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a b s t r a c t 

The increasing antimicrobial resistance has seriously threatened human health worldwide over the last three 

decades. This severe medical crisis and the dwindling antibiotic discovery pipeline require the development 

of novel antimicrobial treatments to combat life-threatening infections caused by multidrug-resistant micro- 

bial pathogens. However, the detailed mechanisms of action, resistance, and toxicity of many antimicrobials 

remain uncertain, significantly hampering the development of novel antimicrobials. Genome-scale metabolic 

model (GSMM) has been increasingly employed to investigate microbial metabolism. In this review, we discuss 

the latest progress of GSMM in antimicrobial pharmacology, particularly in elucidating the complex interplays 

of multiple metabolic pathways involved in antimicrobial activity, resistance, and toxicity. We also highlight the 

emerging areas of GSMM applications in modeling non-metabolic cellular activities (e.g., gene expression), identi- 

fication of potential drug targets, and integration with machine learning and pharmacokinetic/pharmacodynamic 

modeling. Overall, GSMM has significant potential in elucidating the critical role of metabolic changes in antimi- 

crobial pharmacology, providing mechanistic insights that will guide the optimization of dosing regimens for the 

treatment of antimicrobial-resistant infections. 
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. Introduction 

The rapid emergence of multidrug-resistant (MDR) microbial

athogens represents a critical challenge to human health globally and

as imposed significant economic and clinical burdens [54] . Consider-

ng the substantial challenges in the discovery of new classes of antimi-

robials, the development of novel antimicrobial treatments to combat

DR bacterial pathogens is critical [35] . However, the exact mecha-

isms of activity and resistance of many antimicrobial agents remain

ncertain and appear far more complex than the conventional ‘one drug,

ne target, one mechanism’ paradigm. These knowledge gaps have sig-

ificantly hindered antimicrobial development. 

Aided by the rapid development of systems biology, multi-omics ap-

roaches have been widely applied to elucidate the complicated mecha-

isms of antimicrobial activity, resistance, and toxicity. Notably, numer-

us studies have demonstrated that cellular metabolic changes may play

ritical roles in antimicrobial killing, resistance development, and host

ide effects. For example, beta-lactams may impair purine metabolism

n Escherichia coli and reinforce a futile cycle of cell wall biosynthesis

nd degradation, adding to their already well characterized inhibition of

ell wall biosynthesis and thereby contributing to beta-lactam lethality

20] . Also in E. coli , impairment of cellular respiration may contribute

o the activity of bacteriostatic translation inhibitors such as tetracy-

line, spectinomycin, erythromycin, and chloramphenicol [50] . Exoge-
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ous feeding with alanine and/or glucose restores kanamycin suscepti-

ility to resistant strains of Edwardsiella tarda by promoting metabolic

ux through the tricarboxylic acid (TCA) cycle, increasing proton mo-

ive force and thereby enhancing antimicrobial uptake [66] . Mycobac-

erium tuberculosis may divert trehalose and maltose from biosynthesis

f cell wall components toward synthesis of central carbon metabolism

ntermediates, thus maintaining intracellular levels of ATP and antioxi-

ants [43] . Interestingly, this metabolic shift was present in clinical iso-

ates of MDR M. tuberculosis , suggesting that it has an essential role in

he development of resistance. Human lung and kidney cells are known

o undergo severe metabolic changes and oxidative stress following

olymyxin treatment, indicating that antimicrobial-induced metabolic

lterations contribute to host side effects [ 4 , 5 ]. While effects on cellular

etabolism are now known to be critical in antimicrobial pharmacol-

gy, this has long been a neglected area of study. Accurate assessments

f these effects will be important for the development of novel and ef-

ective antimicrobial treatments. 

First developed ∼30 years ago, genome-scale metabolic model

GSMM) together with flux balance analysis (FBA) approaches have

een widely employed to study microbial evolution, metabolic engineer-

ng, physiology, host–pathogen interactions, and antimicrobial pharma-

ology [ 27 , 57 , 79 ]. A GSMM is a comprehensive representation of a

etabolic network that incorporates most enzymatic biochemical reac-

ions occurring in a cell, with these reactions interconnected via partici-
he peer-review of this article and has no access to information regarding its 
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Table 1 

Representative genome-scale metabolic models applied in antimicrobial pharmacological studies. 

Organism Model ID Brief summary Refs. 

Escherichia coli K12 substr. MG1655 iML1515 Understanding metabolic adaptations related to antimicrobial resistance [65] 

Klebsiella pneumoniae MGH 7857 iYL1228 Identifying novel drug targets [16] 

Acinetobacter baumannii AYE AbyMBEL891 Identifying novel drug targets [39] 

Acinetobacter baumannii ATCC 19606 iATCC19606 Elucidating mechanism of metabolic changes to colistin treatment [90] 

Acinetobacter baumannii ATCC 19606 iLP844 Elucidating mechanism of metabolic changes to colistin treatment [67] 

Pseudomonas aeruginosa PAO1 iPAO1 Elucidating mechanism of metabolic changes to polymyxin B treatment [89] 

Pseudomonas aeruginosa UCBPP-PA14 iPau1129 Understanding metabolic adjustments related to antimicrobial resistance [25] 

Chromobacterium violaceum ATCC 12472 iDB858 Understanding metabolic adjustments related to antimicrobial resistance [7] 

Chromobacterium violaceum ATCC 12472 iDB149 Identification of strategies to restore antibiotic susceptibility [6] 

Mycobacterium tuberculosis H37Rv iNJ661 Identifying novel drug targets [32] 

Rattus norvegicus iRno Understanding metabolism related to antimicrobial toxicity [12] 

Homo sapiens iHsa 

Plasmodium falciparum iPfal17 Identifying novel drug targets [15] 

Plasmodium falciparum Dissecting the mechanism of action of chloroquine [77] 
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Fig. 1. The number of publications describing genome-scale metabolic model 

(GSMM) and emerging applications of GSMM in antimicrobial pharmacology 

have rapidly increased. The data shown are based on PubMed searches with 

the keywords “genome-scale metabolic model ” OR “constraint-based model ”

OR “flux balance analysis ” for GSMM, and ( “genome-scale metabolic model ”

OR “constraint-based model ” OR “flux balance analysis ”) AND ( “antibiotic ” OR 

“antimicrobial ”) for GSMM applications in antimicrobial pharmacology. 
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ating metabolites [59] . With appropriate constraints such as substrate

tilization and metabolic activity, a GSMM can be used to calculate the

eaction flux distribution, allowing quantification of metabolic shifts in

 pathogen or host cell following antimicrobial treatments [ 21 , 56 ]. 

This review discusses the current application of GSMM in antimicro-

ial pharmacology, with particular emphasis given to the integration of

SMM with multi-omics and machine learning to elucidate the mech-

nisms of antimicrobial activity, resistance, and toxicity. The insights

resented here provide useful information for the development of novel

nd safer antimicrobial treatments to combat MDR microbial pathogens.

. Genome-scale metabolic modeling and flux balance analysis 

Since the first GSMM for E. coli was published in 1993, over 6000

odels have been constructed for a broad range of organisms, includ-

ng prokaryotes, eukaryotes, and archaea [ 28 , 40 ]. Many of these models

ave been applied in antimicrobial pharmacological studies ( Table 1 ).

reviously, construction of a GSMM required extensive searching of the

iterature and biochemical databases, manual curation, and iterative

hecking of genome annotation [64] . However, recent developments in

utomatic reconstruction procedures have substantially shortened this

edious process to a few minutes to hours [ 53 , 92 ]. In GSMM, a typical

iochemical reaction is linked with the associated enzyme(s) and encod-

ng genes ( Fig. 1 ). The number of genes, metabolites, and reactions in a

SMM may range from hundreds to thousands depending on the scale

f study and the complexity of the metabolic network of an organism

 Table 1 ). A metabolite may also have multiple isoforms in different or-

anelles; this is particularly important for eukaryotic cells which have

any more specialized organelles than prokaryotic cells [50] . 

With GSMM, flux balance analysis (FBA) is used to calculate

etabolic fluxes. FBA assumes a pseudo steady state where the overall

roduction of each intracellular metabolite is balanced with the over-

ll consumption ( Fig. 2 A ). Therefore, intracellular metabolite levels are

onsidered invariant. The metabolic flux distribution v can be calculated

y solving a set of linear equations ( Eq. (1) ) [61] : 

 ⋅ 𝐯 = 0 , 𝑎 𝑖 ≤ 𝑣 𝑖 ≤ 𝑏 𝑖 , 𝑖 = 1 , 2 , ⋯ , 𝑛 (1)

here the number of metabolites m (number of rows in stoichiometric

atrix S ) is smaller than the number of reactions n (number of columns

n stoichiometric matrix S ); v i is the flux through reaction i ; and a i and

 i represent the lower and upper bounds, respectively, of reaction i .

iven an objective function such as maximizing biomass accumulation

 v biomass ), the metabolic fluxes can be calculated by solving a linear pro-

ramming problem ( Eq. (2) ), Fig. 2 B ) [61] : 

Max 𝑣 biomass = 𝐜 T 𝐯 
.𝑡. 𝐒 ⋅ 𝐯 = 0 , 𝑎 𝑖 ≤ 𝑣 𝑖 ≤ 𝑏 𝑖 , 𝑖 = 1 , 2 , ⋯ , 𝑛 

(2) 

The optimal solution is v ∗ . Flux variability analysis can be imple-

ented by calculating the maximum and minimum bounds of each re-
2 
ction flux at v ∗ , or by characterizing the entire metabolic solution space

sing hit-and-run Monte Carlo sampling [45] . Moreover, the gene essen-

iality can be assessed by calculating v ∗ after manually shutting down

ll the reactions associated with the specific gene. This method is often

sed to predict potential drug targets in a cell [18] . 

In Eq. (2) , most of the fluxes are only constrained by reaction re-

ersibility, and the optimal solution varies within a vast range. Multi-

mics data can be integrated to constrain the flux variability and enable

ccurate predictions of metabolic fluxes under specific conditions [69] .

any methods have been developed for integration including MADE

Metabolic Adjustment by Differential Expression) [34] , REMI (Relative

xpression and Metabolomic Integrations) [63] , INIT (Integrative Net-

ork Inference for Tissues) [2] , RIPTiDe (Reaction Inclusion by Parsi-

ony and Transcript Distribution) [33] , and ETFL (Expression and Ther-

odynamics FLux) [74] . 
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Fig. 2. A. Diagram of flux balance analysis showing the conversion of a simple metabolic network to a stoichiometric matrix. B. The optimal solution (red node) of 

biomass formation (V5) is shown in a metabolic solution space, with two variables of substrate uptake (V1 and V2). 
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Recently, the conventional GSMM (metabolic model, or M model)

as been extended to a genome-scale model of gene expression and

etabolism (ME model) by incorporating data related to protein trans-

ation, RNA transcription and processing, protein complexation and sub-

ellular localization, and DNA replication [58] . The production of cel-

ular components such as peptides, protein complexes, RNA molecules,

nd metabolites is constrained together by biomass dilution and con-

umption [58] . The ME model has been applied to investigate mecha-

isms of nutrient preference [85] , overflow metabolism [48] , and re-

ponses to oxidative stress [86] . 

With the rapid development of sequencing techniques, GSMM has

lso been expanded to model metabolism in multiple strains of the

ame species (e.g., E. coli, Klebsiella pneumoniae, Salmonella enterica , and

taphylococcus aureus ) [ 9 , 47 , 60 , 78 , 82 ]. These models have been used to

alculate strain-specific metabolic flux distributions for in silico growth,

hich are then used as a surrogate for metabolic phenotypes to deter-

ine metabolically unique phylogenetic clades [ 9 , 47 , 60 , 78 , 82 ]. Impor-

antly, these models can also be used to study the association between

etabolism and antimicrobial susceptibility [38] . Given sufficient con-

traints, GSMM can accurately predict cellular metabolic status. These

odels therefore serve as a common tool in biomedical studies (e.g.,

ntimicrobial pharmacology), as discussed below. 

. Genome-scale metabolic modeling in antimicrobial 

harmacology 

.1. Elucidation of the mechanisms of metabolic changes contributing to 

ntimicrobial activity 

The impact of antimicrobial treatments extend far beyond their ef-

ects on their initial targets, with numerous studies having demon-

trated that metabolic alterations in microbial pathogens are closely re-

ated to antimicrobial efficacy [ 49 , 50 , 87 ]. Perturbations to intracellu-

ar metabolic homeostasis are critical aspects of antimicrobial lethality;

uch perturbations include impairment of energy production, hyperac-

ivity of the electron transfer chain to produce excessive free radicals,

nd general metabolic stasis [51] . 

GSMM and FBA are employed to understand how metabolic changes

ontribute to antimicrobial activity ( Fig. 2 ) [ 14 , 36 , 67 , 71 , 77 , 84 , 89 ].

hloroquine is a first-line antimalarial agent against the unicellular

rotozoan parasite Plasmodium falciparum . This organism invades red

lood cells and catabolizes hemoglobin, producing heme as a byprod-

ct which is toxic to the parasite. While the parasite can detoxify heme

y crystallization into inert hemozoin, chloroquine inhibits hemozoin

rystal growth and leads to the build-up of heme, eventually resulting

n death of the parasite [36] . Using transcriptomic data as constraints,

etabolic modeling of Pl. falciparum following chloroquine treatment

uggests that excessive heme may inhibit DNA synthesis via inhibition
3 
f redox metabolism [77] . Similarly, constrained by transcriptomic data,

SMM was used to delineate the metabolic changes of M. tuberculosis in

esponse to anti-tuberculosis agents [71] . Of the 11 metabolically ac-

ive drugs examined, TMC207 was predicted to have the greatest effect

n metabolism owing to its inhibition of ATP synthase and consequent

ndirect effects on a broad range of metabolic pathways. Polymyxins

i.e., polymyxin B and colistin) are lipopeptide antibiotics increasingly

sed as a last resort to treat MDR Gram-negative infections [55] . They

nitially target lipopolysaccharides of the Gram-negative outer mem-

rane, but also significantly perturb cellular metabolism [46] . Com-

ining GSMM with transcriptomic constraints, significant metabolic

hanges were detected in Acinetobacter baumannii ATCC 19606 follow-

ng treatment with 1 mg/L colistin for 1 h, including increased fluxes

hrough gluconeogenesis, biosynthesis of amino acid and nucleotide,

nd pentose phosphate pathway; decreased fluxes through tricarboxylic

cid (TCA) cycle and cell envelope biogenesis; and altered fluxes in the

espiratory chain [67] . Different metabolic shifts were detected in P.

eruginosa PAO1 following a similar treatment with polymyxin B (1

g/L for 1 h), which included upregulated amino acid catabolism, in-

uction of the TCA cycle, and accelerated redox turnover. 

Cellular metabolism may affect bacterial antimicrobial susceptibility

14] . In a recent large-scale pharmacodynamic study, Biolog phenotype

icroarrays were used to examine the antimicrobial susceptibility of E.

oli grown on 206 unique nutrients ( Fig. 3 A ) [84] . GSMM was used to

alculate metabolic fluxomes under specific nutrient conditions, and the

esults were combined with antimicrobial IC 50 data to train a machine

eaning model. Enrichment analysis of the resulting regression coeffi-

ients indicated that metabolic reactions associated with purine biosyn-

hesis, driven by antibiotic-induced adenine limitation, contributed to

ntibiotic lethality. This was further demonstrated by the enhanced an-

imicrobial susceptibility of mutants deficient in the early enzymatic

teps of purine biosynthesis, and by the reduced antimicrobial killing

y exogenous feeding of adenine. It has been suggested that a common

ffect of antibiotics is perturbation of energy metabolism, such as purine

iosynthesis, particularly the biosynthesis of the ATP precursor adenine,

n important bacterial defense mechanism against antimicrobial stress

84] . Therefore, GSMM is a powerful tool to convert conventional ‘ma-

hine learning’ to ‘machine reasoning’ and will significantly increase our

nderstanding of metabolic changes associated with bacterial killing by

ntimicrobials [84] . 

.2. Revealing the mechanisms of metabolic reprogramming in 

ntimicrobial-resistant pathogens 

Microbial pathogens acquire antimicrobial resistance via sponta-

eous mutations or horizontal gene transfer [ 38 , 87 ], and significant

etabolic shifts often occur concomitantly with resistance acquisi-

ion [24] . A GSMM of M. tuberculosis H37Rv named iEK1011 was
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Fig. 3. Applications of genome-scale metabolic models (GSMMs) in antimicrobial pharmacology. A . A machine learning model was trained with high-throughput 

antimicrobial pharmacodynamics of E. coli combined with metabolic flux values calculated using GSMM to unravel the mechanisms of metabolic perturbation in 

antimicrobial killing [84] . B . Genetic variations in the M. tuberculosis genome were translated to metabolic changes through modeling. The calculated metabolic 

fluxomes were combined with strain-specific antimicrobial susceptibility (minimum inhibitory concentration) data to train a support vector machine-based model 

to identify the superplane (Metabolic Allele Classifier, dotted line) that best separates antimicrobial-susceptible and -resistant strains in the metabolic solution space 

[38] . C . Schematic workflow showing the use of GSMM to decipher the mechanisms of antimicrobial activity, resistance, and toxicity. GSMMs were constructed 

for the Pl. falciparum life cycle to predict life stage-specific antimalarial drug targets. After validation, the classifier was used to predict antimicrobial resistance of 

> 1000 M. tuberculosis strains and to analyze the metabolic features contributing to resistance. D . The TIMBR algorithm was employed to integrate transcriptomic 

data with the model i Hsa to predict biomarker metabolites in human hepatocytes in response to antimicrobial treatments. The results were further validated with 

metabolomics [12] . 
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mployed to study the metabolic adjustments associated with antibi-

tic resistance [37] . The reported resistance-conferring mutations were

apped to metabolic pathways, and the fluxes through these path-

ays were maximized or minimized to interpret the potential contribu-

ion to resistance. For example, the antimycobacterial agent ethambu-

ol inhibits the function of three membrane-embedded arabinosyltrans-

erases (EmbA, EmbB, and EmbC), which are required for the biosyn-

hesis of the cell wall component arabinogalactan [88] . However, mu-

ations in the gene ubiA may confer ethambutol resistance [73] . ubiA

ncodes 5-phospho- 𝛼-D-ribose-1-diphosphate:decaprenyl-phosphate 5-

hosphoribosyltransferase, the first enzyme in the biosynthetic pathway

or the arabinogalactan precursor decaprenylphosphoryl- 𝛽-D-arabinose

DPA). GSMM showed that flux-increasing mutations in ubiA could in-

rease DPA production and overcome ethambutol inhibition of arabi-

osyltransferases [37] . Similarly, minimizing production of mycothiol

as predicted to lead to ethionamide resistance, and maximizing pro-

uction of tetrahydrofolate and L-alanine could counteract the antimi-
4 
robial effects of para -aminosalicylic acid and D-cycloserine, respec-

ively. Comparative analysis of the uptake differences driving the ob-

ective functions across different antibiotic-resistant conditions revealed

xternal L-alanine availability as a key environmental factor. Previous

tudies have demonstrated that internalized M. tuberculosis can utilize

lanine from macrophage cytosol for growth [11] ; hence, it has been

uggested that D-cycloserine may be less effective in vivo owing to the

ncreased availability of L-alanine [37] . 

GSMM has been used in conjunction with metabolomics and ge-

omics to unravel the effects of genetic variation on strain-specific

etabolism in M. tuberculosis , specifically metabolic vulnerabilities or

arbon-source dependencies [62] . Double gene knockout was conducted

n silico to predict all synthetic lethal gene pairs, with one gene contain-

ng a resistance-conferring single nucleotide polymorphism (SNP). The

redicted epistatic interactions of SNP-affected enzymes varied across

. tuberculosis lineages and were enriched in glycolysis, amino acid

iosynthesis, and metabolite transport. Model predictions also correctly
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lassified SNP effects in pyruvate kinase, and suggested a genetic ba-

is for strain-specific inherent susceptibility to para -aminosalicylic acid

62] . 

P. aeruginosa can develop resistance to polymyxins via modifica-

ion of lipid A with positively charged 4-deoxy-4-amino-L-arabibnose

L-Ara4N) or deacylation (removal of R-3-hydroxydcanoate from the 3

osition of lipid A). Using GSMM, we discovered that these lipid A mod-

fications could significantly alter the electrostatic status of the cellular

urface without significant impacts on cellular growth or metabolism

89] . Another study combining transcriptomics and GSMM revealed

hat aztreonam - resistant P. aeruginosa diverted flux from the Entner-

oudoroff (ED) pathway to the pentose phosphate and peptidoglycan

iosynthesis pathways, and that this diversion did not have a significant

tness cost in the absence of aztreonam [83] . In another biochemical

creening of antibiotic-resistant P. aeruginosa mutants, GSMM demon-

trated that a piperacillin-resistant mutant showed defects in leucine

atabolism due to mutations that abolished catabolism of isovaleryl-

oenzyme A (CoA) to the TCA cycle substrate acetyl-CoA [25] . 

Machine learning has been integrated with GSMM to unravel the

etabolic basis for development of antimicrobial resistance. For ex-

mple, a recent high-throughput study developed a GSMM-based ma-

hine learning classifier, the Metabolic Association Classifier (MAC), to

iscriminate between 1595 antibiotic-resistant and -susceptible M. tu-

erculosis strains based on their genetic variations and potential bio-

hemical differences ( Fig. 3 B ) [38] . The MAC identified sequence vari-

tions in pncA / ppsA, thyA , and katG as major predictors of resistance

o pyrazinamide, para -aminosalicylic acid, and isoniazid, respectively.

he metabolic pathways most associated with antimicrobial resistance

o pyrazinamide were nicotinamide metabolism, CoA biosynthesis, and

hthiocerol metabolism. Para -aminosalicylic acid resistance was most

ssociated with cysteine and methionine metabolism, and resistance to

soniazid was most associated with the respiratory chain, TCA cycle, and

ycolic acid biosynthesis. Pyrazinamide-resistant ansP2 mutants may

ave a large pool of CoA due to increased production of L-asparagine. 

In another study, E. coli was evolved in the lab to gain resistance

o three antibiotics on two carbon sources [87] . Metabolomic analy-

is was conducted in parallel to identify significant changes in metabo-

ite abundance, with the assumption that altered metabolite concentra-

ions in evolved strains would reflect an attempt to rewire metabolic

etworks to compensate for resistance. GSMM was employed to calcu-

ate “shadow prices ” (i.e., the sensitivity of biomass accumulation to

hanges in a specific metabolite) for each metabolite involved in the

odel. Metabolites with negative shadow prices likely limit biomass

roduction during antibiotic treatment. Reactions with many limiting

etabolites are therefore critical for E. coli to develop resistance. The

ssociation analysis revealed that anhydromuropeptide transport in cell

all recycling may mediate ampicillin resistance. In parallel to devel-

ping resistance to chloramphenicol, cells downregulated TCA fluxes

nd diverted resources to fermentative metabolism; pure respiration-

ependent acetate growth was more affected by chloramphenicol com-

ared to glucose growth, which used both respiration and fermenta-

ion. As demonstrated in these studies, GSMM allows a more detailed

nderstanding of the mechanism(s) underlying metabolic adaptation in

ntimicrobial-resistant strains. GSMM can therefore significantly facil-

tate the development of novel metabolism-targeted approaches to ad-

ress antimicrobial resistance. 

.3. Identification of novel drug targets 

In silico gene knockout is used to predict essential genes that, if

eleted, would abolish bacterial growth under specific nutrient condi-

ions [45] . Antimicrobial agents can then be designed to target candi-

ate essential gene products. Due to the structural and functional ho-

ology of certain conserved proteins, it is important to filter out es-

ential microbial genes with highly conserved human homologs. A re-

ent study used multiple-tiered filters of network vulnerability, sequence
5 
imilarity, and structural accessibility to predict drug targets in M. tu-

erculosis [68] . The hub nodes of a protein–protein interactome network

nd essential genes identified by GSMM were considered the first tier

f filtration. Candidates were then further filtered by removing targets

ith high similarity to the human proteome or proteins in the gut mi-

robiome. Finally, 186 potential broad-spectrum antibacterial targets

those with high similarity to other pathogenic proteomes) and 66 tar-

ets unique to mycobacteria were identified. GSMM-based screening of

ntimicrobial targets has been applied to a broad range of pathogens, in-

luding A. baumannii [ 39 , 67 ], K. pneumoniae [16] , Yersinia pestis [17] , S.

ureus [42] , E. coli [3] , P. aeruginosa [8] , and Pl. falciparum [1] . Notably,

ntegration with transcriptomic and physiological data allowed the con-

truction of GSMMs specific for five different stages of the Pl. falciparum

ife cycle (trophozoite, schizont, early gametocyte, late gametocyte, and

okinete) ( Fig. 3 C ). In silico single gene deletion was then conducted to

dentify stage-specific antimicrobial targets [1] . That study highlights

he differences in gene essentiality between life cycle stages as a result

f metabolic variation. In general, GSMMs of microbial pathogens can

uide faster identification of potential targets for drug discovery com-

ared with the traditional time-consuming, labor-intensive experimen-

al trial-and-error. 

.4. Elucidating the mechanisms of antimicrobial-induced toxicity 

GSMM has additionally been used to decipher the mechanisms un-

erpinning drug side effects in hosts [ 12 , 70 , 91 ]. Using 6040 gene ex-

ression profiles as transcriptomic constraints, a human GSMM was em-

loyed to analyze the metabolic impact of exposure to each of 1221

rugs individually in three human cell lines (MCF-7, PC-3, and HL-60).

achine learning was implemented to select discriminating metabolite

roduction perturbations based on side effect frequency data from the

ide Effect Resource (SIDER) database [91] . The results suggested that

rug-induced non-pharmacokinetic metabolic dysregulation is a com-

on mechanism underlying host side effects, and that targeted nutrient

upplementation may be an effective approach to reduce side effect in-

idence [91] . 

Antimicrobials often have adverse effects. GSMM has therefore been

sed in human and rat systems to elucidate the mechanisms of antibi-

tic toxicity [ 12 , 70 ]. An algorithm named Transcriptionally Inferred

etabolite Biomarker Response (TIMBR) was developed to predict po-

ential biomarkers for diagnosis of renal dysfunction ( Fig. 3 D ) [12] .

IMBR predicted a decrease in fatty acids in rat renal proximal tubule

pithelial cells after 24 h of gentamycin treatment, suggesting that fatty

cids were employed as an energy source during stress [70] . Another

arge study using human and rat GSMMs predicted biomarker metabo-

ites that could indicate hepatotoxicity for 76 drugs, including 11 antimi-

robials (e.g., ciprofloxacin, chloramphenicol, rifampin, tetracycline,

rythromycin ethylsuccinate, ethambutol, isoniazid, and rifampin) [12] .

he results were validated with high sensitivity and specificity using

etabolomics. It is important to note that all of the GSMMs discussed

bove were limited to one type of cell or organ. With the development

f whole-body human GSMM [79] , a comprehensive understanding of

he mechanisms of antimicrobial toxicity in multiple organs, and the dis-

overy of novel metabolite biomarkers, will be more feasible ( Fig. 4 ). 

. Future perspectives 

Comprehensive considerations of antimicrobial pharmacokinetics,

harmacodynamics, and toxicodynamics (PK/PD/TD) in patients are

equired to optimize antimicrobial treatments for maximum activity

nd minimal toxicity and resistance. Conventional PK/PD modeling de-

cribes the relationship between drug exposure and antimicrobial ef-

cacy, with parameters usually estimated by data fitting. These con-

entional models lack specificity of antimicrobial pharmacology at the

etwork level. Thus far, GSMMs have been integrated with PK mod-

ls to elucidate the mechanisms of drug–drug interactions between
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Fig. 4. Integration of pharmacokinetics/pharmacodynamics with genome-scale metabolic modeling to elucidate the mechanisms underlying metabolic changes in 

both host and pathogen in response to antimicrobial treatment for pulmonary infection. 
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p

henytoin and estradiol [76] and to investigate ammonia detoxifica-

ion, hyperuricemia therapy, and acetaminophen-induced toxification

41] . They have also been used to study the relationship between

mino acid metabolism and levodopa in Parkinson’s disease patients

29] , and to simulate blood glucose regulation in Type-I diabetes [81] .

owever, only one study has thus far integrated GSMM with a PK

odel to study an antimicrobial: an investigation into the metabolic

esponses to idiosyncratic drug-induced liver injuries caused by isoni-

zid treatment [22] . This integrated model delineated isoniazid-induced

etabolic alterations in the liver and identified several significantly

hanged metabolites, such as cholesterol, amino acids, and fatty acids.

hese metabolites can therefore be used as liver physiology biomarkers

uring isoniazid treatment. Although integration of GSMM with antimi-

robial PK/PD/TD is still in its infancy, we envision that this approach

ill be critical to future antimicrobial pharmacology ( Fig. 4 ). 

Microbial cellular responses to antimicrobial treatments are not lim-

ted to metabolism. Rather, they involve a broad range of activities,

ncluding transcription, translation, and cell envelope assembly. Con-

entional GSMM focuses primarily on metabolism, limiting the ability

o describe the complex mechanisms underlying responses to antimi-

robial treatments. Recently, significant progress has been made by de-

eloping ME models that incorporate gene expression, protein structure

nformation, protein complexation, and enzyme activity. Of particular

nterest is the modeling of bacterial responses to reactive oxygen species

ROS) using a specific ME model of E. coli (called OxidizeME) [86] . That

odel correctly predicted amino acid auxotrophy under ROS stress, can-

idate carbon sources with differing ROS sensitivity, and ROS-specific

ifferential gene expression. This modeling strategy can be used to in-

estigate cellular responses to antimicrobial stress, facilitating a better

nderstanding of the mechanisms underpinning antimicrobial activity

nd assisting in the development of novel antimicrobial treatments. 

With the surge in high-throughput generation of myriad types of bi-

logical data, machine learning has become a popular approach to dis-

over critical cellular components contributing to antimicrobial activity,

esistance, and toxicity. However, machine learning methods often lack

echanistic interpretability due to their ‘black box’ nature, (i.e., the

unctions between input and output are so complicated that it is diffi-

ult to show how a final prediction is achieved) [72] . Because GSMM

tilizes deterministic models based on the steady-state assumption and

eaction stoichiometry, it provides a mechanistic understanding of cel-

ular metabolism. Applying machine learning to GSMM studies can im-

rove the prediction and data coverage of GSMM and, more importantly,
6 
ncrease the interpretability of machine learning via causality analysis.

ecently, integration of machine learning and GSMM has been applied

o examine antimicrobial activity [80] , combination synergy, side ef-

ects, and resistance [ 23 , 26 , 44 , 52 ]. It is expected that machine learning

ill be increasingly employed in conjunction with GSMMs to further

mprove their use and capacities. 

Although it is critical to validate the prediction accuracy of GSMM

xperimentally, most validations in the current literature are limited

nd qualitative. For example, although a previous study involving a

SMM of E. coli MG1655 identified 38 indispensable reactions as po-

ential novel antimicrobial targets, only the type II fatty acid biosynthe-

is (FAS II) reactions were selected for virtual screening of inhibitors

rom a compound library, representing a severely limited validation

75] . Another study employed GSMM to predict gene deletions pro-

oting endogenous ROS production, which may potentiate antibiotic

ctivity against E. coli [13] . In that study, a deletion mutant with >

% more ROS production than the wild-type control was predicted to

ave increased susceptibility to both oxidants and bactericidal antibi-

tics (ampicillin, ofloxacin, ciprofloxacin and gentamicin). Experimen-

al validation showed that predictions of sensitivity to ampicillin and flu-

roquinolones in 13 mutants achieved an overall accuracy of over 70%.

redictions of either increased or unchanged susceptibility compared

o the wild-type strain were considered correct when they matched ex-

erimental results [13] . However, measurements of metabolic fluxes in

he deletion mutants and subsequent comparisons with the predictions

ere not performed; the validation performed was therefore more qual-

tative than quantitative [13] . 13 C metabolic flux analysis can be used

o quantitatively validate GSMM predictions [19] . Recently, significant

fforts have been made to enhance the prediction accuracy of GSMM,

ncluding the use of tailored biomass formulations [10] , constrained ex-

hange fluxes based on exometabolomic data [93] , and machine learn-

ng approaches [ 30 , 31 ]. A recent study employed an ensemble machine

earning model to predict the maximum in vivo apparent turnover num-

er of enzymes ( k app,max ) based on biochemistry, protein structure, and

etwork context [31] . The calculated k app,max was incorporated into two

xtended GSMM frameworks (metabolic modeling with enzyme kinetics

MOMENT] and ME model) to quantitatively predict proteomics data.

he predictions showed a significantly higher accuracy compared to pre-

ious methods, with an average reduction in root mean squared error of

4% and 20% for the MOMENT and the ME model, respectively. These

ndings suggest that machine learning can significantly improve the

redictive power of GSMM. 
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Overall, GSMM has arisen as a cutting-edge platform to investigate

ellular metabolism, and has been widely applied in antimicrobial phar-

acology. The integration of GSMM with antimicrobial PK/PD model-

ng and advanced machine learning techniques will shift the paradigm

f antimicrobial pharmacology and facilitate the development of novel

nd effective antimicrobial therapies to combat antimicrobial resistance.
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