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ABSTRACT Mexican Americans have a high prevalence of diabetes and burden of dia-
betes-related complications, highlighting the need for novel preventive strategies and
noninvasive predictors of diabetes risk tailored to this population. Changes in the gut
microbiome have the potential to predict diabetes. Here, we aimed to identify alterations
in the gut microbiome associated with diabetes in the high-risk population of Mexican
Americans in South Texas. Stool samples were collected from 216 subjects from the popu-
lation-based Cameron County Hispanic Cohort. Among them, 75 had type 2 diabetes.
Taxonomic and functional profiling of the stool samples were assessed by 16S and
shotgun metagenomic sequencing, and the influence of genetic factors was explored.
The gut microbiome of subjects with diabetes was enriched with proinflammatory
Proteobacteria members (Enterobacteriaceae, Escherichia-Shigella) and depleted of butyr-
ate-producing Clostridialesmembers (Faecalibacterium prausnitzii, Peptostreptococcaceae,
and Clostridium sensu stricto 1). The accompanying metagenomic changes in subjects
with diabetes suggested dysregulated amino acid metabolism, reduced galacturonate
and glucuronate catabolism (correlating with Faecalibacterium prausnitzii abundance),
and enriched heme biosynthesis (correlating with Enterobacteriaceae abundance).
Polymorphism rs7129790 near MMP27 was strongly associated with high Proteobacteria
abundance and was more frequent in this cohort and in individuals of Mexican ancestry
than in Europeans. In conclusion, Mexican Americans in South Texas with diabetes dis-
play distinct gut microbiome and metagenomic signatures. These signatures may have
utility in risk modeling and disease prevention in this high-risk population.

IMPORTANCE The gut microbiome composition varies across ethnicities and geographi-
cal locations, yet studies on diabetes-associated microbiome changes specific to high-
risk Mexican Americans are lacking. Here, we aimed to identify specific alterations asso-
ciated with diabetes in this population, as well as host genetic factors that may explain
increased disease susceptibility in this ethnic group. Using samples from a population-
based cohort of Mexican Americans with a high prevalence of obesity and diabetes,
we confirmed findings from studies on other ethnicities that suggested promotion of a
chronic proinflammatory environment, loss of butyrate production, and compromised
intestinal barrier integrity. High abundance of proinflammatory Proteobacteria was asso-
ciated with a polymorphism that was more frequent in this cohort and in individuals of
Mexican ancestry than in Europeans. Validation of microbiome-based risk models for di-
abetes should be evaluated in prospective cohort studies.
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Hispanics are the largest ethnic minority in the United States and are disproportion-
ately affected by diabetes, with the prevalence of diagnosed diabetes being 12.5%

compared to 7.5% in non-Hispanic whites. Among adult Hispanics, those of Mexican
origin have the highest prevalence at 14.4% (1). Furthermore, Hispanics have a higher
burden of diabetes-related complications, including poor glycemic control, nephropa-
thy, and retinopathy (1, 2). The presence of diabetes also significantly increases the risk
of developing nonalcoholic fatty liver disease (NAFLD) and progression to nonalcoholic
steatohepatitis (NASH), liver fibrosis, and cirrhosis (3). Due to the obesity and diabetes
epidemics, the incidences of NASH and liver fibrosis are rising in the United States
(4, 5). Innovative preventive strategies and noninvasive methods to identify those at
high risk of diabetes, tailored to this population, are therefore urgently needed.

Gut microbiome profiles have the potential to complement host factors in predict-
ing clinical outcomes. It has been recently demonstrated that taxonomic composition
explains a significant amount of variance in clinical parameters, including body mass
index (BMI), fasting blood glucose, and glycemic status, even after accounting for age,
gender, diet, and host genetics (6). The gut microbiome composition is subject to sig-
nificant variability across ethnicities and geographical locations (7, 8), yet studies on di-
abetes-associated microbiome changes specific to high-risk Hispanic populations are
lacking.

Therefore, the aim of this study was to identify alterations in the gut microbiome
associated with diabetes in the high-risk population of Mexican Americans in South
Texas. To that end, we enrolled subjects from the Cameron County Hispanic Cohort
(CCHC), a large population-based Mexican American cohort in South Texas with very
high prevalences of diabetes (28%), obesity (51%), and chronic liver injury (39%) (9–
11). We also aimed to identify possible genetic factors contributing to these micro-
biome changes, as well as functional changes in the gut microbiome.

RESULTS
Study population and stool taxonomic composition. Stool samples were col-

lected from 216 randomly selected subjects from the CCHC (Table 1). Among them,
118 (54.6%) were obese and 75 (34.7%) were diabetic. Subjects with diabetes were
more likely to be born in Mexico (80.0% versus 63.1%; P = 0.012), older (median of 57.0
versus 54.0 years; P = 0.023), and had higher hemoglobin A1c (HbA1c) (7.6% versus
5.8%; P , 0.001), insulin resistance as assessed by homeostatic model assessment
(HOMA) scores (3.9 versus 2.2; P , 0.001) and waist-to-hip ratios (1.0 to 0.9; P , 0.001).
They also had elevated circulating levels of alanine aminotransferase (ALT) (32.5 versus
26.0; P = 0.012), alkaline phosphatase (95.0 versus 86.0 U/L; P = 0.014), fasting glucose
(136.0 versus 92.5 mg/dL; P , 0.001), and triglycerides (143.0 versus 124.0 mg/dL;
P = 0.044), but lower low-density lipoprotein (LDL) cholesterol (96.0 versus 108.0 mg/
dL; P = 0.024). Among the 75 diabetic subjects, 46 had information on age at time of
diagnosis, with a median of 49 years old (range of 20 to 67 years old).

To determine whether healthy Hispanics in Texas (TX Hispanics) had microbiome
compositions that differed from those of healthy Caucasians in Texas (TX Caucasians)
and from those of heathy Hispanics and Caucasians in California (CA Hispanics and CA
Caucasians), we downloaded 16S stool sequencing data from 68 TX Caucasians, 636
CA Caucasians, and 51 CA Hispanics from the American Gut Project (AGP). For TX
Hispanics, we included 31 healthy CCHC subjects that were not heavy drinkers and
were without obesity, diabetes, abnormal aspartate aminotransferase (AST) levels, or
abnormal ALT levels. Microbiome richness, measured by the number of observed
operational taxonomic units (OTUs), was not significantly different between TX
Hispanics and TX Caucasians, CA Hispanics, or CA Caucasians (see Fig. S1A in the sup-
plemental material), nor between regions or ethnicities (Fig. S1A). Microbiome richness
and evenness measured by the Shannon index was also not significantly different
between TX Hispanics and the other three groups. However, Californians exhibited
lower Shannon diversity than Texans (P = 0.012) (Fig. S1B). In contrast, beta diversity
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analysis showed that the stool microbial composition of TX Hispanics was distinct from
those of the other three groups (Fig. 1A). While both ethnicity and region had a significant
impact, differences between Caucasians and Hispanics were stronger within Texas (beta
dispersion P , 0.001, permutational analysis of variance [PERMANOVA] P = 0.001; 11.67%
of variation explained) than within California (beta dispersion P = 0.903, PERMANOVA
P = 0.030; 0.36% of variation explained) (Fig. 1B and C). TX Hispanics and CA Hispanics dis-
played similar degrees of heterogeneity but significantly different profiles (beta dispersion
P = 0.581, PERMANOVA P = 0.001; 6.52% of variation explained) (Fig. 1A). At the phylum
level, TX Hispanics had significant enrichment of Firmicutes and Actinobacteria and deple-
tion of Bacteroidetes compared to the other three groups (Fig. 1D). The Prevotellaceae
family, the Prevotella 9 genus, and Eubacterium ramulus were significantly enriched in
TX Hispanics compared to TX Caucasians, while there was a significant depletion of
the unclassified Rhodospirillales and Family XI families and of Bacteroides dorei
(Fig. 1E). Compared to CA Hispanics, TX Hispanics were enriched in the Coriobacteria

TABLE 1 Demographic and clinical parameters of study participants with and without diabetesa

Parameter

Groupb

PNo diabetes (n = 141) Diabetes (n = 75)
Country of birth (n = 216)
Mexico 89 (63.1%) 60 (80.0%) 0.012c

USA 51 (36.2%) 14 (18.7%)
Other 1 (0.7%) 1 (1.3%)

Male (n = 216) 38 (27.0%) 24 (32.0%) 0.435
Age (n = 216) 52.4 (19.0–89.0); 54.0 57.0 (34.0–81.0); 57.0 0.023c

BMI (kg/m2) (n = 215) 31.3 (18.8–49.0); 30.3 32.5 (20.9–50.0); 31.6 0.135
Obese (n = 215) 72 (51.4%) 45 (60.0%) 0.252
HbA1c (%) (n = 216) 5.8 (4.9–6.4); 5.8 8.2 (5.3–14.1); 7.6 ,0.001c

Insulin (mIU/L) (n = 215) 12.4 (3.0–51.4); 10.1 11.9 (2.4–30.4); 10.8 0.933
HOMA (n = 214) 2.9 (0.6–12.3); 2.2 4.5 (0.5–11.8); 3.9 ,0.001c

Waist circumference (cm) (n = 216) 103.3 (76.0–140.0); 104.0 107.3 (78.0–141.0); 105.0 0.059
Waist-to-hip ratio (n = 215) 0.9 (0.8–1.1); 0.9 1.0 (0.8–1.1); 1.0 ,0.001c

Hypertension (n = 216) 42 (29.8%) 33 (44.0%) 0.051

Alcohol consumption (n = 216)
Never 95 (67.4%) 49 (65.3%) 0.241
Moderate 42 (29.8%) 20 (26.7%)
Heavy 4 (2.8%) 6 (8.0%)

Smoking status (n = 216)
Never 100 (70.9%) 48 (64.0%) 0.512
Former 32 (22.7%) 20 (26.7%)
Current 9 (6.4%) 7 (9.3%)

Blood tests
AST (U/L) (n = 215) 20.7 (9.0–64.0); 19.0 21.8 (10.0–77.0); 19.0 0.642
Abnormal AST (n = 215) 6 (4.3%) 6 (8.1%) 0.348
ALT (U/L) (n = 215) 30.8 (15.0–114.0); 26.0 36.4 (12.0–128.0); 32.5 0.012c

Abnormal ALT (n = 215) 45 (31.9%) 34 (45.9%) 0.053
Total bilirubin (mg/dL) (n = 216) 0.5 (0.1–1.9); 0.5 0.5 (0.2–1.2); 0.5 0.689
Creatinine (mg/dL) (n = 216) 0.8 (0.4–1.4); 0.8 0.7 (0.4–1.8); 0.7 0.023c

Albumin (gm/dL) (n = 216) 3.9 (3.0–4.5); 3.9 3.9 (3.3–4.4); 3.9 0.997
Alkaline phosphatase (U/L) (n = 216) 88.5 (38.0–158.0); 86.0 97.6 (52.0–165.0); 95.0 0.014c

Fasting glucose (mg/dL) (n = 215) 93.4 (77.0–120.0); 92.5 159.6 (76.0–360.0); 136.0 ,0.001c

Triglycerides (mg/dL) (n = 216) 140.7 (36.0–368.0); 124.0 197.1 (39.0–1596.0); 143.0 0.044c

Total cholesterol (mg/dL) (n = 215) 187.5 (50.0–303.0); 187.0 180.2 (77.0–274.0); 178.0 0.163
HDL cholesterol (mg/dL) (n = 216) 50.9 (30.0–109.0); 49.0 49.2 (27.0–84.0); 49.0 0.554
LDL cholesterol (mg/dL) (n = 210) 108.9 (33.0–196.0); 108.0 97.3 (8.0–187.0); 96.0 0.024c

Platelets (x109/L) (n = 216) 257.0 (120.0–432.0); 249.0 251.2 (119.0–384.0); 249.0 0.720
aBMI, body mass index; HbA1c, hemoglobin A1c; HOMA, homeostatic model assessment; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HDL, high-density
lipoprotein; LDL, low-density lipoprotein.

bData are presented as frequency (%) for categorical variables, or mean (range); median for continuous variables.
cSignificant differences between the no-diabetes (n = 141) and diabetes (n = 75) groups (P, 0.05), as assessed by Fisher’s exact test for categorical variables and by the
Mann-Whitney test for continuous variables.
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class, Coriobacteriaceae family, and Eubacterium hallii, and depleted in Family XI,
Bacteroides dorei, and Bacteroides fragilis (Fig. 1F).

Microbiome signatures associated with diabetes. Twenty-five taxa with signifi-
cant differences in abundance between subjects with and without diabetes were iden-
tified using linear discriminant analysis (LDA) effect size (LEfSe) analysis (Fig. 2A). Of
these, 12 taxa were also considered significant by ANCOM analysis (false-discovery rate

FIG 1 Impact of region and ethnicity on microbiome composition. Principal-coordinate analysis (PCoA) plots based on
weighted UniFrac distances were generated for CA Caucasians, CA Hispanics, TX Caucasians and TX Hispanics (A); Caucasians
and Hispanics in Texas (B); and Caucasians and Hispanics in California (C). Beta dispersion and permutational analysis of
variance (PERMANOVA) test results comparing population groups are included in panels A to C. (D) Relative phylum
abundance in each population group. (E and F) Volcano plots for differential bacterial abundance between TX Hispanics and
TX Caucasians (E) and between TX Hispanics and CA Hispanics (F). Names are shown for the three most enriched and three
most depleted taxa. Significance was determined by Mann-Whitney test. N.S., not significant.

Gut Microbiome and Diabetes in Mexican Americans mSystems

May/June 2022 Volume 7 Issue 3 10.1128/msystems.00033-22 4

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00033-22


[FDR] , 0.05). Relative abundance and magnitude of change with diabetes for these
12 taxa are illustrated in Fig. S2 and Fig. 2B. Logistic regression analysis adjusting for
age, gender, and BMI was additionally performed, validating these associations
(Fig. 2C). Subjects with diabetes had significant enrichment of the Proteobacteria phy-
lum (fold change [FC] = 1.6, adjusted odds ratio [AOR] = 2.56 [95% confidence intervals
(CI) = 1.39 to 4.74], P = 0.003), due to enrichment of the Gammaproteobacteria class,
Enterobacterales order, and Enterobacteriaceae family. Within the Enterobacteriaceae
family, there was enrichment of Escherichia-Shigella (FC = 3.2, AOR = 2.07 [95%
CI = 1.12 to 3.81], P = 0.020). Most of the taxa significantly depleted in diabetic subjects
belonged to the Clostridiales order, with the strongest association with diabetes
observed for the lowest-tertile abundance of Clostridium saudiense (FC = 217.2,
AOR = 3.26 [95% CI = 1.76 to 6.03], P , 0.001) and Romboutsia timonensis (FC = 25.5,
AOR = 2.33 [95% CI = 1.26 to 4.29], P = 0.007). A significantly reduced risk for diabetes
was observed with the highest-quartile abundance of Clostridia and Clostridiales

FIG 2 Bacterial taxa with altered abundance in subjects with diabetes. (A) Cladogram showing taxa with significantly different bacterial abundances
between subjects with and without diabetes, as assessed by the linear discriminant analysis (LDA) effect size (LEfSe) algorithm. (B) Volcano plot of ANCOM
analysis showing all bacterial taxa with $0.1% abundance in at least 25% of samples. Significance was determined using a false-discovery rate (FDR) of
,0.05 and a W statistic above the 60th percentile. The x axis represents effect size based on the centered log ratio (CLR)-transformed mean difference in
abundance between subjects with and without diabetes. Labels sharing a dot indicate taxa at different taxonomic levels, where all reads from the higher
level are assigned to the taxa at the lower level. N.S., not significant. (C) Forest plot of significant associations of high and low bacterial abundance with
diabetes. For bacteria enriched in subjects with diabetes, adjusted odds ratios (AORs) were calculated for diabetes in subjects with abundance in the
highest tertile. For bacteria depleted in subjects with diabetes, AORs were calculated for diabetes in subjects with abundance in the lowest tertile and in
subjects with abundance in the highest quartile. AOR, adjusted odds ratio (adjusted for age, gender, and body mass index [BMI]). Classifications at the
phylum (p_), class (c_), order (o_), family (f_), genus (g_), and species (s_) levels are shown.
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(FC = 21.1, AOR = 0.36 [95% CI = 0.17 to 0.77], P = 0.008), Faecalibacterium and
Faecalibacterium prausnitzii (FC = 21.2, AOR = 0.44 [95% CI = 0.21 to 0.92], P = 0.029),
and Ruminococcus albus (FC = 24.2, AOR = 0.48 [95% CI = 0.23 to 0.98], P = 0.045).

Potential contribution of genetics to high Proteobacteria abundance. To deter-
mine whether host genetics could influence Proteobacteria abundance, a genome-
wide association study (GWAS) was performed with high Proteobacteria abundance as
a dichotomized trait. A total of 139 subjects had genome-wide genotyping data avail-
able and were included in the GWAS. While no single-nucleotide polymorphism (SNP)
displayed genome-wide significance (P , 5 � 1028), 89 SNPs were significantly associ-
ated with Proteobacteria abundance at the threshold of P , 1 � 1025 (Fig. 3A). The top
30 SNPs are shown in Table S1.

All top 30 SNPs belonged to a locus on chromosome 11 near several matrix metallo-
proteinase (MMP) genes (MMP20, MMP27, MMP8, and MMP10) and long noncoding
RNAs (Fig. 3B). Among them, rs7129790 (P = 8.03 � 1027) has a fair likelihood of having
regulatory functions based on its RegulomeDB rank of 3a and probability score of 0.75.
Based on expression quantitative trait loci (eQTL) data in the PhenoScanner database,
the G allele is significantly associated with decreased expression of MMP27 and MMP8
in whole blood and increased expression of an uncharacterized gene transcript,
ENSG00000255798.1, in small intestinal tissue. By PCR genotyping of subjects for which
genome-wide genotyping data were not available, we confirmed that the G allele was
significantly associated with high Proteobacteria abundance in the full set of 216 CCHC
subjects (median abundances of 1.6%, 2.8%, and 3.5% for TT, TG, and GG, respectively;
Kruskal-Wallis P = 0.0009) (Fig. 3C and D). Logistic regression analysis further confirmed
that the TG/GG and GG genotypes were significantly associated with high Proteobacteria
abundance, even after adjusting for age, gender, and presence of diabetes (rs7129790-
TG/GG: AOR = 5.31 [95% CI = 2.58 to 10.93], P = 6.0 � 1026; rs7129790-GG: AOR = 3.42
[95% CI = 1.35 to 8.69], P = 0.010) (Fig. 3E). The frequency of the GG genotype was com-
parable between the CCHC and subjects with Mexican ancestry in Los Angeles (MXL)
from the 1000 Genomes Project (26.1% and 28.1%), but higher than that in Europeans
(EUR) from the 1000 Genomes Project (17.7%; P = 0.011) (Fig. 3B).

Metagenomic changes in diabetes. Finally, to identify microbiome functional
changes associated with diabetes, shotgun metagenomic sequencing was performed
on a subset of 141 CCHC study participants. Among them, 59 (41.8%) had diabetes. A
significant shift in the overall metagenome profile was observed with diabetes (beta
dispersion P = 0.009, PERMANOVA P = 0.001; 3.34% of variation explained) (Fig. 4A). A
significant shift was also observed with obesity (beta dispersion P = 0.166,
PERMANOVA P = 0.001; 3.28% of variation explained) (Fig. 4B). When we performed re-
dundancy analysis of MetaCyc pathway abundances and using diabetes, BMI, age and
gender as explanatory variables (Fig. 4C), diabetes remained significantly associated
with metagenome profile changes (2.29% of variance explained; P = 0.003).

A total of 23 MetaCyc pathways and 32 MetaCyc reactions were significantly altered in
subjects with diabetes (Fig. S3A and B). All significant reactions were depleted in subjects
with diabetes. Correlation analysis between all diabetes-associated pathways and
enzymes was performed (Fig. S4). Additionally, the significant positive correlations
between pathways/enzymes and diabetes-associated bacteria are shown in Fig. 5. Many
of the enriched pathways positively correlated with members of the Proteobacteria phy-
lum, most strongly with the Enterobacterales order and the Enterobacteriaceae family. The
strongest effect among pathways was observed for phytol degradation (FC = 3.10), with
correlation coefficients (rs) with Enterobacterales and Enterobacteriaceae of 0.76
(P , 0.001). There was also enrichment of the superpathway of heme biosynthesis from
uroporphyrinogen-III (FC = 2.35) with rs correlation coefficients with Enterobacterales and
Enterobacteriaceae of 0.74 (P , 0.001). The superpathway of L-tryptophan biosynthesis
was also enriched (FC = 2.31). On the other hand, there was depletion of pathways
related to the biosynthesis of other amino acids (superpathway of L-serine and glycine
biosynthesis I, FC = 21.18; L-isoleucine biosynthesis IV, FC = 21.30). Other depleted func-
tions included highly intercorrelated pathways related to galacturonate and glucuronate
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FIG 3 Host genetics associated with Proteobacteria abundance. (A) Manhattan plot for the genome-wide association study (GWAS) of high Proteobacteria
abundance. (B) Regional association plot for the top locus associated with high Proteobacteria abundance. Genotype frequencies for rs7129790 are shown
(MXL, subjects with Mexican ancestry in Los Angeles, CA; EUR, Europeans from the 1000 Genomes Project)]. (C) Proteobacteria abundance by rs7129790
genotype. Bars represent the median and interquartile range; error bars show the minimum and maximum abundances. (D) Percentage of subjects with
high and low Proteobacteria abundance by rs7129790 genotype. (E) Forest plot showing the association between rs7129790 TG/GG and GG genotypes and
high Proteobacteria abundance. AOR, adjusted odds ratio (adjusted for age, gender, and presence of diabetes).
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catabolism (4-deoxy-L-threo-hex-4-enopyranuronate degradation, FC = 21.44; D-galactur-
onate degradation I, FC = 21.37; superpathway of hexuronide and hexuronate degrada-
tion, FC = 21.33; D-fructuronate degradation, FC = 21.33; superpathway of b-D-glucuro-
nide and D-glucuronate degradation, FC = 21.31) (Fig. S3A and B and Fig. S4). The
majority of the depleted MetaCyc pathways and enzymes were significantly correlated
with depletion of Faecalibacterium and Faecalibacterium prausnitzii (Fig. 5).

FIG 4 The stool metagenome profile is altered in diabetes. (A and B) PCoA plots of the 141 subjects for which
whole-genome sequencing (WGS) was performed on stool samples, based on the Brays-Curtis distances of MetaCyc
pathway abundance. Subjects were grouped by diabetes (A) and obesity statuses (B). (C) Redundancy analysis
based on MetaCyc pathway abundance. Explanatory variables (clinical and demographic factors) are shown in black.
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DISCUSSION

In this study, we aimed to determine the association between the gut microbiome
and diabetes, which disproportionately affects Mexican Americans in South Texas. The
study was performed on subjects from the CCHC, a population-based cohort of
Mexican Americans in South Texas recruited from households that have high prevalen-
ces of obesity, diabetes, and NAFLD. The microbiome profiles of Mexican Americans
from CCHC without metabolic diseases were distinct from those of healthy Caucasians

FIG 5 Correlation between bacterial abundance and stool metagenomic functions. Spearman’s correlation between bacterial taxa and
MetaCyc pathways/enzymes with significantly altered abundance in diabetes. Rows represent pathways and enzymes; columns represent
taxa. Only pathways/enzymes and taxa with at least one significant positive correlation (Benjamini-Hochberg-adjusted P , 0.05 and rs $
0.3, indicated with a cross symbol) are shown.
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in Texas, but also from those of Hispanics living in California, with significant enrichment
of Firmicutes and Actinobacteria and depletion of Bacteroidetes, confirming that both
region and ethnicity impact the overall microbiome composition of this population.
While the Bacteroidetes phylum was depleted overall, members within this phylum,
Prevotellaceae and Prevotella copri were enriched, in agreement with previous reports
(12). It is, however, important to mention that careful interpretation of the differences in
diversity and microbiome profiles between groups is needed due to the small sample
sizes of both healthy Texans and Hispanics in California, as well as possible batch effects
arising from differences in sample collection and processing between the AGP and the
CCHC.

The presence of diabetes was associated with widespread depletion across the
Clostridia class and enrichment of the Enterobacteriaceae family in the Proteobacteria
phylum, namely, Enterobacter cloacae and Escherichia-Shigella, which are considered
opportunistic pathogens (13–15). Members of the depleted Clostridiales order, includ-
ing Faecalibacterium prausnitzii, Peptostreptococcaceae, and Clostridium sensu stricto 1,
are known producers of butyrate (16, 17), which contributes to intestinal barrier integ-
rity, attenuates chronic inflammation through promotion of regulatory T cells, and pro-
tects against proliferation of pathogens (18). Loss of these butyrate-producing bacteria
may contribute to the overgrowth of lipopolysaccharide-expressing Gram-negative
members of the Proteobacteria phylum, which subsequently activate Toll-like receptor
4 (TLR4) signaling to induce chronic low-grade inflammation. These observations are in
concordance with other studies on gut microbiome changes in type 2 diabetes. The
abundance of Faecalibacterium prausnitzii has consistently shown a negative associa-
tion with diabetes in studies where it was reported (19). Furthermore, its abundance
increased after weight loss in patients with type 2 diabetes, suggesting that high
BMI may contribute to its depletion (20). Depletion of butyrate-producing bacteria
and enrichment of opportunistic pathogens was observed in a Chinese cohort (21).
Similarly, using a multicountry cohort of Danish, Swedish, and Chinese subjects,
Forslund et al. reported a depletion of butyrate-producing Clostridiales species (22).
Finally, higher abundances of Peptostreptococcaceae, Romboutsia, and Clostridium
sensu stricto 1 were associated with reduced risk of type 2 diabetes in two large
Dutch population-based cohorts (23). The authors also reported a significant associ-
ation between gut microbiome variation and insulin resistance as measured by
HOMA score. However, while HOMA scores were significantly different between sub-
jects with and without diabetes in our study, we did not observe a significant associ-
ation between gut microbiome variation and HOMA scores (PERMANOVA P = 0.098;
0.82% of variation explained), indicating that insulin resistance was not a major con-
founder of our findings.

Host genetics contribute to gut microbiome variation (24). We identified a locus on
chromosome 11 near several MMP genes, where the minor allele G for rs7129790 was
associated with high Proteobacteria abundance. This SNP is associated with decreased
expression levels of MMP27 and MMP8 in whole blood, and increased expression of the
gene transcript ENSG00000255798.1 in the small intestine. MMP8 is primarily expressed by
polymorphonuclear neutrophils (PMNs) and is involved in their chemotaxis. Impaired infil-
tration of PMNs to the site of lipopolysaccharide stimulation has been observed in MMP8-
null mice (25). PMNs are involved in homeostasis of the intestinal mucosa via elimination
of pathogenic bacteria (26). Therefore, decreased expression of MMP8 may have implica-
tions for PMN recruitment to the intestinal mucosa and for their ability to maintain gut ho-
meostasis. The function of MMP27 has not been well elucidated, but expression was found
to be enriched in immunoglobulin G (IgG)/IgM-stimulated B cells (27). The majority of acti-
vated B cells differentiate into plasma cells that produce secretory IgA, which maintains gut
homeostasis by coating specific bacterial species to attenuate bacterial invasion and inflam-
matory responses (28). Mice lacking IgA exhibited persistent expansion of Proteobacteria
and exaggerated inflammation (29). Furthermore, unclassified Enterobacteriaceae were
enriched in humans with IgA deficiency (30). Therefore, rs7129790 may affect the ability of
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the innate and adaptive immune systems to maintain gut homeostasis due to decreased
expression ofMMP8 andMMP27. The minor allele frequency for rs7129790 was significantly
higher in the CCHC study cohort compared to that in Europeans, suggesting that this vari-
ant may contribute to differences in disease susceptibility between ethnicities. The top
SNPs in our GWAS were not found in previous microbiome GWAS studies, which may be
due to the lack of ethnic diversity in GWAS studies, with the majority of participants being
of European ancestry (24, 31).

Finally, shotgun metagenomic sequencing revealed an important shift in functional
profiles in subjects with diabetes. This may be due to the widespread enrichment of
Proteobacteria in diabetic patients. A previous study concluded that the abundance of
most genes in the microbiome are invariable across individual hosts, while a minor sub-
set exhibits significant variability. Furthermore, the authors observed that Proteobacteria
were significantly enriched for variable genes, thus contributing to interindividual varia-
tions in the metagenome (more so than other phyla) (32). The functional changes
observed in subjects with diabetes suggest dysregulated amino acid metabolism,
namely, increased biosynthesis of L-tryptophan and decreased biosynthesis of L-serine,
glycine, and L-isoleucine. Circulating levels of L-tryptophan have been linked to increased
insulin resistance and risk of diabetes (33). Conversely, L-serine and glycine are associated
with improved insulin sensitivity (34, 35). There was also depletion of multiple pathways
and enzymes related to galacturonate and glucuronate catabolism. D-Galacturonate is
the main component of pectin, a complex plant polysaccharide that is abundant in fruits
and vegetables and indigestible by human enzymes. Fermentation by gut bacteria gives
rise to various metabolites, including butyrate (36). Related MetaCyc pathways and
enzymes were among those significantly correlated with Faecalibacterium prausnitzii,
which is known to degrade pectin (37). Subjects with diabetes also had enrichment of a
heme biosynthesis superpathway, which correlated strongly with the enrichment of
Enterobacteriaceae. Heme is an iron-containing cofactor that is required by bacterial
pathogens for essential functions and virulence (38, 39). High dietary heme iron intake
has also been associated in multiple prospective studies with increased risk of type 2 dia-
betes due to the production of reactive oxygen species under excess iron conditions
(40).

In conclusion, we identified changes in the gut microbiome associated with diabe-
tes in Mexican Americans of South Texas, which suggested promotion of a chronic
proinflammatory environment, loss of butyrate production, and compromised intestinal
barrier integrity. This taxonomic shift was accompanied by significant changes in the
metagenome, which indicated dysregulation of amino acid metabolism, reduced galac-
turonate and glucuronate catabolism, and increased heme biosynthesis. Integrative analy-
sis of the metagenomic changes with stool metatranscriptomics and blood metabolomics
would be highly valuable. Similarly, validation of microbiome-based risk models for diabe-
tes should be evaluated in prospective cohort studies.

MATERIALS ANDMETHODS
Demographic and laboratory data collection for study participants. The study included 216 partic-

ipants from the CCHC (41). We excluded subjects who had antibiotic, probiotic, or proton pump inhibitor
use within 30 days of stool collection. Written informed consent was obtained from each participant, and
the study protocol was approved by the Committee for the Protection of Human Subjects of participating
institutions. Fasting blood samples were collected and analyzed for metabolic and lipid panels. Homeostatic
model assessment (HOMA) scores were calculated using the formula: glucose (mg/dL)/18 � insulin (mU/L)/
22.5. Categorical or diagnostic definitions were described by the following criteria: obesity (BMI$ 30), diabe-
tes (fasting blood glucose$ 126 mg/dL, HbA1c$ 6.5%, history of diabetic medication or diagnosed with di-
abetes), elevated aspartate aminotransferase (AST) (. 33 U/L), elevated alanine aminotransferase (ALT) (.40
U/L for men and .31 U/L for women), heavy drinking (alcohol consumption of .20 g/day for men and
.10 g/day for women), moderate drinking (nonzero weekly consumption that did not reach heavy drinking
criteria), former smoking (lifetime consumption of $100 cigarettes plus no smoking at time of survey), cur-
rent smoking (lifetime consumption of $100 cigarettes plus smoking at time of survey). Demographic and
laboratory parameters of the study participants are described in Table 1.

Stool DNA extraction, 16S rRNA gene amplicon sequencing, and bioinformatic analysis. Stool
samples were collected from all 216 participants using the Omnigene stool kit and analyzed for 16S
sequencing at the MD Anderson Cancer Center Microbiome Core Facility. Bacterial genomic DNA was
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extracted using the QIAamp Fast DNA stool minikit (Qiagen). The V4 region of the bacterial 16S rRNA gene
was amplified by PCR (forward primer, 59-AATGATACGGCGACCACCGAGATCTACACGCTXXXXXXXXXXXX
TATGGTAATTGTGTGYCAGCMGCCGCGGTAA-39, where XXXXXXXXXXXX is an index sequence for multiplexing
libraries; reverse primer, 59-CAAGCAGAAGACGGCATACGAGATAGTCAGCCAGCCGGACTACNVGGGTW
TCTAAT-39). Libraries were purified using Zymo I-96 column purification and analyzed on the 4200
TapeStation system (Agilent). Barcoded amplicons were pooled in equal concentrations. Pooled libra-
ries were quantified by Qubit fluorometer, and the molarity was calculated based on amplicon size.
Sequencing (250-bp paired end) was performed on the Illumina MiSeq platform (Read1 seq primer,
59-TATGGTAATTGTGTGYCAGCMGCCGCGGTAA-39; Read2 seq primer, 59-AGTCAGCCAGCCGGACTACNVG
GGTWTCTAAT-39; and primer, AATGATACGGCGACCACCGAGATCTACACGCT). Paired-end reads were
demultiplexed and split in QIIME 1. Merging of paired-end reads to create consensus sequences was done
by VSEARCH v7, allowing up to a maximum of 10 mismatches. The “cluster_otus” command, an implemen-
tation of the UPARSE algorithm, was used to perform 97% related operational taxonomic units (OTU) clus-
tering. Denoising was done by the “unoise3” command. OTUs were then subjected to taxonomy assign-
ment using Mothur with the Silva database (v132). The number of 16S sequence reads was not
significantly different between stool samples from nondiabetic and diabetic subjects (mean [range] of
91,125 [25,663 to 226,058] versus 89,300 [30,904 to 183,829]; P = 0.651).

Acquisition and processing of data from the American Gut Project. FASTQ files for selected sam-
ples from the American Gut Project (AGP) were downloaded from the European Bioinformatics Institute web-
site (BioProject accession number PRJEB11419) (42, 43). Subjects with antibiotic use within the prior year,
cancer, liver disease, obesity, or diabetes were excluded. For comparison with the CCHC Hispanic population
of South Texas, we included 31 CCHC subjects that were not heavy drinkers and did not have obesity, diabe-
tes, abnormal AST levels, or abnormal ALT levels. AGP samples were run through the same pipeline as that
for CCHC samples. As AGP samples were collected without preservatives, OTUs corresponding to “blooming”
genera previously identified in AGP samples (44) were removed from all samples. These included Citrobacter,
Enterobacter, Escherichia-Shigella, Klebsiella, Morganella, and Pseudomonas. Relative abundances of taxa were
generated after removal of blooms. In addition, samples with fewer than 2,500 sequence reads were
excluded from analysis. Alpha diversity of samples from the CCHC and AGP was estimated using QIIME 2
from a randomly rarefied data set of 2,500 reads per sample with 10 iterations.

Functional profiling of stool samples by shotgun metagenomic sequencing. Shotgun metage-
nomic sequencing was performed (CosmosID, Inc., Rockville, MD) to a sequencing depth of 12 million reads
(620%), on stool samples from 141 of the 216 participants. DNA was isolated using the DNeasy PowerSoil
Pro kit (Qiagen) and quantified by Qubit fluorometer (Thermo Fisher). DNA libraries were prepared using the
Illumina Nextera XT library preparation kit. Libraries were assessed with a Qubit fluorometer (Thermo Fisher)
and sequenced on an Illumina HiSeq platform using 150-bp paired-end sequencing. The percentage of
sequencing reads aligned to the human genome was determined to be minimal (mean of 0.04%) via
Bowtie2 (v2.4.1) (45), using GRCh38 and major single-nucleotide polymorphisms (SNPs) as the reference ge-
nome, with default Bowtie2 parameters. Initial quality control, adapter trimming, and preprocessing of meta-
genomic sequencing reads were performed using bbduk (https://jgi.doe.gov/data-and-tools/bbtools/).
Quality-controlled reads were subjected to a translated search using Diamond against a comprehensive and
nonredundant protein sequence database, UniRef90. UniRef90 represents a clustering of all nonredundant
protein sequences in UniProt, such that each sequence in a cluster aligns with 90% identity and 80% cover-
age of the longest sequence in the cluster. The mapping of metagenomic reads to gene sequences was
weighted by mapping quality, coverage, and gene sequence length to estimate community-wide weighted
gene family abundances, which were subsequently annotated to MetaCyc reactions (Metabolic Enzymes) to
reconstruct and quantify MetaCyc metabolic pathways as described previously (46). Abundance values were
normalized using total-sum scaling normalization to produce copies per million.

Genome-wide association study and PCR genotyping. GWAS was performed on 139 of the 216
CCHC participants with whole-genome-imputed SNP genotypes. Genome-wide genotyping was performed
using the Illumina Multi-Ethnic Genotyping Array (MEGA) with 2.7 million SNPs, optimized for the Hispanic
population. After stringent preimputation quality control measures, including SNP/subject-wise genotyping
missing rate, Hardy-Weinberg equilibrium, heterozygosity rate, sample duplication, and sex inconsistency,
we imputed the GWAS data to the TOPMed whole-genome sequencing reference panel using the Michigan
Imputation Server (47). The R package GENESIS (48, 49) was used to perform GWAS of 9.3 million SNPs with
a minor allele frequency $3% and imputation score (R2) of .0.4. The GENESIS analysis pipeline explicitly
models population structure, relatedness between individuals, and ancestry admixture. GWAS was per-
formed for Proteobacteria, after dichotomization into high/low abundance based on the cutoff used for logis-
tic regression (first quartile [Q1]). As no SNPs passed the genome-wide significance threshold of
P , 5 � 1028, we used P , 1 � 1025 for suggestive significance. Gene annotation was performed with
SNPnexus v4 (50). The likelihood of each SNP having regulatory functions was predicted using RegulomeDB
v2.0 (51). The PhenoScanner v2 database (52) was used to access previous reports of associated gene expres-
sion in expression quantitative trait loci (eQTL) studies (P, 1� 1025).

rs7129790 was additionally genotyped by PCR in the CCHC study participants for which genome-
wide genotyping data were not available, using predesigned TaqMan SNP human genotyping assays
(Thermo Fisher), the SsoAdvanced Universal Probes Supermix (Bio-Rad), and the Applied Biosystems ViiA7
real-time PCR system (Thermo Fisher). Results were analyzed using QuantStudio real-time PCR Software
v1.3 (Thermo Fisher). For analysis of selected SNPs in the full data set, we considered a P value of ,0.05 to
indicate significance for all statistical tests (Chi-squared, Kruskal-Wallis, and logistic regression).

Statistical analyses. Statistical analyses were performed in R (version 4.0.0; R Foundation for
Statistical Computing, Vienna, Austria). Principal-coordinate analysis (PCoA) was performed using the
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“cmdscale” function and the weighted UniFrac distances of the OTU tables. Beta dispersion and
PERMANOVA tests, using weighted UniFrac distances, were performed with the vegan package.
Differences in bacterial abundance were assessed using the linear discriminant analysis (LDA) effect size
(LefSe) tool (53), with a P value of ,0.05 and a log10 LDA score of .2 considered significant. Taxa with
$0.1% abundance in at least 25% of samples were included. Additional differential abundance analysis
of taxa was performed with ANCOM v2.1 (54), where a false-discovery rate (FDR) significance threshold
of 0.05 was used for calculation of W statistics. W statistics greater than or equal to the 60th percentile
of the W distribution were considered significant. Logistic regression was performed using the “glm.fit”
function to obtain adjusted odds ratios (AORs) and 95% confidence intervals (CI). For bacteria enriched
in subjects with diabetes, AORs were calculated for diabetes in subjects with abundance in the highest
tertile. For bacteria depleted in subjects with diabetes, AORs were calculated for diabetes in subjects
with abundance in the lowest tertile. AORs were also calculated with abundance in the highest quartile.
Pairwise correlations were performed using Spearman’s correlation in R, with P values adjusted for multi-
ple testing using the Benjamini-Hochberg method. For metagenomic functional data, PCoA plots,
PERMANOVA tests, and redundancy analysis (RDA) were performed using Brays-Curtis distances based
on MetaCyc pathway abundances. Differences in MetaCyc pathways and reactions were assessed by
ANCOM. Pathways and reactions with $0.01% abundance in at least 25% of samples were included.

Data availability. The accompanying 16S rRNA sequencing data have been deposited into the
Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI) under
BioProject accession number PRJNA734860.
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