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Abstract

Background: Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic
neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk
intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental
environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic
neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large
(10–12) and small (3–4) litter sizes, of Brandt’s voles (Lasiopodomys brandtii), a rodent species from Inner Mongolia grassland
in China.

Methodology/Principal Findings: Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We
showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large
litters, accompanied by increased food intake during development. There were no significant differences in serum leptin
levels or leptin receptor (OB-Rb) mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor
of cytokine signaling 3 (SOCS3) mRNA in adulthood increased in small litters compared to that in large litters. As a result, the
agouti-related peptide (AgRP) mRNA increased in the offspring from small litters.

Conclusions/Significance: These findings support our hypothesis that natural litter size has a permanent effect on offspring
metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant
increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of
overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of
metabolic fitness in adulthood.
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Introduction

Early-life environmental influences on the adult metabolic

phenotype are of interest both scientifically and clinically, as it

relates to the risk factors contributing to the obesity epidemic [1].

Epidemiological and experimental studies show a linkage

between low birth weight and increased obesity [2], which

implies the importance of intrauterine environment in remodel-

ing adult phenotypes. In contrast, rapid growth during lactation

also increases obesity risk. For instance, maternal high-fat diet

during lactation can induce offspring insulin resistance and

obesity in adulthood [3]. Adult rats [4,5] and mice [6,7]

previously subjected to early postnatal overnutrition in small

litters are hyperphagic, hyperleptinemic and differ in emotional

behavior from control litters. These observations from either

maternal high-fat diet or litter size manipulation underscore the

critical importance of early postnatal nutritional environment in

‘‘programming’’ the long-term regulation of energy homeostasis

[8,9].

Litter size is an important life history trait [10], which is

correlated negatively with postnatal growth [11,12] and thus

may determine an individual’s reproductive success, longevity or

other fitness-correlated traits [13]. Despite its importance in

evolution, few studies have been made to investigate the

physiology and central mechanisms contributing to the long-

term effect of litter size on adult metabolic phenotype. We

utilized seasonal breeding Brandt’s voles (Lasiopodomys brandtii),

which have a mean litter size of seven (litter size varies from 2 to

14) [14]. In a previous study, we found that the pup mass at

birth was not related to litter size, however, the offspring raised

in litter size of four were 18% heavier than those from a litter

size of ten at peak lactation in the voles [15]. Therefore, the
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offspring raised in different natural litter sizes are an appropriate

model to study consequences of nutritional variations during the

critical postnatal period on the regulation of adult energy

homeostasis.

The mediobasal hypothalamus is the site of energy homeostasis,

and can exquisitely sense and integrate peripheral metabolic cues

to coordinate peripheral metabolism [16]. Adipose-tissue derived

leptin represents one important metabolic signal which acts on the

hypothalamus. In response to feeding, leptin is secreted from

adipose tissue and engages leptin receptors (OB-Rb) in various

hypothalamic regions, leading to activation of the JAK2-STAT3

pathway and increased metabolic rate and decreased food intake

via a reduction in orexigenic neuropeptide Y (NPY) and agouti-

related peptide (AgRP), and increase expression of anorexigenic

proopiomelanocortin (POMC) and cocaine- and amphetamine-

regulated transcript (CART) [17,18,19]. Meanwhile, the JAK2–

STAT3 pathway stimulates transcription of suppressor of cytokine

signaling 3 (SOCS3), a negative regulator of leptin signaling

following Ob-Rb activation [20]. The decreased activation of

leptin signaling and the increase in hypothalamic SOCS3

expression have been clearly related with leptin resistance in

obesity [21,22].

In the present study, we investigated the long-term effects of

natural litter sizes on offspring metabolic phenotype and

biomarkers, such as food intake, resting metabolic rate (RMR),

nonshivering thermogenesis (NST), uncoupling protein 1 (UCP1)

in brown adipose tissue (BAT), body compositions, serum leptin

and tri-iodothyronine (T3) and thyroxine (T4) levels in adulthood.

In addition, we analyzed gene expression of OB-Rb, SOCS3, and

orexigenic and anorexigenic neuropeptides in hypothalamus from

young and adult voles raised in large and small litters. We

hypothesized that postnatal litter size would permanently influence

offspring metabolic phenotype and hypothalamic neuropeptide

expression. We predicted that offspring reared from small litters

would exhibit hyperphagia, excessive weight gain and hyperlepti-

nemia in adulthood as compared to the counterparts from large

litters, and that these phenotypes in small litters would be related

to greater expression in hyperthalamic orexigenic neuropeptides.

Materials and Methods

Ethics Statement
All experimental protocols were reviewed and approved by the

Animal Care and Use Committee of Institute of Zoology, the

Chinese Academy of Sciences. The institute does not issue a

number to any animal study, but each study requires the permit to

use animals from the ethical committee. The animal facility must

be licensed by the experimental animal committee of Beijing, and

all staff, fellows and students must receive appropriate training

before performing animal studies.

Animals
Brandt’s voles were the offspring of our laboratory breeding

colony founded by field-captured animals. After weaning (21 days

of age), voles were housed as same gender sibling pairs in plastic

cages (3065620 cm) and maintained in temperature (2361uC)

and humidity-controlled rooms under a 16:8 h light/dark

photoperiod with lights on at 04:00 h. All animals were provided

standard rabbit pellet chow (KeAo Feed Co., Beijing) and water ad

libitum.

At 3–4 months of age, virgin female voles were housed

individually and acclimated for 2 weeks and then were paired

with males for 4 days to allow mating. On the day of parturition,

the dams with 10–12 pups (regarded as large) and 3–4 pups

(regarded as small) were selected to compare the effect of litter size,

since we found previously that there was a difference in pup body

mass only between these two groups [15]. Four out of twelve dams

in large litters and five out of seventeen dams in small litters killed

some of their pups (5 pups were dead in either group). At weaning,

one pup from every litter was sacrificed to collect tissues (without

regard to gender), and another two (one male and one female)

were housed individually until 13 weeks. During lactation, all the

pups from one nest were weighed every 3 days. After weaning,

body mass and food intake were recorded weekly. Food intake was

determined for three consecutive days and the remains were

collected after the 3-day test. RMR and NST were measured at 12

weeks of age. We compared the effects of litter size and gender in

adulthood; therefore four groups (LM, male from large litter,

n = 12; SM, male from small litter, n = 9; LF, female from large

litter, n = 13; SF, female from small litter, n = 10) were used in this

study.

All the animals were sacrificed by CO2 overdose between

09:00 h and 11:00 h at 13 weeks of age. Trunk blood was collected

and centrifuged at 4000 rpm for 30 min at 4uC and serum stored

at 280uC until assayed. The whole brains were rapidly removed

and placed on dry ice for slow freezing. A slice of brain tissue was

cut between the optic chiasm and the mammillary bodies, and the

hypothalamus was dissected by one horizontal cut immediately

below the anterior commissure and sagittal cuts through the edge

of the septum and perihypothalamic sulcus as previously described

[23]. The hypothalamus was frozen in liquid nitrogen immediately

and stored at 280uC until subsequent analysis. The interscapular

brown adipose tissue (iBAT) was immediately and carefully

dissected, weighed and stored at 280uC until assayed.

Metabolic trials
RMR and NST were measured by using an open-circuit

respirometer (FOXBOX, Sable Systems International Inc., Las

Vegas, NV, USA). To avoid possible effects of circadian rhythm

interfering with the group effects, two groups of animals were

measured in an alternating manner between 08:00 h and 17:00 h.

RMR was assessed from the rate of O2 consumption and CO2

production at 30uC (within their thermal neutral zone) (constant-

temperature incubator; model LRH-250; Yiheng Co., Shanghai,

CHN). A vole was placed in a chamber (2006130685 mm,

volume 1.4 L) for 2 h. The flow rate of incurrent and excurrent air

(dried with anhydrous CaSO4; W. A. Hammond Drierite Co.,

USA) was approximately 300–400?ml?min–1 and 100 ?ml?min–1,

respectively. The baseline of oxygen and carbon dioxide

concentration were measured before and after each test. Oxygen

consumption was recorded at intervals of 10 s. RMR was

estimated from the stable lowest consecutive rate of oxygen

consumption over 5 min.

The voles stayed in the chamber for another 1 h for NST

measurement. Maximum NST was induced by a subcutaneous

injection of norepinephrine (NE) at 2561uC and mass-dependent

dosage of NE (Shanghai Harvest Pharmaceutical Co. LTD) was

calculated according to Heldmaier [24] and the recommended

dosage in Brandt’s voles [25]. NST was calculated from the stable

highest consecutive rate of oxygen consumption over 5 min. The

rate of oxygen consumption was calculated according to the

equation.

VO2 =
FR| FiO2 -FeO2ð Þ{FR|FeO2| FeCO2 -FiCO2ð Þ

1{FeO2

(FR = flow rate, V = exchange rate for the gas in question (O2,

CO2), Fi = input fractional concentration, Fe = excurrent fraction-

al concentration).

Litter Size-Induced Hypothalamic Gene Expression
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Body composition analysis
After dissection of the hypothalamus and iBAT, the following

organs and tissues, including the heart, lungs, liver, kidneys,

spleen, gonad, stomach, small intestine, caecum, colon, together

with subcutaneous fat, epididymal fat, mesenteric fat, epigonadal

fat were extracted and weighed (61 mg). The organs and carcass

with fat pads were then dried in an oven at 60uC to constant

weight. Body fat extraction from dry grinded carcass was

performed with a Soxhlet Fat Extraction System (Avanti 2050;

FOSS, Hogänäs, Sweden) with petroleum ether.

Serum assays
Serum leptin levels were determined by radioimmunoassay

(RIA) with the 125I Multi-species Kit (Cat. No. XL-85K, Linco

Research Inc.), which had been validated in Brandt’s voles

[26,27]. The lowest leptin level detected by this assay when using a

100 ml sample was 1.0 ng/ml. The intra- and inter-assay

coefficients of variation were 3.6% and 8.7%, respectively.

Serum T3 and T4 were quantified using RIA kits (Institute of

Chinese Atomic Energy, Beijing) according to the instructions and

we have validated this kit for use in Brandt’s voles previously [26].

Intra- and inter-assay coefficients of variation were 2.4% and 8.8%

for the T3, and 4.3% and 7.6% for T4, respectively.

Measurement of UCP1, COX4 and SIRT1 content in iBAT
Total protein content in iBAT was determined by Folin phenol

method with bovine serum albumin as standard [28]. Uncoupling

protein 1 (UCP1) and cytochrome c oxidase 4 (COX4), and

SIRT1 content in iBAT was measured by Western blotting

[27,29]. Total iBAT protein (90 mg/lane) was separated in a

discontinuous SDS-polyacylamide gel (12.5% running gel and 3%

stacking gel for UCP1, COX4 and b-tubulin; 8% running gel and

3% stacking gel for SIRT1 and b-tubulin) and transferred onto

PVDF membranes (Hybond-P; Amersham, Buckinghamshire,

UK). After transfer, membranes were stained with Ponceau S to

confirm equal loading and transfer. Membrane were then blocked

in 5% milk in Tris-buffered saline-Tween for 1 h at room

temperature and probed with the indicated antibodies overnight at

4uC. Following incubation with the appropriate horseradish

peroxidase-conjugated secondary antibody for 1 h, the bands

were visualized by chemiluminescence (Amersham Life Sciences,

Little Chalfont, UK). Densitometry was performed using Quantity

One (version 4.4.0) software (BioRad, Hercules, CA).

Primary antibodies used were as follows: rabbit anti-UCP1

(ab10983, Abcam, Cambridge, MA, USA), diluted 1:10,000;

mouse anti-COX4 (sc-58348, Santa Cruz Biotechnology, Inc.,

CA, USA), diluted 1:1,000; rabbit anti-SIRT1 (H-300) (sc-15404,

Santa Cruz Biotechnology, Inc.), diluted 1:1,000; mouse anti-b-

tubulin (E7, DSHB, Iowa City, Iowa, USA), diluted 1:5000. The

secondary antibodies of goat anti-rabbit IgG (1:5,000; ZSGB-BIO

Co., Beijing, CHN) and goat anti-mouse IgG (1:5,000; ZSGB-BIO

Co., Beijing, CHN) were used.

Real-time PCR for measurement of hypothalamic OB-Rb,
SOCS3, NPY, AgRP, POMC and CART mRNA expression

Total RNA was isolated using Trizol (Cat. No. 15596-026,

Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

instructions. After treating with DNase I (Cat. No. M6101,

Promega, USA), RNA was reverse transcribed (4 mg total RNA)

using a first-strand cDNA synthesis kit (Cat. No. 1622, Fermentas,

Vilnius, the Republic of Lithuania).

Real time PCR reactions were performed in a 12.5 mL total

volume comprised of 6.25 mL 26SYBR Premix EX TaqTMmaster

mix, 1 mL cDNA templates and 0.2 mmoL/L primers using the

SYBR Green I qPCR kit (Cat. No. DRR041D, TaKaRa, Shiga,

Japan) in the Mx3005P quantitative PCR system (Stratagene, La

Jolla, CA, USA). Thermal cycling conditions were: 95uC for 10 s,

40 cycles of 95uC for 5 s, 60uC for 20 s, and 72uC for 20 s.

Samples were run in duplicate and all runs were accompanied by

the housekeeping gene b-actin. Species-specific primers were

designed (Table 1) and verified effectively in Brandt’s voles [30].

Standard curves were constructed for each gene via serial dilutions

of cDNA (1 to 26-fold dilutions). Analysis of standard curves

between target genes and b-actin showed that they had similar

amplification efficiency, which ensures the validity of the

comparative quantity method. The data derived from Mx3005P

quantitative software were expressed as relative amounts, which

were calculated by normalizing the amount of target gene to b-

actin mRNA levels. No amplification was detected in absence of

template or in the no RT control.

Statistical analysis
Data were analyzed using SPSS 13.0 (SPSS, Chicago, IL, USA).

Prior to all statistical analyses, data were examined for assumptions

of normality of variance using the Kolmogorov–Smirnov tests.

Non-normally distributed data underwent logarithm or arcsine

square root transformation. The temporal changes in body mass

and food intake were assessed by repeated-measures ANOVA,

followed by LSD post-hoc test. Group differences in body mass

and food intake were assessed by two-way ANOVA and

ANCOVA respectively. Differences among groups in serum

leptin, T3, T4 levels, the mRNA levels of BAT UCP1,

hypothalamic Ob-Rb, SOCS3, NPY, AgRP, POMC and CART

in adult were assessed by two-way ANOVA, followed by Tukey

post-hoc test. Differences in body compositions were analyzed by

two-way ANCOVA with body mass as a covariate. At weaning,

the differences in UCP1 and hypothalamic gene expression were

assessed by independent samples t-test. Pearson correlation

analyses were used to detect possible associations of serum leptin

levels with body fat mass and food intake. Data are expressed as

mean6SE. Values of P,0.05 were considered statistically

significant.

Results

Body mass
At birth, there was no difference in body mass per pup between

large and small litters (P.0.05; Fig. 1A insert). At weaning, the

offspring from small litters were 29% heavier than pups from large

litters (F1, 42 = 79.420, P,0.001) (Fig. 1A). At weeks 13, the

offspring from small litters were 11% heavier than offspring from

large litters (F1, 42 = 4.103, P,0.05), and the males were 20%

heavier than females (F1, 42 = 12.023, P,0.001). After adjusting

for the effect of body mass at weaning, body mass was no longer

affected by litter size (P.0.05), but remained significantly

influenced by gender (P,0.01) until the end of the experiment.

During the course of experiment, all voles showed a continuous

growth until weeks 10 or 11, after which, body mass stabilized

(Repeated measure, LM, F10, 110 = 59.482, P,0.001; SM, F10, 100

= 62.200, P,0.001; LF, F10, 120 = 120.061, P,0.001; SF, F10, 90

= 69.369, P,0.001) (Fig. 1A).

Food intake
Food intake was analyzed by ANCOVA with body mass as a

covariate. At the age of 4 weeks, food intake was not affected by

either litter size (F1, 41 = 2.682, P.0.05), gender (F1, 41 = 1.115,

P.0.05), or their interaction (F1, 41 = 2.648, P.0.05) (Fig. 1B).

Litter Size-Induced Hypothalamic Gene Expression
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During weeks 6 and 8, voles from small litters ate more food than

those from large litters (P.0.05). However, there were no effects

of litter size or gender on food intake between weeks 10-13

(P.0.05).

RMR and NST
The females had markedly higher RMR (F1, 41 = 12.503,

P,0.001; Fig. 1C) and 15% higher NST (F1, 41 = 3.602,

P = 0.065; Fig. 1D) than males. No differences were found in

RMR (F1, 41 = 4.605, P.0.05) or NST (F1, 41 = 0.004, P.0.05)

between litter sizes. Males from small litters had lower RMR

compared to any other group (F3, 41 = 5.433, P,0.01), but there

was no significant difference in NST among groups (F3, 41 = 1.253,

P.0.05).

Serum leptin, T3 and T4 levels
At weaning, there was no difference in serum leptin between

litters (F1, 39 = 2.448, P.0.05) or gender (F1, 39 = 0.001, P.0.05)

(Fig. 2A). Adult female voles had higher serum leptin levels

compared to males (ANCOVA, F1, 39 = 5.340, P,0.05; Fig. 2B),

but serum leptin in adulthood was not influenced by litter size

(ANCOVA, F1, 39 = 0.171, P.0.05) (Fig. 2B). In adulthood,

serum leptin was correlated positively with body mass (r = 0.340,

P,0.05; Fig. 2C), but not with food intake (r = 0.146, P.0.05;

Fig. 2D).

We did not measure serum T3 and T4 in the offspring at

weaning because of small volume of serum. The adult offspring

from small litters had lower T3 (F1, 35 = 4.367, P,0.05; Fig. 2E)

and T4 levels (F1, 35 = 7.010, P,0.05; Fig. 2F) than from large, but

the ratio of T3/T4 didn’t differ between different litters (F1, 35

= 1.745, P.0.05; Fig. 2G). There was no difference between males

and females for either T3 (F1, 35 = 2.466, P.0.05), T4 (F1, 35

= 1.042, P.0.05) or the ratio of T3/T4 (F1, 35 = 1.274, P.0.05).

Biomarkers for thermogenesis in iBAT
At weaning (Fig. 3A–C), there was no difference in UCP1

(t = 20.060, df = 14, P.0.05; Fig. 3A), COX4 (t = 20.824,

df = 14, P.0.05; Fig. 3B), and SIRT1 (t = 20.286, df = 14,

P.0.05; Fig. 3C) protein content in iBAT between large and

small litters. In adulthood (Fig. 3D–F), UCP1 and COX4 content

remained unaffected by litter size (P.0.05), but females had 50%

higher UCP1 (F1, 28 = 3.722, P = 0.064), and 26% higher COX4

content (F1, 28 = 2.924, P = 0.098) than males, which was in

accordance with higher RMR and NST in females. Further,

SIRT1 content in iBAT was influenced by the interaction of litter

size and gender (F1, 28 = 4.572, P,0.05).

Hypothalamic neuropeptide mRNA expression
There was no difference in hypothalamic OB-Rb, SOCS3,

NPY, AgRP, POMC and CART mRNA expression between large

and small litters at weaning (Table 2).

Likewise, in adults, OB-Rb mRNA expression in the hypothal-

amus was not affected by either litter size (F1, 22 = 3.600, P.0.05)

or gender (F1, 22 = 0.560, P.0.05) (Fig. 4A). In contrast, the

hypothalamic SOCS3 mRNA expression was greater in offspring

from small litters, as compared to those from large litters (F1, 22

= 5.800, P,0.05) (Fig. 4B).

The orexigenic NPY mRNA level in small litters was 86%

higher than in large litters, although the difference was not

statistically significant (F1, 22 = 2.572, P.0.05 (Fig. 4C). Off-

spring from small litters had greater AgRP mRNA expression

than did those from large litters (F1, 22 = 4.696, P,0.05),

but there was no gender difference (F1, 22 = 1.700, P.0.05)

(Fig. 4D) nor was there difference in anorexigenic neuropeptide

(POMC and CART) expression by litter size or gender (P.0.05)

(Fig. 4E, F).

Body compositions
The data for organ mass are presented in Table 3. The offspring

from small litters had a larger brain than those from large litters

(F1, 39 = 14.592, P,0.001). In addition, BAT mass (F1, 39 = 12.016,

P = 0.001) and dry stomach mass (F1, 39 = 5.131, P,0.05) were

higher in females as compared to males. However, there were no

differences observed in other organs between either litter sizes or

gender.

As compared to males, fhe females had more retroperitoneal

(F1, 39 = 8.762, P,0.01), mesenteric (F1, 39 = 14.071, P = 0.001),

perinephric (F1, 39 = 9.382, P,0.01) and total fat mass (F1, 39

= 10.347, P,0.01), but less epigonadal fat (F1, 39 = 6.186, P,0.01;

Table 4). Offspring from small litters had slightly greater

retroperitoneal fat mass than those from large litters (F1, 39

= 3.459, P = 0.070), and other fat pads and total fat mass did not

vary with litter size (Table 4). Interestingly, offspring from small

litters had higher carcass mass compared with those from large

litters (wet mass, F1, 39 = 4.242, P,0.05; dry mass, F1, 39 = 3.703,

P = 0.06), while females has less dry carcass mass than males (F1, 39

= 6.116, P,0.05; Table 4).

Discussion

In this study, we used a wild rodent model to examine the

consequences of postnatal litter size on offspring growth and

adult metabolic phenotype, and to investigate the central

mechanisms contributing to the long-term effect of litter size

Table 1. Gene-specific primers used for Real-Time PCR.

Primers Forward primer (59-39) Backward primer (59-39) Product size (bp)

OB-Rb CTGAGAGGGGTTCTCTTTGT TCTTGCTCATCCTCCGTTTC 147

SOCS3 AGAAGATTCCGCTGGTACTG GCTGGGTCACTTTCTCATAGG 114

NPY TCGCTCTGTCCCTGCTCGTGTG TCTCTTGCCGTATCTCTGCCTGGTG 116

AgRP GCCCTGTTCCCAGAGTTCCC ATCTAGGACCTCCGCCAAAGC 114

POMC AAGATGGGCTCTACGGGATG GTTCTTGACGATGGCGTTCT 134

CART TGGAACCTGGCTTTAGCAAC TACTCTGCACATGCCGACAC 145

b-actin TTGTGCGTGACATCAAAGAG ATGCCAGAAGATTCCATACC 200

Ob-Rb, leptin receptor; SOCS3, suppressor of cytokine signaling 3; NPY, neuropeptide Y; AgRP, agouti-related peptide; POMC, pro-opiomelanocortin; CART; cocaine- and
amphetamine-regulated transcript.
doi:10.1371/journal.pone.0019913.t001
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on metabolic fitness. As observed in several other rodent

species [12,31,32], voles from small litters showed more rapid

growth per pup during postnatal development than those from

large litters. We also found that increases in hypothalamic

SOCS3 and AgRP expression were associated with higher

food intake and body mass in voles raised in small compared to

large litters. These findings demonstrate that litter size may

program adult metabolic phenotype by permanently influen-

cing central leptin sensitivity and hypothalamic neuropeptide

expression.

Metabolic phenotype associated with different litter sizes
Consistent with studies in rats with natural [33] or manipulated

litter sizes [34,35] or maternal overnutrition [36,37], Brandt’s vole

offspring from small litters were heavier at weaning, and remained

heavier than those from large litters until the end of the

experiment at 13 weeks of age, but there were no differences in

peripheral and visceral fat pads between litter sizes. After adjusting

for the effect of body mass at weaning, there was no difference

observed in post-weaning body mass between different litter sizes.

This suggests that the difference in adult body mass is totally

Figure 1. Body mass (A), food intake (B), RMR (C) and NST (D) throughout the experiment. The insert in panel 1A shows the pup mass
during lactation (** P,0.01). Values are presented as mean6SE. Group differences are expressed as P,0.05, and bars with different letters differed
significantly from each other. RMR, resting metabolic rate; NST, nonshivering thermogenesis.
doi:10.1371/journal.pone.0019913.g001
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determined by pre-weaning litter size. In addition, some studies

suggest that maternal obesity interacts with post-weaning high-fat-

diet consumption to cause greater adiposity [37]. However, the

consequences resulting from the nutritional environment during

lactation differ from the intrauterine environment. For example,

intrauterine growth restriction may result in offspring catch-up

growth during development and program obesity in adult [10,38].

However, if malnutrition was prolonged throughout lactation,

adult body weight can be permanently reduced [10]. These

findings support the ‘‘thrifty phenotype hypothesis’’ generated by

Hales and Barker [39,40].

Although we did not measure locomotion, we found that

higher energy intake contributed to the heavier body mass in the

vole offspring from small litters. In a wide range of mammals,

litter size is correlated negatively with milk intake and growth

per pup during lactation [11,15]. Even during post-weaning

development, offspring from small litters still ate more compared

to those from large litters, which is similar to the study in litter

size-manipulated rats [34]. In the present study, we did not find

any differences in protein levels of UCP1 (a molecular marker of

BAT thermogenesis), COX4 (reflecting mitochondrial oxidative

capacities) [41] and SIRT1 (evolutionarily conserved NAD+
dependent deacetylase regulating transcriptional networks in

various critical metabolic processes) [42] in BAT, and in RMR

and NST of the whole animal level between litter sizes.

Moreover, thyroid hormone, especially the ratio of serum T3/

T4, which is an important determinant of energy expenditure

[43,44], was not affected by litter size. Therefore, these results

suggest that natural litter size did not induce long-term changes

in energy expenditure in the voles. In contrast, when rats are

raised in reduced nursing litter size, they demonstrated a

reduction in cold-induced adaptive thermogenesis compared to

controls [45]. The diverse results may attribute to the different

models of early postnatal nutritional environment. Dams with

manipulated litter sizes would have different energy output from

those with the same natural litter size, thus the extent of

malnutrition or overnutrition of the offspring in these models are

different.

The similar energy intake, but higher RMR and NST

associated with higher BAT mass, more UCP1 and COX4

content in BAT, may contribute to the lower body mass in the

females as compared with the male voles. However, there was no

gender difference in metabolic phenotype affected by litter size.

This is in agreement with rat studies with different litter sizes or

maternal nutrition [33,36]. Thus, the effect of litter size on an

animal’s phenotype in adulthood is independent of gender.

Figure 3. UCP1, COX4 and SIRT1 content in BAT at weaning (A–C) and in adulthood (D–F) in male and female voles from large and
small litters. All these biomarkers in BAT were not affected by litter size, and the females showed more mRNA expression of UCP1 and COX4 in BAT
than males. Values are presented as mean6SE. UCP1, uncoupling protein 1; COX4, cytochrome c oxidase 4; a.u., arbitrary unit.
doi:10.1371/journal.pone.0019913.g003

Figure 2. Serum leptin (A, weaning; B, adult), T3 (tri-iodothyronine, E) and T4 (thyroxine, F) levels in male and female voles from
large and small litters. The adult serum leptin was correlated positively with body mass (C), but not with food intake (D). Values are presented as
mean6SE. Group differences are expressed as P,0.05, and bars with different letters differed significantly from each other.
doi:10.1371/journal.pone.0019913.g002
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Central leptin sensitivity and hypothalamic neuropeptide
expression programmed by litter size

In the present study, there was no difference in serum leptin

levels at weaning or in adulthood between different litter sizes.

This was also found in litter size-manipulated rats [46], whereas

the rat offspring from undernutritioned dams throughout

pregnancy showed hyperleptinemia in adulthood [47]. Similarly,

this same phenomenon is observed in human studies with

hyperleptinemia in infants from gestational undernutritioned or

diabetic mothers [48]. Further, intracerebroventricular leptin

administration to neonatal rats altered adult female phenotypes,

including a reduction in body mass and food intake [49]. These

studies suggest that perinatal leptin plays the critical role in

programming adult metabolic phenotypes although serum leptin

showed different responses to early nutritional environments.

Despite the similar levels in serum leptin and hypothalamic OB-

Rb mRNA, we found that hypothalamic SOCS3 expression

increased in the adult offspring from small litters, indicating

central leptin resistance. Some recent studies in postnatal overfed

rats and mice reported higher SOCS3 expression and lower

STAT3 activity in adulthood [46,50], similar to our present result

in voles. Additionally, our findings are supported by another study

which showed that the offspring from enlarged litter sizes had

enhanced leptin sensitivity and were protected from obesity [35].

Indeed, leptin resistance was functionally verified by the absence of

a decrease in food intake and body mass in response to leptin

injection as well as by a lower expression of the hypothalamic

leptin receptor and an increased expression of SOCS3 in neonatal

leptin-treated [51,52,53] and maternal leptin-treated rats [54].

Interestingly, the rat offspring of intrauterine growth restriction

also demonstrated leptin resistance, indicated by suppressed leptin-

induced STAT phosphorylation [2]. These findings using diverse

animal models imply the universality of both prenatal undernu-

Figure 4. Hypothalamic OB-Rb (A), SOCS3 (B), NPY (C), AgRP (D), POMC (E) and CART (F) mRNA expression in adult male and female
voles from large and small litters. Values are presented as mean6SE. Group differences are expressed as P,0.05, and bars with different letters
differed significantly from each other. Ob-Rb, leptin receptor; SOCS3, suppressor of cytokine signaling 3; NPY, neuropeptide Y; AgRP, agouti-related
peptide; POMC, pro-opiomelanocortin; CART; cocaine- and amphetamine-regulated transcript.
doi:10.1371/journal.pone.0019913.g004

Table 2. Hypothalamic leptin signaling and neuropeptide
expression between large and small litters at weaning.

Large litter size
(n = 10)

Small litter size
(n = 9) P

OB-Rb/b-actin 1.00060.093 1.19160.194 ns

SOCS3/b-actin 1.00060.144 1.30860.109 ns

NPY/b-actin 1.00060.124 1.18160.234 ns

AgRP/b-actin 1.00060.166 1.16260.151 ns

POMC/b-actin 1.00060.163 1.14660.151 ns

CART/b-actin 1.00060.196 1.38960.237 ns

Data are presented as means6SE. Values were analyzed by independent
samples t-test, and P,0.05 was considered statistically significant. Ob-Rb, leptin
receptor; SOCS3, suppressor of cytokine signaling 3; NPY, neuropeptide Y;
AgRP, agouti-related peptide; POMC, pro-opiomelanocortin; CART; cocaine- and
amphetamine-regulated transcript.
doi:10.1371/journal.pone.0019913.t002
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trition and postnatal overnutrition resulting in impaired leptin

signaling pathway and may explain the persistent hyperphagia and

overweight observed in these models.

We further analyzed mRNA expression of hypothalamic

neuropeptides related to orexigenic and anorexigenic pathways

at weaning and in adulthood. We found increased mRNA

expression of orexigenic AgRP and NPY (especially AgRP), but

no changes in anorexigenic POMC and CART in the vole

offspring from small litters in adulthood. Hypothalamic orexigenic

NPY and AgRP mRNA expression also increased in high-fat fed

rats from reduced litter size [55]. Moreover, the findings were

partly supported by studies in maternal high-fat offspring which

showed increased NPY immunoreactivity in arcuate nucleus at

day 1 [56] or NPY Y1 receptor mRNA in the periventricular

nucleus of the hypothalamus in adulthood [37]. Other orexigenic

peptides, such as galanin, enkephalin and dynorphin in the

paraventricular nucleus and orexin and melanin-concentrating

hormone in the lateral hypothalamus, were found to increase in

the offspring of rat dams on a high-fat diet during pregnancy [57].

These rats also exhibited an increase in neurogenesis in the

hypothalamus, ultimately with a great proportion of new neurons

expressed orexigenic peptides. All these findings indicate that

hypothalamic neuropeptide expression may be programmed by

nutritional environment induced by litter size during a critical

window of postnatal development.

Taken together, voles from small litters showed greater food

intake and body mass than voles from large litters. Litter size did

not affect adult serum leptin levels, but did have long-term effects

on hypothalamic leptin sensitivity. In addition, increased AgRP

expression was associated with hyperphagia in the offspring from

small litters. These findings provide further evidence that litter size

can permanently influence leptin sensitivity and hypothalamic

Table 4. Fat pads and carcass mass in adult male and female offspring from large and small litters.

Parameters Male Female Statistical summary

Large (n = 12) Small (n = 9) Large (n = 13) Small (n = 10) Gender Size Gender6Size

Retroperitoneal fat (g) 0.25960.061 0.23960.096 0.27560.051 0.28460.062 ,0.01 0.070 ns

Mesenteric fat (g) 0.20760.016 0.20360.015 0.19960.010 0.23360.020 0.001 ns ns

Perinephric fat (g) 0.10160.014 0.11060.018 0.12160.017 0.12360.007 ,0.01 ns ns

Epigonadal fat (g) 0.52360.063ab 0.48360.089a 0.19660.029c 0.27160.062bc ,0.05 ns ns

Total fat mass (g) 5.40060.737ab 4.43060.968b 5.02660.522a 5.96460.709a ,0.01 0.092 ns

Wet carcass mass (g) 30.27161.827a 32.71762.078a 24.28061.172b 27.25261.308ab ns ,0.05 ns

Dry carcass mass (g) 12.72861.021ab 12.59561.227a 10.82360.694b 12.02660.471ab ,0.05 0.06 ns

Data are presented as means6SE. Values for a specific parameter that share different superscripts are significantly different at P,0.05, determined by a two-way
ANCOVA with body mass as a covariate.
doi:10.1371/journal.pone.0019913.t004

Table 3. Dry mass of organs but brain and BAT (wet mass) in adult male and female offspring from large and small litters.

Parameters Male Female Statistical summary

(g) Large (n = 12) Small (n = 9) Large (n = 13) Small (n = 10) Gender Size Gender6Size

Brain (wet) 0.54060.015b 0.58860.010ab 0.52760.01ab 0.59960.013a ns ,0.001 ns

BAT (wet) 0.21360.028 0.23460.017 0.23360.018 0.25760.013 0.001 ns ns

Heart 0.04660.003 0.05060.007 0.04160.002 0.04560.003 ns ns ns

Lungs 0.07760.013 0.07260.005 0.07760.013 0.07060.006 ns ns ns

Liver 0.54160.119 0.56460.062 0.47760.033 0.45960.036 ns ns ns

Kidney 0.11560.007 0.11760.009 0.08960.003 0.10260.005 ns ns ns

Spleen 0.00860.001 0.00860.001 0.00760.001 0.00860.001 ns ns ns

Uterus 0.03560.005 0.03060.004 - ns -

Testis 0.12860.014 0.12160.016 - ns -

Epididymis 0.02360.004 0.02360.003 - ns -

Seminal vesicle 0.12160.028 0.10260.019 - ns -

Stomach 0.05760.002 0.06560.004 0.05660.002 0.06660.004 ,0.05 0.078 ns

Small intestine 0.10460.012 0.07960.007 0.06960.004 0.07360.009 ns ns ns

Cecum 0.07860.008 0.06760.004 0.06860.007 0.06760.007 ns ns ns

Colon 0.06160.003 0.08760.025 0.05960.002 0.06760.005 ns ns ns

Total gut mass 0.30160.020 0.29960.033 0.25360.010 0.27260.024 ns ns ns

Data are presented as means6SE. Values for a specific parameter that share different superscripts are significantly different at P,0.05, determined by a two-way
ANCOVA with body mass as a covariate.
doi:10.1371/journal.pone.0019913.t003
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neuropeptides, resulting in bonafide changes in the adult

metabolic phenotype. From a physiological point of view, this

study also highlights the importance of litter size in evolution, and

suggests that animals raised in natural litter sizes would not be

susceptible to obesity unless subjected to artificial manipulation

during the early postnatal period.
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