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Introduction: The early and therapy-specific prediction of treatment success in major

depressive disorder is of paramount importance due to high lifetime prevalence, and

heterogeneity of response to standard medication and symptom expression. Hence,

this study assessed the predictability of long-term antidepressant effects of escitalopram

based on the short-term influence of citalopram on functional connectivity.

Methods: Twenty nine subjects suffering from major depression were scanned

twice with resting-state functional magnetic resonance imaging under the influence

of intravenous citalopram and placebo in a randomized, double-blinded cross-over

fashion. Symptom factors were identified for the Hamilton depression rating scale

(HAM-D) and Beck’s depression inventory (BDI) taken before and after a median of seven

weeks of escitalopram therapy. Predictors were calculated from whole-brain functional

connectivity, fed into robust regression models, and cross-validated.

Results: Significant predictive power could be demonstrated for one HAM-D factor

describing insomnia and the total score (r = 0.45–0.55). Remission and response could

furthermore be predicted with an area under the receiver operating characteristic curve of

0.73 and 0.68, respectively. Functional regions with high influence on the predictor were

located especially in the ventral attention, fronto-parietal, and default mode networks.

Conclusion: It was shown that medication-specific antidepressant symptom

improvements can be predicted using functional connectivity measured during acute

pharmacological challenge as an easily assessable imaging marker. The regions with

high influence have previously been related to major depression as well as the response

to selective serotonin reuptake inhibitors, corroborating the advantages of the current

approach of focusing on treatment-specific symptom improvements.

Keywords: treatment response prediction, major depressive disorder, selective serotonin reuptake inhibitors,

functional connectivity, resting-state, functional magnetic resonance imaging
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INTRODUCTION

Major depressive disorder (MDD) constitutes to one of the
most prevalent psychiatric diseases and is seen as the second
leading cause of disability worldwide (Spijker et al., 2004; Ferrari
et al., 2013). Lifetime prevalence in industrialized countries
are reaching almost 20% (Kessler and Bromet, 2013) and are
even increasing (Weinberger et al., 2017). Moreover, ∼30% of
patients do not respond to standard medication and hence, suffer
from depression longer than necessary before other therapeutic
approaches are attempted (Souery et al., 1999). High prevalence
and non-responder rates make MDD an obvious target for
models of treatment success.

The ultimate goal is to find general predictive biomarkers
that can be used to help make therapeutic decisions before
determining the first intervention (Dunlop and Mayberg,
2014). During the last years, neuroimaging has steadily gained
importance in this quest, with a distinct focus on changes in
brain networks (Dichter et al., 2015) and processing of emotional
stimuli caused by MDD (Langenecker et al., 2018a). Further
promising results were also reported using, e.g., reward (Nguyen
et al., 2019), emotional conflict (Fonzo et al., 2019) and response
inhibition tasks (Tozzi et al., 2020). However, identification
of neuroimaging markers or other treatment predictors is
hampered by several factors: MDD is a highly heterogeneous
disease, which is not only mirrored in the variety of symptom
manifestations/trajectories (Drysdale et al., 2017; Hartmann
et al., 2018) and neuroscientific findings but also the tools for
diagnosis and assessment of severity vary considerably. Standard
clinical questionnaires like the Hamilton depression rating scale
[HAM-D; Hamilton (1960)] or Beck’s depression inventory [BDI;
Beck et al. (1961)] cover a broad range of symptoms but the
overall depression severity is mostly seen as a mere sum of these.

Moreover, studies trying to identify treatment predictors often
have to deal with small sample sizes that hardly allow for checking
the generalizability on independent datasets. Hence, potential
markers are frequently identified via mere correlation against
quantified treatment responses. Due to considerable variability
in neuroimaging data processing, correlations found can easily
be specific for a given methodological setting [e.g., Borchardt
et al. (2016)]. Moreover, findings also display specificity for the
respective treatment under investigation (Brakowski et al., 2017).
A further obstacle arises from the necessity that a predictive
marker should be reliably measurable in the majority of patients.
Within the fields of neuroimaging, resting-state (RS) functional
magnetic resonance imaging (fMRI) constitutes one of the least
demanding examinations, as it only requires subjects to lie still
for a few minutes. Compared to task fMRI, it does not depend on
performance, requires much less attention from the patients and
is easier to standardize.

These characteristics have made RS fMRI a popular modality
for investigating the effects of MDD on the brain’s function
and networks, and especially looking for markers aimed at
a certain treatment response. Several studies claimed to have
found predictors for various therapeutic approaches such as
electroconvulsive therapy (Argyelan et al., 2016), transcranial
magnetic stimulation (Avissar et al., 2017; Du et al., 2018;

Weigand et al., 2018), psychotherapy (Crowther et al., 2015),
mixed (He et al., 2016; Gong et al., 2018; Hou et al., 2018;
Zhu et al., 2018), or single-product drug therapy (Alexopoulos
et al., 2012; Fu et al., 2015; Cheng et al., 2017). Even
though significant correlations with different RS functional
connectivity (FC) metrics were found, out-of-sample validations
or assessments of generalizability within the same sample [e.g.,
cross-validation (CV) or bootstrapping] were not reported in the
publications above.

In order to address these challenges, the current work
follows a multistage approach: Depressive symptoms within the
sample were summarized according to latent sources using factor
analysis (FA), which allows for investigation of effects of overall
and symptom-specific severity. Using network based statistics
[NBS; (Zalesky et al., 2010)], potentially predictable factors were
identified by searching for related functionally connected brain
networks. Finally, true predictive power was estimated using two
validation schemes based on pseudo-independent data sampled
from the study population and compared to analytically circular
models built upon the previously identified networks, as they are
sometimes encountered in the literature.

MATERIALS AND METHODS

This study was conducted in accordance with the Declaration of
Helsinki, approved by the ethics committee and following the
Good Scientific Practice guidelines of the Medical University of
Vienna as part of a larger project registered at ClinicalTrials.gov
(NCT02711215). Due to highly skew distributions, descriptive
statistics are reported as “minimum/median/maximum”
throughout this work.

Subjects and Study Design
Thirty five patients suffering from MDD (19.65/26.96/55.28
years old, 16 females) were recruited in the outpatient
clinic as well as at the hospital ward of the Department
of Psychiatry and Psychotherapy of the Medical University
of Vienna. Written informed consent was obtained from all
participants. Two MRI examinations were conducted, 3/7/56
days apart, depending on the patients’ availability. Inclusion
criteria comprised of unipolar/first-episode MDD (according to
DSM-IV, HAM-D ≥18) but otherwise general health (assessed
via physical examination and the Structured Clinical Interview
for DSM-IV) and no psychopharmacological treatment within
the last three months, excluding the occasional intake of
antihistamines and benzodiazepines. Subjects were excluded in
case of former or current substance abuse, pregnancy and any
MRI contraindications.

At each date, participants received either 8mg of citalopram
(a commonly used selective serotonin reuptake inhibitor—SSRI)
diluted in 8ml saline or a comparable amount of saline as
placebo, injected intravenously (Kasper andMuller-Spahn, 2002)
over 8min in a randomized, double-blind, cross-over fashion
(i.e., subjects receiving citalopram at the first scan received
pure saline in the second one and vice versa). Successful drug
application was ascertained by plasma levels drawn from arterial
cannula placed in the left or right radial artery while the
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FIGURE 1 | Study schedule and analysis workflow. The durations between the single steps are given as medians. HAM-D, Hamilton depression rating scale; BDI,

Beck’s depression inventory.

subjects were in the scanner (Alshelh et al., 2018). Starting
the day after the second MRI examinations, patients received
pharmacological treatment for MDD with an initial dose of 5mg
escitalopram (Cipralex—Lundbeck, Copenhagen, Denmark).
Racemic citalopram was used for intravenous application since
no syringeable escitalopram solution is currently available.
In case of missing response (HAM-D decrease <50%), the
dose was increased to an adequate level following therapeutic
drug monitoring. This was done during visits carried out
with ∼2-week intervals, again depending on the patients’
availability. All subjects received only escitalopram until the third
visit and were switched to alternative medication (Duloxetin,
Venlafaxin, or Mirtazapin) thereafter if necessary. For a
detailed overview of the study schedule and analyses conducted
see Figure 1.

Psychometric Scoring
At each visit, depression severity was rated using HAM-D
and BDI questionnaires, providing expert- and self-ratings
due to known differences in the perception of symptom
improvements (Lambert et al., 1986). Both questionnaires
were previously reported to have high internal consistency
and reliability (Bagby et al., 2004; Barkham et al., 2007).
For the current analysis, only the assessment at inclusion
(pre-scores) and at the last visit, where all subjects received
escitalopram (post-scores; conducted 48/70/153 days after
enrollment and 41/49/83 days after initiation of treatment),

were used. In the end, the according psychometric data was
available in 29 patients for HAM-D and 28 for BDI. For two
subjects, post-scores were missing and linearly interpolated
from the visit before and after, rounded up (no change
in medication).

Factor Analysis of Depression Scores
Given the number of existing but inconclusive factorization
approaches for HAM-D and BDI, a FA appropriate for the
current population was conducted and afterwards compared
to previous results. Factorization was performed using SPSS
22 (IBM, Armonk, New York) on pre-scores only. Post-
scores were automatically calculated from loading matrices to
avoid influences of treatment response. For optimizing factors,
scores with the lowest measure of sampling adequacy (MSA)
were removed and FA repeated until the Kaiser-Meyer-Olkin
(KMO) criterion was >0.5 (Backhaus, 2003) and the estimation
converged. The following settings were used in SPSS: Factors
were extracted using principal axis factorization, where the
number of factors was determined via the Kaiser criterion
(Guttman, 1954; Kaiser and Dickman, 1959), the analysis was
based on correlation matrices, factors were orthogonally rotated
using Varimax and the final scores were calculated employing the
Anderson-Rubin approach. Varimax and the Anderson-Rubin
method were used to enforce orthogonality of the factors and
to ensure that the scores are uncorrelated (for details, see the
SPSS manual).
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Resting-State Data Acquisition
Neuroimaging data was recorded using a 3 T Siemens Biograph
mMR system (Siemens, Erlangen, Germany). The resting-state
scans started 71/77/100min after infusion of study medication
(the time differences resulted from the acquisition of other
sequences not presented here). In detail, 243 frames per run were
acquired using the following parameters: repetition time 2.44 s,
echo time 30ms, 2.1 × 2.1 × 3mm voxel size with 0.75mm gap,
100 × 100 voxels in-plane, 36 slices, GRAPPA 2. Subjects were
instructed to let their mind wander, look at a black crosshair on a
gray background and stay awake.

Resting-State Preprocessing
The RS data of the 29 subjects without missing HAM-D scores
was preprocessed using MATLAB R2014a (The MathWorks,
Natick, Massachusetts), Statistical Parametric Mapping, version
12 (SPM121), and ArtRepair, version 5b (Mazaika et al., 2009)2.
The following steps were performed: (i) correction of transient
slice artifacts (ArtRepair), (ii) slice-timing correction (SPM), (iii)
realignment (SPM), (iv), reslicing of realigned images (SPM), (v)
pre-smoothing with 4mm full width at half maximum (FWHM)
to improve subsequent motion artifact correction (SPM), (vi)
motion regression using the model by Grootoonk et al. (2000)
(ArtRepair), (vii) detection of motion outliers (ArtRepair), (viii)
despiking (ArtRepair), (ix) normalization to the standard space
defined by the Montreal Neurological Institute (MNI) with an
isotropic resolution of 2 mm (SPM).

Resting-State Processing
Further RS-specific processing was conducted using in-house
MATLAB code. Nuisance regression and frequency filtering were
performed within one model as recommended by Hallquist
et al. (2013). As nuisance parameters the first five principal
components of white matter and cerebrospinal fluid were
used, defined as the respective compartments of the Harvard-
Oxford atlas3 thresholded at 95%. The passband was limited
to 0.01–0.10Hz. Frames identified as motion-related outliers
using a modified version of the art_global MATLAB function
(ArtRepair) with linear detrending to avoid misclassification
of scanner drifts as movement were excluded from regression
and further analysis. Mean time series were extracted from
non-overlapping spheres of 10mm diameter around the 264
region of interest centers defined by Power et al. (2011)
(56/65/80 voxels), Pearson-correlated and Fisher-z-transformed
given the parametric nature of the subsequent analyses. To
reduce bias, only voxels present in all datasets were used for time
course extraction.

Network-Based Statistics Analysis
NBS (Zalesky et al., 2010) provide a way to tests connected
networks (i.e., continuously linked nodes) with edges showing
similar effects. The approach is based on connectivity matrices
(functional or structural) and can be seen as an equivalent to the
established cluster-level as compared to the voxelwise analysis

1www.fil.ion.ucl.ac.uk/spm/software/spm12/
2cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
3fsl.fmrib.ox.ac.uk/fsl/fslwiki

on volumetric neuroimaging data. In the same manner, within
the NBS framework, a general linear model is first estimated
for each edge, using the change in the psychometric scores
as regressor for the influence of intravenous citalopram on
functional connectivity. Since this method allows for detection
of widely distributed effects, it was utilized for a meaningful pre-
selection of potentially predictable factors taking all connections
into account simultaneously.

In detail, differences in connectivity z-matrices between the
verum and placebo condition were used as input for NBS. The
design matrices specified general linear models comprising of
the respective score changes post-pre (HAM-D or BDI sum or
factors), sex and age of patients, the mean connectivity averaged
over all connections and conditions (Saad et al., 2013) and an
intercept term. Connectivity thresholds were calculated as the
t-value corresponding to p ≤ 0.001 at the available degrees
of freedom. The significance threshold was set to p ≤ 0.10
to also cover trend-level effects (i.e., overall smaller networks).
Extent (network size) and intensity (network strength) summary
statistics were calculated for comparison as suggested by the
NBS manual. For statistical inference, 10,000 permutations
were performed. Results were not further corrected for the
number of tests as this step was only conducted for selecting
promising factors.

Assessment of Generalizability
The degree of generalizability was estimated using CVs of
complete and simplified models (without covariates) in order
to mitigate overfitting. Weights for single connections were
calculated as absolute value of the partial Pearson correlations
(following the unidirectional NBS contrasts) with the respective
coefficients being corrected for covariates and subsequently
scaled by the standard deviation of all absolute correlations
within the training set (models with signed weights were
also calculated for comparison). The FC predictor for each
subject was defined as the weighted average of difference
of the z-matrices. Training set predictors, covariates and
offset term were used afterwards to estimate linear regression
models (with robust “bisquare” weighting in MATLAB) for
the changes in the HAM-D and BDI factors, which were
then applied to the test sets. Three selection procedures (NBS
results, NBS threshold and direction of contrast, no threshold)
and two resampling techniques (leave-one-out CV, LOOCV;
3-fold CV without role reversal of test and training sets,
1,000 redraws−3CV) were used to avoid assessment-specific
results. Agreement between actual and predicted data was
again estimated via Pearson correlation (offset and scaling
are already accounted for in the models). The results were
adjusted for the number of factors per score using the
Sidak correction.

RESULTS

Demographics
Six out of the 35 patients with depression enrolled in the
study had to be excluded from model estimation due to
missing post-scores and one for additionally missing BDI data.
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TABLE 1 | Factor analysis of Hamilton depression rating scale (HAM-D) and Beck’s depression inventory (BDI) scores.

HAM-D items Factor number BDI items Factor number

1 2 3 4 5 6 1 2 3 4 5 6

1 0.021 0.132 0.030 0.576 0.162 0.020 A 0.609 −0.026 0.438 0.458 0.036 0.181

2 −0.051 0.047 0.129 0.608 −0.270 0.100 B 0.175 0.206 0.358 0.110 −0.056 0.111

3 −0.174 0.172 0.265 −0.020 0.684 −0.049 C 0.374 0.674 0.249 0.103 −0.104 −0.050

4 0.209 0.323 −0.384 0.051 0.208 0.424 D 0.053 0.116 0.773 0.212 0.179 0.073

5 0.820 0.203 −0.118 −0.075 −0.147 0.034 E 0.375 0.391 −0.511 −0.054 0.251 0.031

6 0.713 0.018 0.136 0.101 0.074 0.130 F 0.621 0.249 −0.070 0.104 −0.008 −0.021

7 0.141 −0.007 −0.287 0.129 0.442 −0.003 G 0.098 0.806 0.183 0.367 −0.039 0.022

8 0.142 −0.171 0.253 0.031 −0.070 0.653 H 0.161 0.738 −0.037 −0.258 0.239 0.132

9 0.123 0.120 0.462 0.206 0.062 0.004 I 0.578 0.009 0.221 0.087 −0.028 −0.038

10 −0.127 0.019 0.258 0.359 −0.023 −0.420 J 0.658 0.229 −0.067 0.121 0.215 0.261

11 0.165 −0.015 −0.041 0.404 0.141 −0.197 K 0.446 0.272 0.203 −0.051 0.301 0.192

12 0.117 0.821 0.016 −0.028 0.255 −0.184 L −0.02 0.298 −0.006 0.065 0.385 0.454

14 0.393 0.137 0.279 0.068 −0.019 0.099 M 0.249 0.168 0.180 0.563 −0.161 −0.215

15 0.173 0.321 0.295 −0.016 −0.341 −0.181 N 0.284 0.267 0.435 −0.126 0.116 0.248

16 0.154 0.692 0.091 0.292 −0.113 0.070 O 0.131 −0.01 0.142 0.582 0.330 0.072

17 0.065 −0.016 0.796 0.000 −0.036 0.071 P −0.001 0.016 −0.042 0.649 −0.313 0.586

Q 0.260 −0.145 0.379 0.286 0.801 0.068

S 0.009 −0.056 0.054 0.079 −0.435 0.027

U 0.135 −0.016 0.217 −0.032 −0.008 0.670

The two highest-loading items are highlighted for each factor. Meaning of single items: 1: depressed mood, 2: feeling of guilt, 3: suicide, 4: insomnia: early in the night, 5: insomnia: middle

of the night, 6: insomnia: early hours of the morning, 7: work and activities, 8: retardation, 9: agitation, 10: anxiety psychic, 11: anxiety somatic, 12: somatic symptoms gastro-intestinal,

13: general somatic symptoms (removed), 14: genital symptoms, 15: hypochondriasis, 16: loss of weight, 17: insight; A: sadness, B: pessimism, C: past failure, D: loss of pleasure, E:

guilty feelings, F: punishment feelings, G: self-dislike, H: self-criticalness, I: suicidal thoughts or wishes, J: crying, K: agitation, L: loss of interest, M: indecisiveness, N: worthlessness,

O: loss of energy, P: changes in sleeping pattern, Q: irritability, R: changes in appetite (removed), S: concentration difficulty, T: tiredness or fatigue (removed), U: loss of interest in sex.

At inclusion, the remaining 29 subjects’ HAM-D distribution
was 18/21/38 and at the third visit 0/7/26. At this time, 16
subjects fulfilled the criteria for remission (HAMD ≤ 7) and
19 responded (HAM-D reduction of 50% or more). For the
28 subjects with both BDI scores, the respective values are
12/28/46 before and 0/16/38 after the investigated treatment
period. The final datasets contained 14 female participants
(13 for BDI models). No significant influences of the time
between psychometric assessments or therapy duration on score
reductions were found (Pearson and Spearman correlations
all p ≥ 0.10).

Factor Analysis
For HAM-D, the pre-scores of all 35 subjects were entered into
the FA, 34 could be used for BDI (item enumerations seeTable 1).
After dropping HAM-D item 13, a KMO of 0.53 was reached
and six factors explaining 48.50% of variance were identified
using the Kaiser criterion. For BDI, a KMO of 0.52 was achieved
after removing item T. However, since the procedure did not
converge, item R with the next-lowest MSA was also removed,
yielding a KMO of 0.56 and also six factors, which explain 57.48%
of the overall variance. For easier understanding, the single
factors are henceforth addressed according to the two items with
the respective highest loadings (factor number in parentheses);
HAM-D: late insomnia (1), intestinal-weight (2), agitation-
insight (3), depressed-guilt (4), suicide-activities (5), insomnia-
retardation (6); BDI: punishment-crying (1), self-negativity (2),

pleasure-guilt (3), energy-sleep (4), irritability-concentration (5),
sleep-sex (6).

The correlation structure of factor scores within and between
the questionnaires is given in Figure 2. Within questionnaires,
factor pre-scores are perfectly uncorrelated due to orthogonal
Varimax rotation, only show occasionally higher correlations
of post- but considerable relationships with sum scores.
Between HAM-D and BDI, strong correlations of differences are
found for “late insomnia” and “energy-sleep,” “depressed-guilt”
and “energy-sleep”/“sleep-sex”/BDI sum, “suicide-activities”
and “energy-sleep,” “insomnia-retardation” and “energy-sleep,”
HAM-D sum and “energy-sleep”/“sleep-sex”/BDI sum. Sum
post-scores also show a high correlation contrary to their
pre-scores. Other relationships are especially pronounced
between “insomnia” and “sleep” factors of HAM-D and
BDI, respectively.

Network-Based Statistics
Overall, 56 tests were conducted [2 scores ∗
(

6 factors+ 1 sum
)

∗ 2 contrast directions ∗ 2 statistics]. No
multiplicity correction was applied at this stage since the
purpose of these tests was solely the preselection of potentially
predictable candidate factors. Extent and intensity statistics
were calculated for comparison and yielded the same results.
Networks showing uncorrected or trend-level significance were
found in 3 scenarios for HAM-D and BDI, respectively. Their
structures are depicted in Figure 3. Score differences correlated
negatively with the difference in connectivity between verum
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FIGURE 2 | Pearson correlations within and between factors and sum scores. The left column displays the correlations within the factors of the Hamilton depression

rating scale (HAM-D), the middle one of Beck’s depression inventory (BDI) and the right one between HAM-D and BDI. The rows show the correlation graphs for

pre-treatment, post-treatment, and difference scores. Since orthogonal factors were defined over pre-scores only to avoid influence of treatment, the corresponding

correlations are 0. HAM-D factors: H1, late insomnia; H2, intestinal-weight; H3, agitation-insight; H4, depressed-guilt; H5, suicide-activities; H6, insomnia-retardation;

BDI factors: B1, punishment-crying; B2, self-negativity; B3, pleasure-guilt; B4, energy-sleep; B5, irritability-concentration; B6, sleep-sex.
∑

indicates the sum scores.

Created using Paul Kassebaum’s circularGraph function (https://github.com/paul-kassebaum-mathworks/circularGraph).

and placebo conditions for all reported cases except for the
“irritability-concentration” and “sleep-sex” factors of BDI.

Predictive Power of Citalopram-Induced
FC Changes
Predictive power in terms of median Pearson correlation between
predicted and actual data is presented in Table 2 for the full
and reduced models. All models showed lower or at most equal
predictive power with signed weights (results not shown).

The highest correlation between actual and predicted scores
is naturally achieved for connection differences, which were
preselected based on the overall data. Being an obvious case of
double-dipping, this estimation was only included for reasons
of comparison. Whether a threshold was used to suppress
connections with low predictive potential has no generally
positive influence on the estimates. On the contrary, some
predictions show higher agreement using all the connections.
Correlations calculated for 3CV models are mostly larger than
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FIGURE 3 | Network structure of the network-based statistics (NBS) selection of factors as prediction candidates and the top ten nodes and edges of the respective

weight matrices for the models without application of any thresholds and 3-fold cross-validation. Upper row: Unweighted edges are shown since extent and intensity

statistics led to the same networks. Differences in verum and placebo connectivity matrices were regressed against post—pre-treatment changes in Hamilton

depression rating scale or Beck’s depression inventory factors or sum, corrected for sex, age, and mean connectivity over conditions. The nodes are grouped

according to the networks from Yeo et al. (2011) or anatomical region of the Harvard-Oxford atlas. Bottom row: The top ten nodes with the highest weight sums of

adjacent edges (larger spheres) and single edges with the highest weights are depicted. Over all models, the top nodes are not necessarily connected to top edges

(nodes without connections) and both are not necessarily included in the NBS results (top row).

those for LOOCV indicating no influence of sample size but
potentially influential subjects. Figures 4, 5 show the distribution
of median weights for all tests on full models with regions
of interest grouped according to Yeo et al. (2011) and basal
ganglia and cerebellum regions from the Harvard-Oxford atlas.
Due to the higher number of redraws and variance, median
weights are smaller for 3CV with most of them being 0 if
the NBS threshold is used. For the threshold-free models with
covariates and evaluated using 3CV, the ten nodes and edges with
highest sum and individual weights, respectively, are depicted
in Figure 3. Predictors for HAM-D models feature especially
high weights for the ventral attention (VA; e.g., anterior mid-
cingulate cortex, left superior temporal and supramarginal gyrus,
insula, eye fields), default mode (DM; e.g., frontal cortex,
anterior and posterior cingulate cortex, precuneus) and fronto-
parietal (FP; e.g., frontal and prefrontal cortex, anterior cingulate
cortex) networks. For the BDI models, the FP (mainly mid-
frontal cortex, including orbital parts), somato-motor (SM,
for the “energy-sleep” factor; e.g., frontal regions, angular
gyrus), and DM (e.g., pre- and postcentral gyrus, paracentral
lobule, Heschl’s gyrus) networks display high weights. Nearly
all correlations between real and predicted data are higher for
the full models when compared to the reduced ones, excluding
the “irritability-concentration” model. The BDI factor “sleep-
sex” is not predictable when no covariates and no threshold are

used (the correlation between the predicted and the real data
approaches zero).

Since the model for the HAM-D sum score yielded significant
results, it was further analyzed in terms of the area under the
receiver operating characteristics curve (AUC) and balanced
accuracy (BAC). For this, the usual clinical dichotomizations
into remission and response were applied to the threshold-free
predictions tested with 3CV and 1,000 redraws, as these represent
the least restrained model: AUCrem = 0.73, AUCresp = 0.68,
BACrem = 0.68 and BACresp = 0.60. The receiver operating
characteristic curves of the post-hoc classification performance
are presented in Figure 6.

DISCUSSION

The results indicate that short-term influences of citalopram on
FC indeed contain predictive potential for certain clinician, but
not self-ratings of antidepressant SSRI treatment response.

Identification of Factors
An important advantage of FA is meaningful interpretability
of results, which is much more difficult for other methods
like principal, independent component, or canonical correlation
analysis. The latter was also used in Drysdale et al. (2017)
in the interest of identifying depression subtypes and FC
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TABLE 2 | Median correlation coefficients as estimates of generalizability for models with and without covariates (sex, age, mean global connectivity).

Factor leave-one-out cross-validation 3-fold cross-validation

NBS results NBS threshold no threshold NBS results NBS threshold no threshold

Models with

covariates

HAM-D: late

insomnia (1)

r = 0.94; p < 1E-13 r = 0.45; p < 0.05 r = 0.49; p < 0.05 r = 0.95; p < 1E-14 r = 0.51; p < 0.05 r = 0.55; p < 0.01

HAM-D:

depressed-guilt (4)

r = 0.83; p < 1E-7 r = 0.33; n.s. r = 0.33; n.s. r = 0.88; p < 1E-9 r = 0.40; n.s. r = 0.40; n.s.

HAM-D: sum r = 0.90; p < 1E-10 r = 0.41; n.s. r = 0.42; n.s. r = 0.92; p < 1E-11 r = 0.51; p < 0.05 r = 0.51; p < 0.05

BDI: energy-sleep

(4)

r = 0.92; p < 1E-11 r = 0.07; n.s. r = 0.19; n.s. r = 0.94; p < 1E-12 r = 0.19; n.s. r = 0.19; n.s.

BDI: irritability-

concentration

(5)

r = 0.85; p < 1E-8 r = 0.24; n.s. r = 0.21; n.s. r = 0.88; p < 1E-9 r = 0.27; n.s. r = 0.26; n.s.

BDI: sleep-sex (6) r = 0.88; p < 1E-9 r = 0.48; p < 0.05 r = 0.40; n.s. r = 0.90; p < 1E-10 r = 0.41; n.s. r = 0.40; n.s.

Models without

covariates

HAM-D: late

insomnia (1)

r = 0.83; p < 1E-7 r = 0.38; n.s. r = 0.40; n.s. r = 0.88; p < 1E-9 r = 0.47; p < 0.05 r = 0.48; p < 0.05

HAM-D:

depressed-guilt (4)

r = 0.67; p < 0.001 r = 0.00; n.s. r = 0.23; n.s. r = 0.79; p < 1E-6 r = 0.20; n.s. r = 0.35; n.s.

HAM-D: sum r = 0.74; p < 0.001 r = 0.21; n.s. r = 0.28; n.s. r = 0.82; p < 1E-7 r = 0.35; n.s. r = 0.40; n.s.

BDI: energy-sleep

(4)

r = 0.83; p < 1E-7 r = −0.07; n.s. r = 0.08; n.s. r = 0.88; p < 1E-8 r = 0.13; n.s. r = 0.12; n.s.

BDI: irritability-

concentration

(5)

r = 0.85; p < 1E-7 r = 0.26; n.s. r = 0.24; n.s. r = 0.89; p < 1E-9 r = 0.36; n.s. r = 0.36; n.s.

BDI: sleep-sex (6) r = 0.71; p < 0.001 r = 0.29; n.s. r = 0.03; n.s. r = 0.78; p < 1E-5 r = 0.14; n.s. r = −0.01; n.s.

Absolute partial Pearson correlation coefficients were used for weighting. Naturally, estimations based on results from network-based statistics (NBS) show the highest agreement

since the predictive matrix elements were selected using all of the data. Whether an additional threshold was used to exclude connections with low predictive potential does not make

a substantial difference. P-values for the 1,000 runs of 3-fold cross-validation were calculated for n-2 degrees of freedom, where n is the number of subjects (assuming all subjects

contributed to the result). HAM-D, Hamilton depression rating scale; BDI, Beck’s depression inventory; n.s, not significant.

correlates. Even though this approach yields linear combinations
of symptoms that already correlate well with those of FC,
additional data for independent validation is required. Moreover,
in an attempt to replicate the findings in an independent
sample, Dinga et al. (2019) also were not able to find similar
structures, calling the generalizability of the study into question.
Hence, a multistep approach was chosen for the current work
keeping psychometric and RS data separated before creating
prediction models.

Table 1 shows that negative influences on highest-loaded
items are only found for two BDI factors (“guilty feelings”
for the “pleasure-guilt” and “concentration difficulty” for the
“irritability-concentration” factor). This opposing effect is indeed
also observable in the original data: ρ = −0.32 , p =

0.07 for “loss of pleasure” and “guilty feelings” and ρ =

−0.35, p < 0.05 for “irritability” and “concentration difficulty”
(Spearman correlation, uncorrected). Several authors have
performed exploratory [e.g., Brown et al. (2012), Lee et al. (2018)]
and confirmatory [e.g., Morley et al. (2002), Tobias et al. (2017)]
FA on BDI data of different patient populations with varying
methods and results. In their work, Brown et al. (2012) report
only positive correlations between the single BDI items in chronic
fatigue patients using a two-factor model accounting for 35.7% of
the overall variance. Lee et al. (2018) created a combined model
of Beck’s anxiety and depression inventories using a five-factor

model (56.2% of combined variance explained) for amixed group
of psychiatric patients. Since those studies used either oblique
rotation (allowing for correlation between factors, which was
unwanted here) or did not further specify it, direct comparisons
of the factors are difficult due to differently oriented coordinate
systems.

As for BDI, HAM-D has also been subjected to FA for
various scenarios. Broen et al. (2015) conducted a factorization
in Parkinson’s patients using principal component analysis,
oblique rotation and the Kaiser criterion identifying six factors
accounting for 59.2% of the total variance. Even though these
numbers are very close to those reported here, comparisons
beyond the magnitude of results are again impeded by different
rotations. Also using principal component analysis and the
Kaiser criterion, Olden et al. (2009) identified four latent HAM-
D factors for patients suffering from terminal cancer. Since
that study also used Varimax rotation, it can be easily derived
via standardized regression coefficients that the “late insomnia”
and “intestinal-weight” factors have likely equivalents in the
“insomnia” and “somatic” factors, respectively (Table 3). A third
“depression” factor might be partially represented in “suicide-
activities” and “insomnia-retardation.”

The correlation structure of factors in Figure 2 indicates that
not only the pre-treatment scores but also improvements in the
single factors are, to a high degree, independent. Correlations in
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FIGURE 4 | Median weight matrices for full models of derived Hamilton depression rating scale (HAM-D) factors and sum score using three selection strategies.

Upper triangles show weights calculated via leave-one-out cross-validation (LOOCV) and lower ones for 3-fold cross validation (3CV) with 1,000 redraws. The left

column shows rather equally distributed weights if validation is performed on the pre-selected edges of the network-based statistics (NBS) results. Using the NBS

threshold (middle column) to eliminate connections with potentially low predictive capabilities, more of them could be considered in the 1,000 runs of 3CV compared

to the number-of-subjects runs of LOOCV. This leads to 0 medians for most 3CV weights. If no threshold was used (right column), the patterns for both methods look

quite similar. Weight colors represent the relative influence of the connections on the models and were scaled between 0 and the maximum of each matrix. Yeo atlas:

VI, visual; SM, somato-motor; DA, dorsal attention; VA, ventral attention; FT, fronto-temporal; FP, fronto-parietal; DM, default mode; Harvard-Oxford: BG atlas, basal

ganglia; CE, cerebellum.

post-scores can be explained by general influences of medication
on depressive symptoms. Factors with high loadings for similar
items, especially the “insomnia” and “sleep” factors of HAM-
D and BDI also display higher correlations emphasizing the
appropriateness of their descriptions. Contrary to what could be
expected and is reported in Kobak et al. (1990), Reynolds and

Kobak (1995), this finding is not generalizable to sum pre-scores.
Correlations of HAM-D and BDI pre-scores are only r = 0.21 but
r = 0.82 for post- and r = 0.63 for difference scores. However,
this discrepancy regarding the pre-treatment assessment is in line
with Lambert et al. (1986) and the reason for investigating both
scores. Assuming the expert-ratings aremore accurate, this might
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FIGURE 5 | Median weight matrices for full models of derived Beck’s depression inventory (BDI) factors. Abbreviations and explanations see Figure 4. Compared to

the Hamilton depression rating scale (HAM-D), weight matrices for BDI show more pronounced patterns (especially for the analyses without threshold) indicating

stronger influences of certain networks.

indicate a biased self-perception with decreasing magnitude over
the course of antidepressant treatment that lead to BDI scores

being far less predictable from FC. From another perspective, the

scores could also be seen as being based on different references:

The clinician-based scoring might be influenced by having seen

numerous patients suffering from differently severe depressions,
whereas the self-rating is based on each patient’s perception,
which might be affected by a wide range of factors. Furthermore,
these findings might also explain NBS results for BDI factors
being trend-level significant at most. The partial similarity of

weight distributions of the HAM-D models (see Figure 4) is also
reflected in the respective correlations of the factors with the
sum score.

Predictive Power of Escitalopram
Treatment Response Models
The overall aim of this work was to assess whether the
response to antidepressant treatment (after a median of 10
weeks) with escitalopram can be predicted using short-term
effects of citalopram on FC. To evaluate which aspects of
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TABLE 3 | Comparison of the factors extracted from the Hamilton depression rating scale (HAM-D) by Olden et al. (2009) and the current analysis.

Standardized β late insomnia intestinal-weight agitation-insight depressed-guilt suicide-activities insomnia-retardation

Anxiety −0.30 −0.51 −0.27 −0.07 −0.42 −0.69

Depression −0.54 −0.16 −0.24 −0.06 0.28 0.27

Insomnia 0.74 −0.09 −0.27 0.06 0.16 0.05

Somatic 0.05 0.68 −0.29 0.12 0.13 −0.05

The table shows regression coefficients β for z-scored columns modeling z-scored rows. “Insomnia” and “Somatic” seem to have a certain agreement with the “late insomnia” and

“intestinal-weight” factors. “Depression” might be split up into “suicide-activities” and “insomnia-retardation,” where the negative influence of “late insomnia” could be connected to the

strong representation of sleep items in two different factors. The exclusively negative coefficients for “Anxiety” are probably related to the comparably low loadings on the respective

items (HAM-D items 10 and 11). This interpretation is also corroborated by the fact that the “depressed-guilt” factor shows the highest anxiety-item loadings and least negative β,

whereas the “insomnia-retardation” factor behaves exactly the opposite way.

FIGURE 6 | Receiver operating characteristic curves of the unthresholded

model of the Hamilton depression rating scale (HAM-D) sum score with 3-fold

cross-validation for remission (HAM-D ≤7) and response (HAM-D reduction

≥50%). AUC, area under the curve.

depressive symptomatology are even represented in RS data, NBS
analysis of drug influences was conducted. Three networks were
identified for HAM-D (“late insomnia,” “depressed-guilt” factors
and sum score) and BDI changes (“energy-sleep,” “irritability-
concentration,” “sleep-sex” factors) with p ≤ 0.05 and p ≤

0.10 uncorrected for the number of contrasts, respectively.
Extent and intensity summary statistics yielded the same results
(Figure 3). The networks themselves were of minor importance
but afterwards used to demonstrate the effect of biased selection
of predictors. Furthermore, the left and right columns of
Figures 4, 5, as well as comparing the upper and lower row of
Figure 3 indicate that many NBS connections were also assigned
higher weights in the unrestricted case using all the connections.
Predictive power expressed as Pearson correlation between

estimated and real score reductions was at least twice as high (a
factor of four in terms of explained variance) and approaching
1 when only edges of the NBS results were considered (Table 2).
Since these were identified over all subjects, the scores that should
be predicted already influenced the selection (“double dipping”).

Sikora et al. (2016) present a very similar ratio, where FC
within the salience network (SN) explains 65% of the placebo
response (r ≈ 0.81) but only shows a predictive power of r =

0.41. Concluding predictive capabilities frommere correlations is
commonly encountered in literature even though CV or similar
approaches could easily be employed to avoid overestimations
and add a layer of generalizability.

For the subsequent models, reduced variants without
covariates were evaluated to address overfitting (Table 2, lower
half). These models performed worse for all but one (BDI:
“irritability-concentration”) factor, suggesting that the additional
information contained in these variables outweighs the increased
model complexity. Hence, further investigations were limited
to full models. However, the model for the BDI factor “sleep-

sex” does not show any predictive capabilities when estimated

solely on full correlation matrices, indicating that the result was

driven by at least one covariate. Further analyses showed that

correlations between predicted and real scores only approach

zero when age is not included as a covariate. Indeed, subject
age and change in “sleep-sex” factor significantly correlate
(ρ = −0.48, p < 0.01, Spearman correlation), confirming
this assumption. Still, in the preceding NBS analysis a trend-
level significant network was found for the factor scores. This
might either represent a false-positive result or the effect is
only detectable in the corrective presence of an age covariate.
However, there could be clinical relevance to this finding
since it implies that improvements of depressive symptoms
for this factor might be predictable to a certain degree from
subject age alone. However, verification in independent samples
is needed.

One HAM-D factor describing “late insomnia” and the sum
score show significant correlations between predicted and real
score differences after correction for multiplicity. Slightly higher
agreements for 3CV compared to LOOCV could point toward
influential samples. Since for LOOCV the model only changes by
one subject between turns, influential ones will be present in the
majority of estimates. 3CV, on the other hand, allows for more
model variance as one third of the data is left out for each redraw.
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Robust “bisquare” weighting was used to mitigate the potential
problem of leverage points, but residual effects might be present.

The finding that, besides the sum score, especially changes
in a factor describing insomnia are predictable, could be of
particular clinical interest. Some drugs with effects on serotonin
reuptake/affinity to the serotonin transported are effective
in the treatment of sleep disorders (Brietzke et al., 2019).
Furthermore, insomnia is one of the possible side effects of
escitalopram treatment (Burke, 2002; Waugh and Goa, 2003).
Sleep disturbances at baseline themselves also carry predictive
information for the antidepressant response (Manglick et al.,
2013; Sung et al., 2015), which is partly reflected in the high
correlations with the HAM-D sum in Figure 2 and the fact that
the factors were defined based on the pre-treatment score alone.
A stronger relationship between the post- and difference scores of
the “sleep” factors (energy-sleep and sleep-sex) and the sum score
can also be observed for the BDI. Furthermore, bidirectional
relationships involving functional and structural connectivity
between sleep disorders and MDD are known (Rosenberg et al.,
2014; Khazaie et al., 2017). This all suggests a more complex
relationship between SSRIs, sleep, and treatment response that
demands further investigation. Furthermore, it seems that the
predictability of changes in insomnia related to depression is
either specific to FC or the influence of citalopram, since this
factor could not be predicted in a well-powered study using
structural and diffusion MRI (Yang et al., 2018).

Whether a priori thresholding of connections has any positive
influence is not clear, but since eachmatrix element was weighted
by the correlation with the regression target, which was also
used to define the cutoff, the effect is probably small. When
using multiple thresholded runs to build a final model, it needs
to be noted that most single potential predictors are below the
threshold most of the time (see the lower triangles of the median
weight matrices in Figures 4, 5, middle columns). For sufficiently
large datasets, algorithms that combine regularization, variable
selection and prediction such as LASSO regressionmight provide
a more powerful approach. However, in light of the sample
size and the failed replication attempt of a promising model
combining these steps (Drysdale et al., 2017; Dinga et al., 2019),
they were kept separated.

Influence of Functional Nodes and
Networks
For the two full HAM-D models showing significant predictive
power with or without thresholding, the estimated correlations
range from r = 0.45 to 0.55–explaining ∼20 to 30% of the
variance. Sikora et al. (2016) found a relationship of similar
strength (r = 0.41) between predicted and real responses to
placebo but not antidepressant medication based on connectivity
within the SN [included in the VA network of the Yeo atlas
(Yeo et al., 2011)], especially the rostral anterior cingulate
cortex. Figures 3, 4 show that connections within and including
subregions of the anterior cingulate, which is known for being
affected by MDD (Chen et al., 2018; Helm et al., 2018) as well
as SSRIs (Arnone et al., 2018; Schrantee et al., 2018) contribute
highly to the HAM-D predictors. A much stronger correlation

between predicted and true absolute HAM-D scores of healthy
and MDD subjects of r = 0.91 was reported by Qin et al.
(2015). Amongst other regions, the posterior cingulate cortex,
precuneus, insula, and basal ganglia were found to be mainly
included in treatment-related connections. Those are also present
in the nodes and edges with highest weights (Figure 3). Applied
to the subset of clinically recovered patients, the model of Qin
et al. (2015) failed, which is most likely caused by comparably
greater variations between healthy subjects and patients. This
assumption is supported by the fact that regions with therapy-
related connectivity were identified as largely contributive across
several of the current models.

A different approach was taken by Karim et al. (2018)
for pharmacotherapy in late-life depression and Leaver et al.
(2018) for electroconvulsive therapy applied to MDD. Patients
were dichotomized into responders and non-responders allowing
for classification via support vector machines. The first study
used two emotional paradigms and RS fMRI at baseline, the
same scans 1 day after a single dose of study medication and
Montgomery-Asberg depression rating scale scores taken at
baseline and 1 week into treatment. This setup achieved an
AUC of 0.77 where important nodes for the support vector
machine were largely located at the frontal gyri, including the
orbital parts, at task and rest. These regions also display high
individual prediction weights for all factors and might represent
the influence of MDD on emotion processing (Loeffler et al.,
2018). Furthermore, activation of these regions was shown to be
indicative for future recurrence of depression (Langenecker et al.,
2018b) and can be modulated using SSRIs (Wolf et al., 2018).
Leaver et al. (2018) predicted electroconvulsive therapy outcomes
with BACs of 58–68%: Across CV splits, FP, motor and superior
temporal regions were most often selected as important nodes.
The FP network indeed seems to play a universally pivotal role
for predicting antidepressant response, whereas the SM network
might be of especial importance for certain factors (Figure 3).

Komulainen et al. (2018) recently reported influences of
escitalopram on FP regions in depressed patients after 1 week
and before the onset of symptom improvements. Considering
the current results, it might be possible that the FP network
shows responses to SSRIs even within hours and speed or
magnitude of this effect are, at least partially predictive for
the antidepressant response. The motor network is usually
not of primary interest in patients with MDD. Still, there are
studies showing alterations in MDD (Sarkheil et al., 2020)
and also predictive power of SM activation or connectivity
for the response to serotonergic medication in Parkinson’s
(Ye et al., 2016) and MDD (Klimes-Dougan et al., 2018). Dunlop
et al. (2017) investigated the predictive power of subcallosal
cingulate cortex connectivity for antidepressant treatment with
escitalopram, duloxetine (a serotonin norepinephrine reuptake
inhibitor) or cognitive behavioral therapy. Remission after 12
weeks of medication could be identified with an AUC of 0.72
(no validation) based on the sum of subcallosal cingulate cortex
FC to the ventromedial and ventrolateral prefrontal cortex/insula
and midbrain. The AUC was higher for the sum of the FC scores
compared to each one alone, corroborating the strategy of using a
combination of nodes as predictor. Despite a certain consistency
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in influential connections, it must be noted that multivariate
approaches do not directly allow for drawing conclusions on the
importance of single features, i.e., one feature with high weight
can easily be overruled by multiple others with lower weight.
Even though dichotomization of outcomes was performed post-
hoc in the current study, the results are of similar magnitudes
(AUC = 0.73/0.68, BAC = 0.68/0.60) as those reported by
Dunlop et al. (2017).

In a comparison of different machine learning algorithms,
Patel et al. (2015) found that age, the mini-mental state
examination and structural imaging features were predictive
for the diagnosis of late-life depression, whereas for drug
response, functional, and structural connectivity yielded themost
generalizable results. Patel et al. (2015) also reports that support
vector machines are outperformed by alternating decision trees
but at least for structural data remain the prevailing machine
learning approach for predicting antidepressant treatment
response (Patel et al., 2016). This points toward a general
underestimation of the predictive capabilities of neuroimaging
for depression.

Other than the above-mentioned machine learning
algorithms, the current study is not based on non-linear
prediction but employs a simpler regression approach due to
the moderate sample size. However, using a weighted mean
to calculate a single predictor still allows for considering the
whole brain at once. Another advantage of the current model
is that a continuous outcome can be used avoiding arbitrary
cutoffs and loss of statistical power (Kuss, 2013). Compared
to studies using only one condition per patient, the influence
of subjective traits, which might predict the probability of
recovery rather than the response to a certain approach, can
be excluded. This is especially important when RS fMRI is
utilized where volunteers are usually instructed to let their mind
wander. For instance, MDD patients with less pronounced
lethargy might more think of physical activity leading to
higher SM FC. Considering future studies, non-linearity can
be taken into account in two ways: Firstly, the connectivity
estimation itself can be based on methods other than the
conventional linear Pearson correlation that, e.g., provide
higher stability (Geerligs et al., 2016; Meszlényi et al., 2017).
Secondly, more complex prediction algorithms can be used
such as LASSO regression or the machine learning approaches
discussed above. The linear methods used here can be seen
as a special case of these approaches, which implies that they
could only yield more accurate results given their requirements
are met.

Limitations
The main limitation that needs to be addressed is the available
number of subjects. Starting at FA, there seems to be no
agreement on sample sizes necessary to achieve stable results
(Fabrigar et al., 1999; Henson and Roberts, 2006). However, it
was shown that respecting quality criteria such as KMO and
MSA in combination with a small number of factors already
leads to reasonable outcomes (Preacher and MacCallum, 2002;
Costello and Osborne, 2005) and FA can be reliably applied to

small sample sizes (De Winter et al., 2009). Within the context
of factor optimization, it was also necessary to remove items.
Even though this is a common procedure, the respective items
vary considerably between studies (Cole et al., 2004). Since no
syringeable escitalopram solution exists, the racemic mixture
was applied, possibly leading to a less pronounced effect on
FC. The relationship between short- and long-term effects of
citalopram might also be biased by additional influences on
changes in depressive symptoms. These cannot be ruled out
since placebo control during the treatment period was not
possible. Another source of variation is the large range of time
between scans and between psychometric assessments. This was
not corrected for due to the already high number of predictors
compared to samples but showed no significant relationship
and any influence is also reduced by the resampling schemes
employed. A higher sample size would also allow for selection
of covariates within the model estimation process without
considerably compromising stability (Heinze et al., 2018). Future
studies should also explicitly estimate the influence of already
collected psychometric data, which was out of scope of the
current analysis but could constitute an individual baseline with
additional measures steering the direction and magnitude of
change (Karim et al., 2018).

Conclusion
Using the short-term influence of citalopram on FC compared
to placebo (saline), it was possible to predict improvements
on one factor and the sum of the HAM-D at r = 0.45
to 0.55, validated using pseudo-independent data. The sum
score model also performed reasonably well after post-hoc
dichotomization into remitters and non-remitters (AUC = 0.73).
Thus, based on the baseline depression severity assessed via
the HAM-D and the individual improvements estimated by the
model, the score after 7 weeks of escitalopram therapy can be
predicted. This constitutes a clear advantage of the regression
approach compared to predicting remission or response alone.
The same approach, however, failed for BDI, likely due to
a mismatch between self-perception of patients and expert
perception of clinical symptoms. Including age, sex and a
correction for the individual average connectivity was shown to
increase predictive power of the models. In spite of in-sample
testing, validation of results on independent datasets is needed.
Furthermore, prior to an application of the model, a clinical
validation is recommended, ideally involving a control group.
Since also the HAM-D sum score was predictable, future studies
could also take simpler approaches and concentrate on other
methodological aspects to further increase predictive power.
Additional studies are also needed in light of the different
classes of antidepressant medication especially with promising
alternatives such as ketamine and psilocybin (Witkin et al., 2018).
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