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Abstract

There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear
objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images
produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed
and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in
these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis
procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to
look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or
second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic
spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete
spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the
arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML
nuclear bodies in mammalian fibroblast cells.
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Received October 16, 2011; Accepted April 16, 2012; Published May 16, 2012

Copyright: � 2012 Weston et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The work was supported by Biotechnology and Biological Sciences Research Council, grant number BB/H013423/1, http://www.bbsrc.ac.uk/. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: david.weston@imperial.ac.uk

Introduction

The eukaryotic cell nucleus is a membrane-bound organelle that

performs vital functions in regulating, translating and replicating

the cell’s genome. The nucleus contains distinct structures

comprising assemblies of macromolecular complexes referred to

as nuclear compartments [1]. Examples of such compartments

include splicing speckles, chromosome territories, nucleoli and

PML nuclear bodies [2]. Currently the most popular approach to

acquiring images of the internal structure of the nucleus is to use

confocal laser scanning microscopy (CSLM) [3], see Materials and

Methods for more detail. Examples of CSLM acquired images are

shown in Figure 1 which displays a number of imaged cell nuclei

in 2D projection.

There is considerable interest in determining to what degree the

spatial organization of these compartments affects the function of

the nucleus, [4,5] and consequently such behavior as cell division

and cell growth. A typical approach for exploring the spatial

preference of compartments involves an exploratory spatial

hypothesis test to determine if the observed point pattern is

consistent with the simplest spatial model: complete spatial

randomness (CSR), that is, a homogeneous spatial Poisson process.

Biologically, this is not an interesting model – corresponding to a

compartment that has no spatial preference and no self-

interactions. While this is biologically implausible, it is a good

starting point for formal analysis, as will be discussed later. The

concern of this paper is to demonstrate that standard data analysis

approaches for exploring spatial preference, particularly for

compartments which manifest as few objects per nucleus, are

prone to overlook interesting preferences.

To demonstrate this, we have generated synthetic nuclear

images, exploring the diversity of nuclear shape and using specific

spatial processes. We have investigated the statistical power of a

number of hypothesis tests procedures against specific alternatives

to CSR. This synthetic data is used to demonstrate that looking at

replicate nuclear images one at a time can lead to equivocal

results. We also show that simple procedures for combining

information across images and constructing a test statistic are

potentially unreliable. Our results add a cautionary note to the

routine application of quantitative spatial analysis methods, which

have the potential to miss interesting spatial preferences and

relationships in CSLM images.

Problems Associated with Spatial Point Pattern Analysis
In this section, we provide an overview of quantitative reasoning

about nuclear architecture and the difficulties that can arise. This

paper is primarily concerned with the inadequacy of simple

procedures to reveal complicated spatial preferences in replicate

nuclear compartment point patterns. Thus it is assumed that the

data acquisition and pre-processing steps mentioned above have

been successfully applied, yielding a collection of processed images.

In this case, we presume the processing has provided 2 things:

First, a representation of the shape of the nucleus boundary;

second, the 3D spatial coordinates (the point pattern) of the target

compartment. Note that the compartments themselves also have
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extent meaning that they will be represented by more than one

pixel location within the image stack. We are concerned with

compartments that can reasonably be represented as a spatial

point pattern, which means that, for example, the centroids of the

compartment of interest yield the point locations.

Given such processed data, the main problem is making

inferential statements given a collection of point patterns derived

from replicate nuclei images, with the objective of identifying

interesting and potentially informative spatial arrangements. It is

common in the literature [6] to perform one or more hypothesis

tests under the null hypothesis of CSR. CSR corresponds to a

spatial Poisson process [4], the simplest and most trivial case in

which the points are placed independently, and exhibit the same

average number of points in any fixed sized region within the

nucleus. Rejecting the hypothesis of CSR is evidence that the

generating process is more complicated and hence potentially

interesting. Diggle argues that rejecting the hypothesis of CSR

should be used as a trigger for more formal analysis [4]. It is

however frequent in the nuclear biology literature to stop at this

point, simply denoting these non-CSR patterns as ‘‘non-random’’

[7,8]. This is an unfortunate misnomer, incorrectly suggesting that

the process is non-stochastic, when the evidence only supports that

it is a non-CSR stochastic process.

A common approach is to analyze the spatial point pattern

derived from each nucleus in isolation from one other, [9]. This

will typically result in equivocal conclusions, with a certain

proportion of nuclei whose spatial arrangements successfully reject

the null. It is difficult to interpret this result in order to make a

quantitative statement concerning whether a non-CSR spatial

arrangement exists within this collection of nuclei.

An alternative approach is to artificially ‘‘inflate’’ the effective

number of points in the pattern. One way to achieve this is by

combining statistics gathered from the replicate data prior to

performing the hypothesis test. There can however be

considerable variation between nuclei sizes and shapes and the

number of compartments of interest contained within them. To

make the statistics extracted from multiple nuclei commensurate

some appropriate transformation is required. In [10] statistics

based on distances are used, for each nucleus the distances are

normalized using the largest inter-point distance within the

nucleus. Later, it is shown that such a simple normalization

does not properly respect the heterogeneity of nuclear shape.

In [11], data are transformed to the same coordinate system,

using a manually located landmark and manually assessed

orientation.

Some choice of alternatives to the null hypothesis of CSR

includes processes for which the point locations are closer together

than expected. Simple patterns of clustering that are biologically

interesting include points being preferentially located near the

nuclear boundary, points clustering near the center and points

clustering around the poles of the nucleus. An alternative to

clustering are patterns where the points are further away from

each other than expected under CSR. Finally, spatial relationships

between different compartment types, for example a preference for

one compartment type to be close to another, is another

potentially interesting spatial arrangement.

For compartments that manifest as small number of objects per

cell the statistical power of such tests against these specific

alternatives is likely to be low. Indeed this is explicitly illustrated in

our results section.

Characterizing Nuclear Compartment Locations
In the previous section generic difficulties related to point

pattern analysis to nuclear architecture were described. This

section considers some specific statistical procedures. Our objec-

tive is not to thoroughly review all approaches but to describe

popular modern procedures.

Since the configuration of compartments in any individual

nucleus is different, there is a need to appeal to quantitative

procedures to make formal statements about the character of

the configuration. As noted above, there is a preference in the

literature to refer to a pattern as random, or non-random.

While this is an imprecise characterization, such a determina-

tion requires a statistical test procedure. For compartments that

can reasonably be treated as a point pattern, a realization of a

stochastic point process [4], there are a number of possible

approaches. By far the most popular approach deployed in the

literature uses exploratory hypothesis testing, based on distance

relationships observed among the points [6]. The tests proceed

under the null hypothesis of CSR. The simplest tests are based

on so-called point pattern summaries, a single number represent-

ing the inter-point distances. More refined approaches use so-

called point pattern characteristics, functions of inter-point

distances. The empty space function, or F-function, F (r), is

based purely on distances between points and consequently is

invariant to rotation and translation – implicitly assuming that

the generating process is stationary and isotropic. In our case,

this function is defined over a region R that contains the point

pattern in question. F(r) is a cumulative distribution function

and is equal to the proportion of the region R that lies within a

distance r of any point in the point pattern. There are a

number of alternative distance based functions, see for example

[12]. The F-function appears to have better discriminatory

power for spatial organization [13]. For simplicity of exposition,

the F-function is the preferred choice in this paper.

Figure 1. 2D projections of MRC5 nuclei imaged using CSLM. Objects of interest have been stained using immunofluorescence. The PML NBs
are stained green, the red staining are nucleoli and DNA on the boundary of the nucleus are stained blue.
doi:10.1371/journal.pone.0036841.g001
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Strategies for Combining Replicates
Reporting the results of individual tests, such as those described

above, for replicate image data is likely to lead to equivocal results,

particularly for compartments that have a low expected number of

occurrences. Some nuclei will reject the null hypothesis while

others will fail to so do. This raises the question of how to reason

about the population of nucleus images given such results. One

approach is to treat the replicate images as a population, and

aggregate information across different cells. An example of

aggregating imaging information across cells is described in [6].

Since the F-function is not scale invariant, a simple approach to

normalize the F-function is to divide inter-point distances by the

maximum length obtainable within the cell. The domain for each

cumulative F-function curve will thus be from zero to one

inclusive. The population F-function curve is then produced by

averaging the normalized F-functions from each nucleus at each

distance r.

One recent approach that can extend the analysis to the

population level is described in [13], where a quantity denoted the

spatial distribution index (SDI) is defined. For a population of point

pattern realizations drawn from a CSR process, the corresponding

SDI values have the property that they are distributed uniformly

over 0,1½ �. The full details for calculating SDI can be found in the

Materials and Methods section.

There are two approaches to performing a Monte Carlo

significance test based on summary functions such as F(r), these are

often denoted envelope and Goodness-of-fit [14]. For our experiments

we examine both approaches, the F-function Test (both individual

and aggregate-distance) are examples of the former and SDI is an

example of the latter. Briefly, for Goodness-of-fit tests, a single

number is used to characterize the discrepancy from a reference

summary function whereas for envelope based tests discrepancies

across a range of values of r are examined. Envelope based tests

are considered more problematic due to difficulties in determining

the significance level [14].

PML Compartments
To illustrate the character of the problem outlined above, we

will use as an example the spatial analysis of the Promyelocytic

Leukemia nuclear body (PML NBs) compartment [9,15,16]. PML

NBs have been linked to a number of roles including response to

DNA damage and apoptosis, for a review see [17]. There have

been several studies that suggest associations with other compart-

ments [9]. Such associations are used to imply functional

relationships and involvement in nuclear pathways. However,

the diverse roles of PML bodies are still poorly understood [18].

In mammalian cells, the PML compartment manifests as a

number of small (typically less than 1 micron) nuclear bodies (NB).

These are PML protein aggregates containing a number of PML

isoforms and a collection of other resident proteins including

SUMO, sp100 and Daxx, [9]. Figure 1 displays the 2D projection

of three mammalian fibroblast cells, immunoflourescently labeled,

with PML bodies in the green channel. The simplest question one

may ask in relation to the spatial positioning of the PML NBs in

these nuclei is determining whether they are consistent with a CSR

process, i.e. whether the PML NBs placed independently and such

that the expected number of bodies is the same everywhere. As an

aside, it is worth noting a general point regarding the simple

inspection, or quantitative analysis, of 2D projection data. Such

inspection ignores the true 3D structure and has the potential to

suggest relationships that are merely artifacts of projection.

However the thinness of cell nuclei from many cell lines mitigates

this issue.

Results

Dataset Description
The following experiments are designed to highlight difficulties

in applying spatial point pattern analysis tools to determine

whether there is interesting spatial preference, especially in the

case of patterns generated by compartments that manifest few

objects per nucleus. Both a real and a synthetic dataset are

examined. The real data, described below, is an example of a point

pattern consisting of a small number of objects, namely PML NBs,

described above. Whether the objects follow CSR and if not what

alternative spatial point process adequately describes the spatial

arrangement is still a subject of active research. The motivation for

using synthetic image data is to have access to spatial point

patterns that follow known point processes. This ground truth is

used to measure the performance of the analysis methods

described above. The following section describes the data in

detail, where we also include an analysis of the extent of

heterogeneity in the nuclear boundaries. This is especially

pertinent when an aggregation method is used. For the synthetic

data, spatial point patterns are generated using specific alternatives

to CSR.

MRC5 data. The real data consists of 50 images of nuclei

from MRC5 cells extracted from an asynchronous cell culture,

examples are shown in Figure 2. The data is processed to

extract the locations of nucleus boundary and PML bodies,

using the methods in [2]. For a specific nucleus, the left image

in Figure 2 shows the extracted boundary and the PML

compartments viewed projected onto the xy-plane. The PML

Figure 2. 2-D Illustration of the extraction of PML locations from image data. A) Original raw image B) The boundary of the nucleus
envelope and the PML bodies are segmented from an image. C) Each PML body is replaced by its center of gravity.
doi:10.1371/journal.pone.0036841.g002
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compartments have an extent, so to reduce the PML

compartments down to a point pattern; we replace the extracted

PML compartments with their respective centers, shown in the

right-hand side image in Figure 2.

The number of PML compartments extracted from each image

varied from 5 to 19. In total, there are 482 NBs in the collection of

50 images.

Construction of synthetic data. We propose to investigate

point patterns contained within three dimensional boundaries that

have a broadly cell-like shape. We note that the boundary of the

nuclei shown in Figure 1 exhibit considerable variability. Our

intention is not to make plausible synthetic boundaries for the

nucleus rather we wish to show how large differences in boundary

shape can affect the outcome of any analysis when simple

aggregation procedures are used. More sophisticated models for

generating boundaries can be found in [19,20]. The boundaries

used are based on combining four ellipsoids in a piecewise fashion

(see Materials and Methods).

Two collections of shapes are investigated. The first collection is

shown in Figure 3, where the top row are a sphere and a more

ellipsoidal shape, on the bottom row are the same shapes but with

their underside flattened. Fifty instances of each of these shapes are

generated by perturbing the parameters specifying each shape, the

details of the scale of the perturbation can be found in Materials

and Methods. The second collection differs only in their height.

They are thinner by a factor of 5 and have a commensurate height

to maximum length exhibited in the cell nuclei of the MRC5

dataset. We refer to these datasets as the thick and thin datasets

respectively.

Analysis of object boundary shapes. Aggregating over

replicate nuclei would be considerably simplified if they had the

same shape. However, it is typically the case that the nucleus

exhibits large variation in the shape of the boundary. Figure 4(A,C-

D) shows how the volume contained within the boundary of each

instance from the synthetic data varies with the cube of the

maximum inter-point distance within each instance. If the

boundaries were simply scaled versions of each other then the

points on the graph would follow a line. As expected, there is

substantial scatter between instances of the four shape types.

Figure 4(A-B) shows the plot for the thin dataset and the

Figure 3. Cell-like synthetic boundaries. The top row are a sphere and a more ellipsoidal shape, on the bottom row are the same shapes but
with their underside flattened. Deformed instances from each of these 4 shape classes are used in the analysis of synthetic data. This collection is
referred to as the thick set. A second collection denoted the thin set differ by having a one fifth the height (z –axis).
doi:10.1371/journal.pone.0036841.g003
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corresponding plot for the real data. The real data shows

substantial scatter, suggesting the boundaries also have substantial

differences in shape. This is likely to cause problems for any

method that simply standardizes according to the size of boundary

in order to aggregate results. Of course different cell lines will

exhibit different degrees of boundary shape heterogeneity and

Figure 4. Demonstrating Boundary Shape Heterogeneity. The figures show how the cube of the maximum inter-point distance within a boundary
varies with the volume enclosed by the boundary. If all the boundaries had the same shape then all the points on each graph should fall on a straight line. A)
shows50instancesfromeachofthe4thinsyntheticboundaryshapes. Itdemonstratesthatthescatterwithineachshapeclass ismuchsmallerthanbetween
shape classes. B) Nucleus envelopes from MRC5 dataset demonstrating scatter. C) shows the same data as A) but on a different scale, so that it can be
compared with D), where D) shows 50 instances from each of the 4 thick synthetic boundary shapes shown in Figure 3.
doi:10.1371/journal.pone.0036841.g004

Figure 5. 2-D Illustrations of the alternative spatial point processes used in the construction of the synthetic data. Each of the three
alternatives has a clear spatial preference. The challenge for spatial analysis is to identify such preference when the average number of points is low
and potentially difficult to distinguish from CSR.
doi:10.1371/journal.pone.0036841.g005
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Figure 6. 2-D Projections of instances for each of the alternative spatial point processes used in the construction of the synthetic
data. The ordering of these patterns and the crosses (highlighted in blue) correspond to those in Figure 5. These patterns each contain 64 points and
are far more difficult to identify through visual inspection than the schematic illustrations shown in Figure 5.
doi:10.1371/journal.pone.0036841.g006

Figure 7. Three MRC5 nuclei with PML locations and their corresponding F-function Test. The images are a 2-D projection but the analysis is
performed in 3-D. If the observed F-function (the continuous curve) is wholly contained within the CSR envelope (the dotted curves) then the pattern is
consistent with CSR (the null hypothesis). The middle nucleus rejects the null and is demonstrating PML locations that are further apart than would be
expected by CSR. The right-most nucleus also rejects the null and is demonstrating locations that are more tightly clustered than would be expected by CSR.
doi:10.1371/journal.pone.0036841.g007
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consequently the power of the tests based on aggregation will

differ.

Alternatives to complete spatial randomness. Inside each

instance of a cell shape, we generate points following spatial point

processes other than CSR, as follows. Three alternative compart-

ment spatial preference models are investigated. These are

denoted Polar, Center and Boundary and describe spatial point

processes that produce patterns that locate themselves preferen-

tially near the poles of the nucleus, the center of the nucleus and its

boundary, respectively. Details of the construction of these

processes are described in the Material and Methods. Figure 5

shows an illustration of each of these processes. For clarity these

examples are displayed with a two-dimensional boundary,

however the experiments are all performed using three-dimen-

sional shapes. This choice of alternatives seems natural for the

types of configuration one might expect in a biological system,

[21,22,23]. Note that, while the real data example is concerned

with PML NBs, this simulation will be relevant to any

compartment that manifests as few objects per nucleus. Actual

generated examples of these three processes projected in 2D are

shown in Figure 6. Note that, first it is difficult to distinguish these

processes visually, and second the patterns of concern typically

exhibit fewer objects, making the problem more difficult. A further

complication that Figure 6 ignores, central to this paper, is the

impact of cell shape variability.

Testing Different Methods
The aim of the following experiments is to investigate the

ability of methods proposed in the literature to identify potential

non-CSR processes from point patterns that consist of a small

number of points. In particular we look at a number of ways of

using the F-function [12] that deploy different strategies to

aggregate information over replicates that were described

previously. The approaches are denoted Individual F-function Test,

Aggregate-Distance F-function Test and Aggregate-SDI. The latter

approach being based on the Spatial Distribution Index [13]. The

first approach deploys the F-function Test (this and the

Figure 8. Modified Individual F-function Test using Aggregated null envelope for 3 MRC5. The distance standardized F-functions of the
PML NB locations for the nuclei shown in Figure 1. Although for these particular cells we make the same decision as Figure 7, the result over the
dataset is different; fewer nuclei fail to reject the null. This is likely due to the shape heterogeneity of the nucleus envelope, evidence for which is
provided by the investigation of synthetic data, see Figure 11.
doi:10.1371/journal.pone.0036841.g008

Figure 9. Histogram of SDI using F-function for MRC5 PML NB
locations. For a CSR process we would expect the histogram to be
approximately uniform, however we see concentrations in both the low
and high values of SDI indictaing that there is a spatial preference for
PML NBs.
doi:10.1371/journal.pone.0036841.g009
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following approaches are described in more detail in Materials

and Methods) on each object individually. The Aggregate-

Distance F-function Test standardizes the scale of all instances

by dividing inter-point distances measured by the maximum

inter-point distance within the boundary. An F-function Test is

performed on the aggregated F-functions from all the target

point patterns using the aggregated null distribution from each

instance. For Aggregate-SDI, the SDI for each instance is

measured individually as described in Materials and Methods.

Analysis of MRC5 data. For the Individual F-function

Test, Figure 7 shows the F-function with a 95% confidence

envelope [4] for three cells. In addition, the 2D projection of

each raw image, and the corresponding processed data, is

included. It is not at all clear, from inspection, what kind of

pattern is present in these individual images. The key point of

this paper is that this is true also of routine application of

spatial analysis and aggregation. The leftmost cell does not exit

the confidence envelope, [4], so there is no evidence to reject

the hypothesis that the spatial configuration of PML compart-

ments is CSR. The remaining two graphs show examples of a

pattern that is more clustered than would be expected under

CSR and a pattern that is more regular than would be expected

under CSR, respectively. For the entire dataset we are able to

reject the null hypothesis for 42 out of 50 cells, at the 95%

significance level. This is close to expected false positive rate for

a test at this significance level. However other real examples do

not lead to such strong conclusions where as many as half the

population may fail to reject CSR.

The Aggregate-Distance F-function Test fails to reject the null

hypothesis for the replicate data. Scaling by the maximum

distance between points on the boundary appears to be the

incorrect method for aggregation. The distance distribution is not

commensurate over boundaries with different shapes. Consider

the sphere in Figure 3 and the ellipse on the top row in Figure 3.

Scaling by the maximum length will result in the elliptical shape to

be much thinner in both the z and y axes.

This form of normalization results in a larger spread in the

confidence envelope. This is demonstrated by performing a

modified Individual F-function Test where we replace the null

confidence envelope with the aggregated null confidence envelope

In this case fewer cells are found to reject the null, a total of 26 out

of 50. Figure 8 shows the normalized F-Function corresponding to

the same cells as Figure 7.

Aggregation using the Spatial Distribution Index results in a

rejection of the null hypothesis of CSR at the 95% significance

level. A histogram of the SDI values is shown in Figure 9 which

demonstrates clear preference for high SDI and to a lesser degree

a preference for low SDI. Under the hypothesis of CSR, this

histogram should be approximately consistent with a uniform

distribution that is the height of each bar in the histogram should

be approximately equal. The preponderance of small and large

distances, associated with the taller bars in Figure 9, suggests that

there are two distinct types of departure from CSR. While this is

potentially informative, it does not reveal much about the non-

CSR nature of the generating process.

Of the three approaches, only the aggregated methods provide

an unequivocal statement about the existence of non-CSR point

processes determining the location of the PML bodies. Unfortu-

nately they give conflicting results, although it appears likely that

aggregating by distance is a less powerful approach than

aggregating SDI values. In the next section we investigate

synthetic datasets and show circumstances in which Aggregate-

SDI can potentially miss non-CSR structure.

Analysis of synthetic data. For the synthetic data case, all

the instances have spatial point patterns that have non-CSR

structure, namely Center, Boundary and Polar. The three analysis

methods described above are deployed to assess their capability to

identify non-CSR structure. The experiments are repeated with an

increasing expected number of points, namely 16, 32, 64 and 128.

This corresponds to compartments that manifest an increasing

number of objects per nucleus. In general, the higher the average

number of points the easier it should be to identify the existence of

Figure 10. Individual F-function Test for synthetic datasets. The leftmost figure corresponds to the thick dataset and the rightmost the thin
dataset. For each of 200 synthetic nuclei, in each dataset, an F-function Test is performed, where the null hypothesis is the spatial point pattern has
been drawn from a CSR process. The spatial point patterns generated for these all the synthetic instances are from alternatives to CSR, hence the
power of the test is equal to the proportion of instances that reject the null hypothesis.
doi:10.1371/journal.pone.0036841.g010
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non-CSR preferences. The main result we see is that the

heterogeneity of shape is sufficient to compromise the efficacy of

the procedures.

The results for the individual F-function Test and modified

individual F-function Test are shown in terms of power. Recall

that the power of a hypothesis test is the probability of rejecting

the null hypothesis when it is false. In these experiments the

null hypothesis is CSR and the null is always false (all our point

patterns are not generated from a CSR process). So the power

in these experiments equate to the proportion of instances that

reject the null hypothesis. Figure 10 shows the result for the

Individual F-function Test. Although we do see improvement in

performance as the average number of points increases the

power is very low for patterns with fewer expected points.

There is a good chance that using this test would miss these

types of spatial preference. Notice that in Figure 10, even with

an average of 32 points we could miss a relevant spatial

preference approximately more than half of the time. With real

data, this would represent a tragically missed opportunity.

Figure 10 also shows the Boundary alternative appears to be

difficult to detect, especially for the thin dataset. We speculate

that for any position within the synthetic boundary its closest

point on the boundary will often be located above or below,

hence the x-y (see Figure 3) component of interpoint distances

of the Boundary process are more similar to CSR than other

alternative processes.

Deploying Aggregate-Distance F-function Test fails to reject the

null on for all examples from the thick and thin datasets.

The modified Individual F-function Test is examined in two

ways. First, using a null hypothesis derived from the null

distributions of all instances from the same shape class and

second, all null distributions are aggregated from all instances, see

Figure 11. In both cases Figure 11 shows that increasing

aggregation in general degrades rather than enhances the

Figure 11. Modified Distance F-function Test. Performing an F-function Test over 200 synthetic nuclei instances similar to that shown in Figure 10.
The top row are results for the thin shape collection and the bottom row are the results for the thick shape collection. In the first column the null
distribution is aggregated over: A) instances from the same shape class and B) aggregating over all instances. Aggregation over all shape classes (B)
clearly reduces the power of the test. Even aggregating within a shape class (A) decreases performance relative to individual analysis.
doi:10.1371/journal.pone.0036841.g011

Analysis of Nuclear Spatial Point Patterns

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e36841



performance. This is indicative of a test procedure fundamentally

incapable of identifying the alternative process. Note that while

there are other interesting features in these figures, they do no add

anything useful to our main argument, namely that standard

procedures are not always effective at identifying non-CSR

processes.

Aggregation using the SDI values is far more successful than

distance normalization. Table 1 shows, D, the summary statistic

from the SDI, and its corresponding p-value for each of the

alternative spatial point patterns, with increasing average number

of points. There is a general trend that the p-value decreases as the

expected number of points increases, increasing the number of

samples would make this trend clearer. For Polar and Center we

can reject the null in most cases, but for a low average number of

points there is a possibility of missing these specific spatial

preferences. In this experiment Polar process with 16 expected

points was indistinguishable from CSR. We failed to reject the null

for the boundary spatial point process for most cases. Both

Figures 12 and 13 show histograms of the SDI values for the center

spatial point process case, where we can clearly see the non-

uniformity becoming more pronounced as the expected number of

objects increases.

Discussion

In a number of scenarios involving investigating a possible

connection between the spatial preference of nuclear objects and

nuclear function, the number of nuclear objects tends to be fairly

small. In these circumstances we must be cautious about accepting

the null hypothesis that the compartments of interest exhibit no

interesting spatial preference. Investigating the spatial structure

over a population of cells is likely to improve the power of tests for

such preferences. Simple transformations of the spatial point

patterns to make them commensurate yields the potential to

reason about a collection of images, thereby increasing the power

of such tests. However the method of aggregation used must be

meaningful and not induce artifacts into the spatial point pattern.

One possible approach is to build Aggregate Maps [24,25]. This

method for exploratory data analysis provides an interpretable

representation of the spatial preferences of compartments within

the nucleus derived from replicated images. Alternatively,

investigating at the population level of individually analyzed cells

can be achieved by deploying measurements such as SDI, [13].

Our experiments using the F-function found that distance

normalization was ineffective for aggregation. This does not mean

that distance normalization should be avoided altogether. It is a

matter for future research to determine its effectiveness in

aggregating spatial histograms and for other problems such as

determining co-localization.

Radial analysis procedures, popular in the literature, involve first

identifying the center of the nucleus, [6]. This is typically held to be

located at the center of gravity of the nucleus, since there are no

biologically meaningful locations within the nucleus that can be used.

There at least two classes of radial analysis procedure. In the

following we briefly describe and critique each class. In the first class,

distances of target compartments are measured from the center of

gravity to produce a histogram. One general issue arises from the

arbitrary choice of bin width. A second issue relates to the fact that

that the bins boundaries may not respect the nucleus boundary.

Figure 14 shows an example where bin regions can be outside the

nucleus envelope. In this example each bin has equal area, however

the effective area, that is to say the area of a bin that an object can

legitimately be placed, may not be equal. This makes testing for CSR

harder than simply testing for uniformity across bins.

The second class of radial analysis procedure deals with this

problem by allowing the shape of histogram boundaries to more

closely follow the nuclear envelope itself, [9]. Other binning

strategies have been used, especially in 2D, where the bins have

been manually defined to delineate regions [26]. In all of these

approaches there is still the problem of how to determine what the

corresponding bin shape and location is across replicates especially

when their boundaries differ.

While popular, it should be clear from the critique above that

radial analysis procedures have significant shortcomings. Consis-

Table 1. Two-sided K-S test statistics for SDI using the F-function.

Thin

Polar Boundary Center

Expected number of points D p-value D p-value D p-value

16 0.097 0.046 0.088 0.090 0.163 4.85E-05

32 0.228 1.86E-09 0.063 0.405 0.178 6.27E-06

64 0.206 8.49E-08 0.059 0.490 0.261 2.93E-12

128 0.314 ,2.2E-16 0.066 0.348 0.399 ,2.2E-16

Thick

Polar Boundary Center

Expected number of points D p-value D p-value D p-value

16 0.157 1.05E-04 0.134 0.002 0.116 0.009194

32 0.281 3.84E-14 0.066 0.348 0.156 0.000118

64 0.277 9.37E-14 0.076 0.198 0.218 1.11E-08

128 0.390 ,2.2E-16 0.129 0.003 0.293 2.44E-15

For spatial point patterns generated by each type of alternative to CSR deployed, and for increasing average number of points, the summary statistic from the SDI, D,
and its corresponding p-value are shown. Total number of synthetic nuclei is 200.
doi:10.1371/journal.pone.0036841.t001
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tent with the central theme of this paper, the problem of

aggregation across nuclei, extending radial analysis to multiple

images is not at all straightforward and the issues described above

are amplified. Hence we do not consider radial analysis any

further. However we note that methods for binned aggregation

would be a fruitful line for further research.

The take-home message is thus twofold. First, cell biologists are

missing potentially interesting spatial relationships because of an

over-reliance on standard and aggregated test procedures for

CSR. Second, the analysis should not finish with a simple decision

about CSR. Rather, more detailed analysis should be pursued for

non-CSR patterns, but this is most sensible if the initial test

procedures are performed carefully.

Materials and Methods

Synthetic Shape Boundary
Our synthetic boundary is constructed from a piece-wise

function of ellipsoids,

x2

a2
i

z
y2

b2
i

z
z2

c2
i

~1

The shape parameters ai,bi,cið Þ are used to define an ellipsoid

fragment for each octant, i[ 1, � � � ,8gf . In order to maintain

continuity at the boundaries of each octant we restrict the shape

parameters in the following way,

Figure 12. Histograms of SDI using F-function for the center alternative for the thin dataset with increasing number of expected
points. The expected number of points increases top left to bottom right. For a CSR process the histogram should be uniform. For 16 expected
points it is difficult to distinguish the histogram from uniformity. However, as the average number of points increases we see an increase in the non-
uniformity of the histogram. In particular we see a concentration for low SDI values (which is what would be expected for points that are clustered).
doi:10.1371/journal.pone.0036841.g012
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ai~
a{ ifthesignofthe x-coordinateinoctant iisnegative

az ifthesignofthe x-coordinateinoctant iispositive:

�

Similarly, the values bz,b{ and cz,c{ are assigned to the shape

parameters bi,ci where we use the y-coordinate and the z-

coordinate respectively.

Figure 3 shows four shape boundary classes, on the left, top row

a sphere defined using,

az~1, a{~1, bz~1, b{~1, cz~1, c{~1ð Þ

On the bottom row to the right, a cell-like shape extruded along

the positive x-axis and flattened along the negative z-axis is defined

using,

az~2, a{~1, bz~1, b{~1, cz~1, c{~0:5ð Þ

Figure 13. Histograms of SDI using F-function for the center alternative for the thick dataset with increasing number of expected
points. The performance of SDI is similar, despite the difference in boundary shape.
doi:10.1371/journal.pone.0036841.g013

Figure 14. Radial Analysis of PML Bodies in a 2-D projected
nucleus. A binning strategy that measures only distances from the
center of gravity may not respect the nucleus envelope. The dotted
circles are bin boundary locations where each bin has equal area. Bin
regions can occur outside of the nucleus envelope, which can affect the
analysis.
doi:10.1371/journal.pone.0036841.g014
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Our simulations will look at two shape collections, denoted the

thick and thin datasets. The thick dataset consists of instances drawn

from all four nucleus shape classes shown in Figure 3. These four

shapes are defined by the value of az, az~1, 2ð Þ, this corresponds

to the lengthening of the boundary along the positive x-axis and

c{, c{~0:5,1ð Þ flattens the shape along the negative z-axis. All

the remaining parameters are equal to 1.

The thin dataset consists of flatter shapes, these are created by

setting cz~0:2 c{~0:1,0:2ð Þ: The remaining parameters are

identical to the thick dataset. Shape boundaries with this character

are rather similar to the real MRC5 dataset, see Figure 4.

However we prefer to explore performance over a variety of cell

shapes to demonstrate the generality of our conclusions.

Fifty instances of each of these shapes are generated by

perturbing the parameters specifying each shape as follows.

Consider the parameter az. To generate a simulated realization

a
0
z~azze, where e ~UU {azq,azqð Þ. Here q is a scaling

parameter selected to induce variability and to avoid pathologies.

All parameters are simulated similarly using the same scaling

parameterq. There is some arbitrariness in the choice of this

parameter, our choice of 0.2 is based on trial and error to provide

convincing shapes.

Generating Alternatives to CSR
Alternatives to CSR are generated by thinning a realization

from a CSR process [12]. For a shape boundary S, first a point x is

drawn from a CSR process that has as its support the volume

enclosed by S. The probability the point x is then retained is,

p(x)~e {k d.(x,S)ð Þ

where k is a constant (set to 1 in the experiments) and the function,

d.(x,S) is the Euclidean distance of the point x from locations

specified on the shape S. For the polar case we first specify two

end-points p1,p2 which are the located at the intersection of the

shape with the x-axis, see Figure 5.

dpolar(x,S) is the minimum distance of the point x from the

endpoints using only the x-axis component. For the center process,

dcenter(x,S), measures the distance from x to the mean of the

boundary (marked by the letter c in Figure 5) of S.

dboundary(x,S) is the distance from x to the closest point on the

boundary of S.

The size of a realization that has an expected number of points

l is determined by sampling from a Poisson distribution with mean

l. Note that in this case we use a truncated Poisson distribution to

avoid empty or sparsely populated (less than 5) cells, and it is with

respect to this distribution that expectation is taken. The

procedure described above is then repeated until we have the

required number of points.

The value of k determines the degree of aggregation, using a

large value for k would result in highly aggregated points that

should be easy to distinguish from realizations from a CSR

process. We set the value of k to 1 for all spatial point patterns. The

choice is made in order to produce spatial point patterns that

could not be trivially detected as realizations from non-CSR

spatial point processes and indeed could not be seen to deviate

from CSR by visual inspection.

Calculating the F-Function
The F-function, or empty space function, F (r) is defined as the

probability that a point is within distance r of a target point

pattern. We estimate F (r)by following the Monte Carlo approach

proposed in [13], as follows. For a shape with boundary S, 10,000

points are drawn from a CSR process that has as its support the

volume enclosed by S. The shortest distance from each of these

points to the target point pattern is measured. F(r) is estimated to

be equal to the fraction of points that have a distance smaller than

r to the target point pattern.

Note, this function is affected by the shape of the boundary and

in general corrections are applied to handle edge effects. However,

testing against CSR realizations using the same boundary allows

us to ignore edge effects [27].

Performing the F-function Test
The F-function Test is a hypothesis test in which we define

the null distribution to be that the target points have been

generated by a CSR process. The test deploys the F-function

where a confidence envelope [4] is defined, should the target

pattern’s F-function exit the confidence envelope the hypothesis

is rejected.

Table 2. Primary antibodies.

Compartment Species Specificity/concentration of antibody Source Titre

PML nuclear body Rabbit All isoforms of human PML protein. (Borden et al 1995). Pure bleedout rabbit serum. 1 in 200

Nucleolus Mouse IgG1 Nucleophosmin (B23) C-terminus of B23 in human,
mouse and rat. 0.5 mg/ml.

Zymed Laboratories Inc. (32-5200). 1 in 50

Lamin B Goat IgG Lamin B of mouse, rat and human. 0.2 mg/ml. Santa Cruz Biotechnology Inc. (Lamin B
(M-20): sc-6217)

1 in 100

doi:10.1371/journal.pone.0036841.t002

Table 3. Secondary antibodies.

Species Specificity/concentration of antibody Fluor conjugate Source Titre

Donkey Rabbit IgG, 1.5 mg/ml FITC Jackson ImmunoResearch Laboratories, Inc. 1 in 200

Donkey Mouse IgG, 1.4 mg/ml Cy3 Jackson ImmunoResearch Laboratories, Inc. 1 in 200

Donkey Goat IgG, 1.5 mg/ml Cy5 Jackson ImmunoResearch Laboratories, Inc. 1 in 200

doi:10.1371/journal.pone.0036841.t003
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The null hypothesis is constructed by generating the F-functions

of 500 CSR realizations that have the same pattern size as the

target point pattern. The envelope is constructed by considering

all distances, r, in turn. For each r, the 500 values of F (r) from the

null realizations are used to define a 95% two-tailed confidence

interval. Examples of the confidence envelopes can be seen in

Figure 7.

Spatial Distribution Index (SDI)
The Spatial Distribution Index, [13], is designed to aggregate

information regarding the spatial configuration of point patterns.

This description follows [13] including the setting of parameters

(in particular the number of the Monte-Carlo iterations). For

simplicity of exposition we describe SDI using the F-function,

although it should be noted that other functions can be used.

The approach to calculating SDI can be conveniently split into

two parts. First the F-function of the target point pattern, denoted

Ft(r), is compared to an average F-function for a CSR process,

Fm(r) as follows.

Fm(r) is the mean of the F-functions of 500 realizations of a CSR

process, each having the same number of points as the target

pattern. The dissimilarity between Fm(r)and Ft(r), denoted Lm, is

defined to be the largest signed separation between the two curves.

Lm~Fm(r�){F(r�), where r�~ arg max
r

Fm(r){F (r)
�� ��.

Next the value Lm is transformed such that if the target process is

CSR, then the transformed value will be uniform over 0,1½ �. This

transformation is achieved by recordingL1...500, the dissimilarities

between Fm(r) and the F-functions of a further 500 realizations of

the CSR process described above. The SDI value is defined as the

fraction of L1...500 that are smaller thanLm.

The hypothesis test that the spatial point patterns from multiple

cells follow a CSR process is performed by testing the distribution

of SDI for uniformity using a two-sided Kolmogorov-Smirnov test

at 5%.

Confocal Laser Scanning Microscopy (CSLM)
In CSLM, the compartments of interest are stained such that

they fluoresce at the focal point of the laser light, which is scanned

across the entire volume of the sample nucleus revealing

compartment locations. Staining is often achieved using indirect

immunofluorescence in which a fluorescent dye is attached to

antibodies that have been selected against proteins within the

target functional compartment. The output from these analyses is

a stack of intensity images, representing the 3D volume of the

nucleus with locations of target compartments. In each image, the

intensity at each voxel serves to reveal in part the relative

concentration of a particular antibody and by inference target

protein at that location. However as immunostaining is indirect,

any increased intensity can also arise from an increased availability

of accessible epitopes. This issue is usually resolved by bespoke

image processing schemes intended to distinguish compartments

from background. A discussion of these issues, and a particular

procedure, is given in [2]. The technical details describing the

methods for cell staining and CSLM follow in the next section.

MRC5 Cell Line
Cells were cultured in T25 or T75 flasks at 37uC and with 5%

CO2. Cell lines and corresponding culture media used, were as

follows. MRC5 human Caucasian male foetal lung fibroblasts, a

normal diploid human cell line (ATCC), were cultured in RPMI

1640 supplemented with 10% FCS, 2 mM L-glutamine, and

Penstrep (50 IU/ml penicillin, 50 mg/ml streptomycin), (all

Invitrogen).

Cell staining and confocal microscopy. MRC5 human

foetal lung fibroblasts were plated onto glass coverslips in six well

plates, and incubated at 37uC and with 5% CO2. After 48 hours

cells were fixed in 4% paraformaldehyde in PBS for 10 mins, then

permeabilised in 0.5% Triton X-100 in PBS for 20 mins. Cells

were concurrently incubated with primary antibodies against

nuclear antigens for 30 mins at 37uC. After washing in PBS they

were incubated with appropriate secondary antibodies for 30 mins

at 37uC in the dark. Z stacks of nuclei were captured using a Zeiss

LSM 510 confocal microscope with a Zeiss Plan Apochromat 636
oil immersion objective with a numerical aperture of 1.4, and a

zoom of 3.4. Z-stacks typically consisted of about 20 sequential

slices of 2506250 or 3006300 pixels (where 1 mm = 12 pixels)

captured at 0.4 mm intervals through the nucleus.

Indirect immunofluorescence. PML was identified using a

rabbit anti-PML antibody (Borden et al 1995) and detected with

an FITC-conjugated donkey anti-rabbit secondary antibody

(Jackson ImmunoResearch Laboratories, Inc.). The edge of the

nucleus was delineated with a goat anti-Lamin B antibody (Santa

Cruz Biotechnology Inc.) and detected with a Cy5-conjugated

donkey anti-goat secondary antibody (Jackson ImmunoResearch

Laboratories, Inc.). The nucleoli were stained using a mouse anti-

Nucleophosmin/B23 monoclonal antibody (Zymed Laboratories

Inc.) and a Cy3-conjugated donkey anti-mouse secondary

antibody (Jackson ImmunoResearch Laboratories, Inc.). Slides

were mounted in 0.25 mg/ml DAPI in glycerol/PBS and Citifluor

AF1 antifade, which allowed nuclei to be located for imaging.

Details of antibodies are given in Table 2 and 3.
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