in this study was high
despite the limited number of animals available for training and the
inclusion of animals with relatively low EBV accuracy. Furthermore,
we obtained accurate genomic predictions using an equivalent model
fitting the genomic relationship matrix instead of a marker based
matrix (Hayes et al. 2009b), thereby greatly reducing the computa-
tional load. We expect that accuracy of genomic evaluation in this
population and other US swine populations with comparable popu-
lation structure and LD (Badke et al. 2012), will be feasible for com-
mercial implementation and could be further increased through the
inclusion of additional training animals with highly accurate EBV.

Besides assessing the accuracy of genomic evaluation, we also
reported accuracies for individual GEBV. The accuracy of GEBV is
important because it can influence selection decisions. Moreover, as
proposed by Goddard et al. (2011), rGEBV can also be approximated
prior to the implementation of genomic evaluation and used to inform
the design of genomic selection in a population. The main difference
between rGEBV and r(GEBV, EBV) is that r(GEBV, EBV) is indicative of the
average accuracy of GEBV in a population, whereas rGEBV gives a mea-
sure of accuracy of each individually estimated GEBV. As expected,
we observed that accuracy of GEBV increased with increased related-
ness between the animal and the training panel. An interesting finding

was that under a low accuracy imputation scenario, rGEBV was over-
estimated compared with r(GEBV, EBV). We traced this back to the
diagonal elements of the genomic relationship matrix and attributed
it to an artifact of the imputation using a small reference panel.

Several previous studies in other populations and simulation
experiments also showed the importance of relatedness for the
prediction of accurate GEBV (Habier et al. 2010; Clark et al. 2012),
especially when the training population was small (Wientjes et al.
2013) as was the case in our study. In addition, we observed that
accuracy of GEBV was higher than accuracy of EBV for only a few
animals that had mostly low accuracy of EBV. This finding is further
supported by previous reports that implementation of genomic eval-
uation would be most beneficial for young animals with little infor-
mation on their own and subsequently low accuracy of traditional
EBV (VanRaden 2008).

Effect of genotype imputation on accuracy
of genomic evaluation and GEBV
Genotype imputation is an efficient tool to decrease the cost of
obtaining high-density genotypes for selection candidates. One of the
goals of this study was to quantify the loss on accuracy of genomic
evaluation if GEBV were estimated from imputed rather than
observed genotypes in selection candidates. Comparing accuracy of
genomic evaluation across three scenarios of genotype imputation we
found that for three traits there was no significant loss of accuracy of
genomic prediction if genotypes in validation animals were with high
accuracy (R2 = 0.95) instead of observed. However, accuracy of geno-
mic evaluation decreased in comparison with the reference scenario
when genotypes were imputed with lower overall accuracy (R2 = 0.88).
When low-accuracy imputation was applied in training and prediction
animals we observed a decrease in accuracy of genomic evaluation.
Previously published results support that although it is not feasibly to
implement genomic prediction based on low-density genotypes (Habier
et al. 2009; Cleveland et al. 2010) the accuracy of genomic evalu-
ation is still feasible for practical implementation when genotypes in
selection candidates are accurately imputed to high density (Weigel
et al. 2010; Cleveland and Hickey 2013). In addition, several studies
also support that an increase in imputation accuracy will generate
genomic evaluations with nearly identical or even higher accuracy
compared with that obtained from observed genotypes (Dassonneville
et al. 2011; Wiggans et al. 2012; Cleveland and Hickey 2013) because
the cost efficiency of low-density genotypes allows a much larger
proportion of the population to be included in the genomic evaluation
procedure (Wiggans et al. 2012). In conclusion, an implementation of
genomic selection based on observed genotypes for training of the
prediction equation and GEBV predictions obtained from genotypes
imputed with high accuracy appears to be a promising approach to
provide the swine breeding industry with a cost-efficient procedure to
obtain GEBV for animals at a young age. A recent study assessing the
accuracy of genomic evaluation using high-density genotypes and
various imputation schemes in a commercial pig population further
supports these findings (Cleveland and Hickey 2013).

We found that accuracy of individual GEBV was a linear function
of the relatedness between a validation animal and the respective
training set. As has been previously shown in the literature, animals that
are highly related to the training population will have higher rGEBV
(Habier et al. 2010; Clark et al. 2012). As shown in the last scenario,
however, when all selection candidates had at least one close relative
in the training population, rGEBV overestimates the accuracy observed
for the genomic evaluation (r(EBV, GEBV)). Although this measure
certainly has value to rank animals according to how trustworthy
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estimated GEBV are, it is likely overestimated for candidates with
close relatives.

The other case in which we observed overestimated individual
accuracy of GEBV (rGEBV) pertains to the last of the imputation
scenarios where genotypes were imputed in training and prediction
animals. Specifically, when genotypes were imputed in training and
prediction animals with lower accuracy, the average rGEBV was larger
than the accuracy of genomic evaluation, which we found was an
artifact of lower estimates of the diagonal elements of the G matrix.
This was caused by a decrease in the variance of the allelic dosage of
imputed genotypes due to the relatively small number of reference
haplotypes available. When the variance of imputed allelic dosages
was decreased, the deviation from the expected value estimated from
MAF (2p) also decreased, causing overall smaller estimates of Z and
the resulting diagonal elements of the G matrix. This increase in the
homogeneity of allelic dosages in the imputed genotypes causes the
observed inflation in accuracy of estimated GEBV, such that in any
case when GEBV are obtained from imputed genotypes the estimated
accuracy of GEBV should be used with caution. The average GEBV
accuracy notably exceeded the expected accuracy of genomic evalua-
tion in that scenario.

In conclusion, we found that results for the accuracy of GEBV
further support the notion that genomic evaluation using high-density
genotypes imputed with high accuracy for selection candidates is
a feasible method to implement a cost-efficient design for genomic
selection in swine. When genotypes were imputed with lower accuracy
in training and prediction animals, the accuracy of genomic evaluation
was significantly decreased, and estimates of accuracy of GEBV were
inflated. From our results, we can affirm that starting a genomic
evaluation using low-density genotypes and a small panel of high-
density haplotypes will result in reduced accuracy of evaluation.
Contrarily, once an evaluation is established with a large number of
animals genotyped using a high-density platform, the addition of
more animals genotyped at low density is promising. Further research
is needed to study the effect of adding those imputed animals to the
training population in further model retraining. As mentioned
previously, all code and data used in this paper has been made
available through an R package, accessible at: http://tinyurl.com/
MSURGEBV.
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