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The free-energy principle is an attempt to explain the structure of the agent and its brain, starting from 

the fact that an agent exists (Friston and Stephan, 2007; Friston et al., 2010). More specifically, it can be 

regarded as a systematic attempt to understand the ‘fit’ between an embodied agent and its niche, where 

the quantity of free-energy is a measure for the ‘misfit’ or disattunement (Bruineberg and Rietveld, 2014) 

between agent and environment. This paper offers a proof-of-principle simulation of niche construction 

under the free-energy principle. Agent-centered treatments have so far failed to address situations where 

environments change alongside agents, often due to the action of agents themselves. The key point of 

this paper is that the minimum of free-energy is not at a point in which the agent is maximally adapted 

to the statistics of a static environment, but can better be conceptualized an attracting manifold within 

the joint agent-environment state-space as a whole, which the system tends toward through mutual in- 

teraction. We will provide a general introduction to active inference and the free-energy principle. Using 

Markov Decision Processes (MDPs), we then describe a canonical generative model and the ensuing up- 

date equations that minimize free-energy. We then apply these equations to simulations of foraging in 

an environment; in which an agent learns the most efficient path to a pre-specified location. In some 

of those simulations, unbeknownst to the agent, the ‘desire paths’ emerge as a function of the activity 

of the agent (i.e. niche construction occurs). We will show how, depending on the relative inertia of the 

environment and agent, the joint agent-environment system moves to different attracting sets of jointly 

minimized free-energy. 

© 2018 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

What does it mean to say that an agent is adapted to - or

fits’ - its environment? Strictly speaking, in evolutionary biology,

tness pertains only to the reproductive success of a phenotype

ver evolutionary time-scales ( Orr, 2009 ). However, reproductive

resupposes that an animal is sufficiently “adaptively fit”; to stay

live long enough to reproduce, given the statistical structure of its

nvironment. On developmental time-scales, the animal comes to
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t the environment by learning the statistics and dynamics of the

cological niche it inhabits. In other words, it acquires the skills to

ngage with the action possibilities available in its niche. On time-

cales of perception and action, an organism improves its fit, or

rip ( Bruineberg and Rietveld, 2014 ), by selectively being sensitive

o the action possibilities, or affordances ( Gibson, 1979; Rietveld

nd Kiverstein, 2014 ) that are offered by the environment. 

Agents can not only come to fit their environments, but en-

ironments can come to fit an agent, or a species. For example,

arth worms change the structure and chemical composition of

he soil they inhabit and as a consequence, inhabit radically dif-

erent environments in which they are exposed to different selec-

ion pressures -compared a previously uninhabited piece of soil

 Darwin, 1881; Odling-Smee et al., 2003 ). In evolutionary biol-

gy, the process by which an agent alters its own environment to
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increase its survival chances is better known as “niche construc-

tion” ( Lewontin, 1983; Odling-Smee et al., al., 2003 ). This leads to

a feedback mechanism in evolution, whereby a modification of the

environment by members of a species alter the developmental tra-

jectories of its members and the selection pressures working on its

members. 

In the niche construction literature, a distinction is made be-

tween selective niche construction and developmental niche construc-

tion . Selective niche construction pertains to the active modifica-

tion of an environment so that the selection pressures on heredi-

tary traits change as a result of these modifications. Developmental

niche construction, on the other hand, pertains to the construction

of ecological and social legacies that modify the learning process

and development of an agent ( Stotz, 2017 ). In this paper, we focus

on developmental niche construction. An example of this form of

niche construction is the so-called ‘desire path’: rushing on their

way to work, people might cut the corner of the path through the

park. While initially this might almost leave no trace, over time a

path emerges, in turn attracting more agents to take the shortcut

and underwrite the path’s existence. Such ‘desire paths’ 1 are fas-

cinating examples of developmental niche construction and their

emergence is a key focus of this paper. 

The aim of this paper is to discuss and model developmental

niche construction in the context of active inference and the free-

energy principle ( Friston and Stephan, 2007 ). The free-energy prin-

ciple is a principled and formal attempt to describe the ‘fit’ be-

tween an embodied agent and its niche, and to explain how agents

perceive, act, learn, develop and structure their environment in or-

der to optimize their fitness, or minimize their free-energy ( Friston

and Stephan, 2007; Friston et al., 2010 ). The free-energy principle

pertains to the fitness of an agent in its environment over mul-

tiple time-scales, ranging from the optimization of neuronal and

neuromuscular activity at the scale of milliseconds to the opti-

mization of phenotypes over evolutionary timescales ( Friston, 2011 ,

Fig. 10). 

We will apply the free-energy principle to an agent’s active

construction of a niche over the time-scales of action, perception,

learning and development. We are therefore not directly concerned

with reproductive fitness (the reproductive success of an agent) but

rather with adaptive fitness (how well an agent is fairing in its in-

teractions with the environment). The adaptive ‘fit’ between agent

and environment is in this paper characterized by the information-

theoretic quantity of (variational) free-energy. 2 

There are potentially many ways to model niche construction,

using conceptual analysis, numerical analysis or formal models

that vary in their form and assumptions: see ( Creanza and Feld-

man, 2014; Krakauer et al., 2009; Laland et al., 1999; Lehmann,

2008 ) for some compelling examples. The modelling framework

we use is somewhat unique in that it uses generic (variational)

principles to model any self-organising system in terms of informa-

tion theory or belief updating. The usual applications of this model

have been largely restricted to behavioural and cognitive neuro-

science; e.g., ( Friston et al., 2017a, b; Kaplan and Friston, 2018 ).

Here, we apply exactly the same principles and model to niche

construction – to implement an extended aspect of active infer-

ence (a.k.a., the free energy principle). The advantage of this is that

one has a principled and generic framework has a well formulated

objective function and comes equipped with some fairly detailed

process theories; especially for phenotypic implementation at the

neuronal level ( Friston et al., 2017a, b ). Conceptually, this means
1 The Dutch term “olifantenpad” (“elephants’ path”) characterizes the nature of 

these paths in an imaginative way. 
2 As mentioned, reproductive fitness presupposes that the agent is adaptively fit. 

See Constant et al., (2018) for a more elaborate characterization of the relation be- 

tween reproductive fitness and adaptive fitness. 

j  
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ne can cast niche construction as an inference process; thereby

roviding an interesting perspective on the circular causality that

nderlies niche construction. 

The “fit” between the agent and its environment can be im-

roved both by the agent coming to learn the structure of the

nvironment and by the environment changing its structure in a

ay that better fits the agent. This gives rise to a continuous feed-

ack loop, in which what the agent does changes the environment,

hich changes what the agent perceives, which changes the expec-

ations of the agent, which in turn changes what the agent does

to change the environment). The interesting point here is that the

inimum of free-energy is not (necessarily) at a point where the

gent is maximally adapted to the statistics of a given environ-

ent, but can better be conceptualized as a stable point or, more

enerally, an attracting set of the joint agent-environment system . 

The attracting set – on which an agent-environment system set-

les - will depend upon on the malleability of both the agent and

he environment. In the limiting case of a malleable agent and a

igid environment, this amounts to learning. In the other limit-

ng case of a rigid agent and a compliant environment, we find

iche construction (making the world conform to one’s expecta-

ions). In intermediate cases, both the agent and the environment

re (somewhat) malleable. Importantly, as we will see later on in

his paper, the malleability of the agent and the environment can

e given a concise mathematical description in terms of the prior

eliefs. These prior beliefs reflect the influence sensory evidence

as on learning. In other words, they determine the ‘learning rate’

r ‘inertia’ of both the agent and the environment. These learning

ates 3 embody the evolutionary and developmental history of an

gent (the stability of the niche an agent evolved in) and the type

f environment involved. 

In brief, the active inference formulation described below offers

 symmetrical view of exchanges between agent and environment.

he effect of the agent on the environment can be understood as

he environment ‘learning’ about the agent through the accumula-

ion of ecological legacies ( Laland et al., 2016 ). This perspective is

fforded by the basic structure of active inference that rests upon

he coupling between a generative process (i.e., environment) and a

enerative model of that process (i.e., agent). The mutual adaptation

etween the process and model means that there is a common

henotypic space that is shared by the environment and agent. On

his view, the environment acts upon the agent by supplying sen-

ory signals and senses the agent through the agent’s action. Math-

matically, the environment accumulates evidence about the gen-

rative models of the agents to which it plays host. This symmetry

lays out in a particular form, when we consider the confidence or

recision placed in the prior beliefs of the environment and agent

and the effect the relative precisions have on the convergence or

generalized) synchronization that emerges as the agent and envi-

onment ‘get to know each other’. 

In what follows, we will provide a general introduction to ac-

ive inference and the free-energy principle. Using Markov Decision

rocesses (MDPs), we then describe a canonical generative model

nd the ensuing update equations that minimize free-energy. We

hen apply these equations to simulations of foraging in an en-

ironment; in which an agent learns the most efficient path to a

re-specified location. In some of those simulations, unbeknownst

o the agent, the environment changes as a function of the activity

f the agent (i.e. niche construction occurs). We will show how, de-

ending on the relative inertia of the environment and agent, the

oint agent-environment system moves to different attracting sets

f jointly minimized free-energy. 
3 One might be inclined to associate the agent with a learning rate and the en- 

ironment with ‘mere’ inertia. Formally, however, we treat the agent and the envi- 

onment equivalently, both parameterized by concentration parameters. 
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. The free-energy principle and active inference 

The motivation for the free-energy principle is to provide a

ramework in which to treat self-organizing systems and their in-

eractions with the environment. Below, we will briefly rehearse

he arguments that lead from the desideratum of self-organization

o the minimization of free-energy: for details, see Friston and

tephan (2007), Friston (2011) and, in more conceptual form,

ruineberg et al. (2016) . 

The starting point of the free-energy principle is the observa-

ion that living systems maintain their organization in precarious

onditions. By precarious we mean that there are states an organ-

sm could occupy but at which the organism would lose its orga-

ization. Hence, if we consider a state space of all the situations

n organism can be in (both viable and lethal) we will observe (by

ecessity) that there is a very low probability of finding an agent

n the lethal parts of the state space and a high probability it oc-

upies viable parts. Although which states are viable is dependent

n the kind of animal one observes; namely, on their characteristic

tates . 

We assume the agent has sensory states that register observa-

ions or outcomes ˜ o , where outcomes are a function of the state

f the agent’s environment, or hidden states, ˜ s . These states are

alled “hidden” because they are “shielded off” from internal states

y observation states. For an adaptive agent, its sensory states sup-

ort a probability distribution P ( ̃  o ) with high probability of being

n some observation states, and low probability of being in oth-

rs, where - in analogy with the hidden state - frequently occur-

ing outcome states are associated with viable, characteristic states

nd very rare outcome states are associated with potentially lethal

tates (see Table 1 for notation, we will denote actual states in the

nvironment with bold face ˜ s , and states the agent expects in the

nvironment using normal script ˜ s ). Given the distribution P ( ̃  o ) ,

ne can calculate the surprisal (unexpectedness) of a particular ob-

ervation o : − ln P (o) . Observations that are encountered often, or

or a long time, will have low surprisal, while outcomes that are

almost) never observed will have very high surprisal. 

One expects a certain degree of recurrence in the states one

nds any creature in. Take, for example, a rabbit: the typical situ-

tions a rabbit finds itself in might be eating, sheltering, sleeping,

ating etc. It will repeatedly encounter these states multiple times

hroughout its life. Under mild 

4 assumptions, the frequency with

hich we expect to find the rabbit in a particular state over time

s equal to the probability of finding the rabbit in that particular

tate at any point in time. This implies that the average surprisal

ver time is equal to the expected surprisal at any point in time,

r mathematically: 5 

 

s 

−P ( s ) ln P ( s ) = 

T ∑ 

t 

− 1 

T 
ln P ( s t ) 

.1. Free-energy and self-organization 

So far, we have adopted a descriptive point of view, starting

rom an adaptive agent. We can now turn from the descriptive

tatement - that adaptive agents occupy a restricted (characteris-

ic) part of the state space with high probability - to the norma-

ive statement that in order to be adaptive, it is sufficient for the

gent to occupy a characteristic part of the state space, which (by
4 These assumptions are that the system is a weakly-mixing random dynamical 

ystem; in other words, a measure preserving system with random fluctuations. The 

eakly mixing assumption implies a degree of ergodicity; namely, that the system 

ossesses characteristic functions that can be measured. 
5 Throughout this paper we will assume discrete time steps and categorical (dis- 

rete) states and outcomes. 

t

i

g

N

efinition) must be compatible with the characteristic states of the

gent in question. For example, the human body performs best at

 core body temperature around 37 °C. When measuring the tem-

erature of a human, one expects to measure a core body temper-

ture around 37 °C, while measuring a body temperature of 29 °C
r 41 °C would be very surprising and indicative of a threat to the

iability of the agent. For adaptive temperature regulation then, it

s sufficient to minimize the surprisal of observational states ˜ o with

espect to a probability distribution P ( ̃  o ) 6 peaking at those temper-

ture values that are characteristic of human bodies. 

The observational states ˜ o and the probability distribution P ( ̃  o )

erve to make the surprisal of an observation − ln P ( ̃  o ) accessi-

le to the agent. The ecologically relevant question for the agent

s however how to minimize the surprisal of observations. Mini-

ization of surprisal can only be achieved through action, be it

y acting on the world (for example by moving into the shade) or

hanging the body (for example by activating sweat glands). That

s to say, the agent needs to predict how actions u impact on ob-

ervational states o . More often than not, the impact of control or

ctive states u will be mediated by the hidden state of the environ-

ent s : the action that reduces surprisal of temperature sensors

epends on where the agent can find shade. Moreover, in many

ases, surprising observational states can only be avoided by elud-

ng particular hidden states in the environment pre-emptively. For

xample, a mouse can avoid being eaten by a bird of prey (a highly

urprising state of affairs for a living mouse), by avoiding hidden

tates in which a bird of prey can see it. In turn, the diving bird

auses a particular observation in the mouse (a fleeting shadow,

.e. a sudden decrease in light intensity on its sensory receptors).

he mouse therefore needs to treat the observation generated by a

ird of prey as an unlikely state and avoid it by acting. Whether

 particular, surprising, observation is encountered therefore de-

ends upon the hidden states of the world that cause observations

rucially, in order to minimize the surprisal of observations, the

gent also needs to be able to predict the consequences of its ac-

ions on the environment. 

The surprisal of observations is therefore the marginal distri-

ution of the joint probability of observations, marginalized over

idden states and policies the agent pursues: 

ln P ( ̃  o ) = − ln 

∑ 

s , u , θ

P 
(

˜ o , ̃  s , ˜ u , θ
)

The probability distribution P ( ̃  o , ̃  s , ̃  u , θ) is known as the genera-

ive process (where θ represents a set of parameters), denoting the

ctual causal, or correlational, structure between action states ˜ u ,

idden states ˜ s , and observation states ˜ o , parametrized by θ. Im-

ortantly, the agent only has access to a series of observations õ

nd not to hidden states ˜ s and actions ˜ u . This means it cannot per-

orm the marginalization above; instead we assume the agent uses

 generative model P ( ̃  o , ̃  s , π, θ ) , denoting the agent’s expectations

bout the causal structure of the environment (generative process)

nd the policies it pursues. 

We can now discuss the implications of this separation be-

ween the generative process and the generative model . The genera-

ive process pertains to the actual structure of the world that gen-

rates observations for the agent. In contrast, the generative model

ertains to how the agent expects the observations to be gener-

ted. The agent will intervene in the world under the assumption

hat its generative model is close 7 to the generative process. If the
6 The tilde-symbol ( ∼) on top of a variable denotes a range of discrete states of 

hat variable over time. 
7 ’ Close’ here is formalised in terms of a Kullback-Leibler divergence between the 

nferred and true posterior distributions over hidden states in the model. This diver- 

ence is the part of the variational free energy that is minimised in active inference. 

ote that this definition does not actually require the generative model to match 
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Table 1 

Glossary of variables and expressions. 

Expression Description 

P( ̃ o , ̃  s , π, θ ) Generative model (agent): joint probability of observations ˜ o , hidden states ˜ s , policies π , and parameters θ . Returns a 

sequence of actions u t = π(t) . 

o τ ∈ {0, 1} Outcomes and their posterior expectations 

ˆ o τ ∈ [0, 1] 

˜ o = ( o 1 , . . . ., o t ) Sequences of outcomes until the current time point. 

s τ ∈ {0, 1} Inferred hidden states and their posterior expectations, conditioned on each policy. 

ˆ s πτ ∈ [0, 1] 

˜ s = ( s 1 , . . . ., s T ) Sequences of inferred hidden states until the end of the current trial. 

ˆ s τ = 

∑ 

π
π · ˆ s πτ Bayesian model average of hidden states over policies 

π = ( π1 , . . . , πk ) : π ∈ { 0 , 1 } Policies specifying action sequences and their posterior expectations. 

ˆ π = ( ̂ π1 , . . . , ̂  πk ) : ˆ π ∈ [ 0 , 1 ] 
θ = ( A, B, C, D ) Parameters of the generative model 

A i, j = P( o t = i | s t = j) Likelihood matrix mapping from inferred hidden state j to an expected observation i and its logarithm. 

A i, j = ln A i, j = ψ( αi, j ) − ψ( α0 , j ) 

αi, j ∈ R > 0 The parameters of the agent’s prior (Dirichlet) distribution for an observation i at location j . 

α0, j = 

∑ 

i 

αi, j Sum of concentration parameters over outcomes at a particular location. 

B π
i, j,t 

= P( s i,t+1 | s j,t , π) Transition probability for hidden states under each action prescribed by a policy at a particular time and its logarithm. 

B̄ π
i, j,t 

= ln B πτ
C i, τ = − ln P( o i,τ ) ↔ P( o i,τ ) = 

−σ ( C i,τ ) 

Logarithm of prior preference over outcomes or utility. 

D j = P( s j,t=0 ) Prior expectation of the hidden state at the beginning of each trial. 

F π = F (π ) = 

∑ 

τ
F ( π, τ ) ∈ R Variational free energy for each policy. 

G π = G (π ) = 

∑ 

τ
G ( π, τ ) ∈ R Expected free energy for each policy. 

H = − ∑ 

k 

A kl A lk Vector encoding the entropy or ambiguity over outcomes for each hidden state. 

ψ( α) = ∂ α ln 	(α) Digamma function or derivative of the log gamma function. a 

W = 

1 
a 0 

− 1 
a 

A matrix encoding the uncertainty about parameters, for each combination of outcomes and hidden states. This 

represents the contribution these parameters make to the complexity (i.e. the expected difference between the logs of 

the posterior and prior parameters). 

P( ̃ o , ̃  s , ̃  u , θ) Generative process (environment): joint probability of observations ˜ o , hidden states ˜ s , actions u , and parameters θ. 

Generates observations: o t = A s t . 

θ = ( A , B , C, D ) Parameters of the generative process 

s τ ∈ {0, 1} Actual hidden state, (analogous notation for posterior and sequences). 

u t = π(t) Action or control variables 

˜ u = ( u 1 , . . . ., u T ) Sequences of action or control variables until the end of the current trial. 

A i , j = P( o t = i | s t = j) Likelihood matrix mapping from environmental hidden state j to observation i and its logarithm (analogous notation 

for concentration parameters). 

A i , j = ln A i , j = ψ( αi , j ) − ψ( α0 , j ) 

αi , j ∈ R > 0 The parameters of the environmental (Dirichlet) distribution for an observation i at location j . 

α0, j = 

∑ 

i 

αi , j Sum of concentration parameters over outcomes at a particular location. 

a The derivation of the belief updating using digamma functions can be found in the appendix of ( Friston et al., 2016 ), which also provides a more intuitive interpretation 

in terms of (neuronal) plasticity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The generative process and model and their points of contact: The genera- 

tive process pertains to the causal structure of the world that generates observa- 

tions for the agent, while the generative model pertains to how the agent expects 

the observations to be generated. A hidden state in the environment s t delivers a 

particular observation o t to the agent. The agent then infers the most likely state 

of the environment (by minimizing variational free-energy) and uses its posterior 

expectations about hidden states to form a posterior over policies. These policies 

specify actions that change the state (and parameters) of the environment. 
generative process is initially very different to the model, the in-

terventions of the agent change the process to more closely resem-

ble the model. The notion that the generative model and process

should resemble one another relates to the ‘Good Regulator The-

orem’ of Conant and Ashby (1970) . In our context, this theorem

implies that the capacity to regulate one’s econiche depends upon

how good a model one is of that niche. That is to say, the struc-

ture captured in the generative model will pertain to ecologically

relevant aspects of the environment ( Baltieri et al., 2017 ). The gen-

erative model and process meet at two places: the environment is

causing the observation states of the agent, and actions are sam-

pled from a distribution over policies, selected by the agent under

its generative model (see Fig. 1 ). 

Note that, from the perspective of the agent, the agent uses

its generative model to evaluate the surprisal (or negative log evi-

dence) of observations: 

− ln P ( ̃  o ) = − ln 

∑ 

s,π,θ

P ( ̃  o , ̃  s , π, θ ) 

However, although the agent has access to all the variables in

the above equation, this marginalization is analytically intractable;
the generative process (i.e., econiche) per se – just that the observable outcomes it 

generates can be explained by the generative model. 

s  

o  
o the minimization of surprisal is not possible directly. Instead,

ne can consider an upper bound on surprisal that can be eval-
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ated and subsequently minimized; thereby explaining surprisal

inimizing exchange with the environment in a way that can be

lausibly instantiated in a living creature. 

One can construct this upper bound by adding an arbitrary dis-

ribution Q( ̃ s , π, θ ) to the surprisal term and using the definition

f the expectation or expected value E q (x ) [ x ] = 

∑ 

x 
q (x ) · x : 

ln P ( ̃  o ) = − ln 

∑ 

s,π,θ

Q ( ̃  s , π, θ ) 
P ( ̃  o , ̃  s , π, θ ) 

Q ( ̃  s , π, θ ) 

= − ln E Q ( ̃ s ,π,θ ) 

[
P ( ̃  o , ̃  s , π, θ ) 

Q ( ̃  s , π, θ ) 

]

Using Jensen’s inequality (following from the concavity of the

og function), we then have the following inequality: 

ln P ( ̃  o ) = − ln E Q ( ̃ s ,π,θ ) 

[
P ( ̃  o , ̃  s , π, θ ) 

Q ( ̃  s , π, θ ) 

]

≤ −E Q ( ̃ s ,π,θ ) 

[
ln 

(
P ( ̃  o , ̃  s , π, θ ) 

Q ( ̃  s , π, θ ) 

)]
= F 

The term on the right-hand side of the equation - the free-

nergy F - is therefore an upper bound on the term on the left-

and side of the equation, the surprisal of observations. In short,

inimizing free-energy implicitly minimizes surprisal. 

.2. Free-energy and variational inference 

The question then is how the minimization of free-energy can

e achieved, and what this optimization entails. We have defined

ree-energy in terms of a generative model P ( ̃  o , ̃  s , π, θ ) and an ar-

itrary variational distribution Q( ̃ s , π, θ ) . The free-energy can be

ritten in several forms to show what its minimization entails,

pecifically: 

 ( ̃  s , π, θ ) = D KL [ Q ( ̃  s , π, θ ) ‖ 

P ( ̃  s , π, θ | ̃  o ) ] ︸ ︷︷ ︸ 
di v ergence 

− ln P ( ̃  o ) ︸ ︷︷ ︸ 
log e v idence 

This formulation shows the dependency of the free-energy on

eliefs about the hidden states implicit in the variational distri-

ution. Since the negative log evidence, or surprisal, does not

epend on Q( ̃ s , π, θ ) , optimizing the variational distribution to

inimize free-energy means that the divergence from the poste-

ior p( ̃ s , π, θ | ̃ o ) is minimized. This makes Q( ̃ s , π, θ ) an approx-

mate posterior, i.e., the closest approximation of the true pos-

erior P ( ̃ s , π, θ | ̃ o ) . This highlights the relationship between free-

nergy minimization and theories of perception as Bayesian infer-

nce ( Gregory, 1980 ). Furthermore, since the KL-divergence is al-

ays greater than zero, minimizing free energy makes it a tight

pper bound on surprisal. 

Whether the exact minimization of free-energy is feasible de-

ends on the generative process and generative model. Typically,

implifying assumptions need to be made about the form of the

ariational distribution, resulting in approximate rather than ex-

ct inference. The most ubiquitous assumption about the varia-

ional distribution is that it can be factorized into marginals. This

s known as the mean field approximation ( Opper and Saad, 2001 ).

he only parameters θ that will vary in this paper are the param-

ters of an observation matrix A ⊂θ and we can deal with a varia-

ional distribution of the form: 

 ( ̃  s , π, A ) = Q ( π) Q ( A ) 

T ∏ 

t 

Q ( s t | π) 

The challenge now is to find the approximate posterior ˜ Q that

inimizes free-energy given a series of observations ˜ o and the
enerative model P ( ̃  o , ̃  s , π, θ ) . In other words, we want to find

hose ˜ Q such that: 

 ( ̃  s , π, A ) = arg min 

Q 
F ≈ P ( ̃  s , π, A | ̃  o ) 

This will provide update equations that formalize the exchange

etween the agent and its environment that is consistent with its

xistence, through a variational process of self-organisation. Due to

he way the variational distribution is factorized, each factor can be

ptimized separately. The specific update equations specified in the

ext section are obtained by taking the functional derivative of the

ree-energy with respect to each factor and solving for zero. We

an then construct a differential equation whose fixed point coin-

ides with this solution, i.e. the minimum of free-energy. The re-

ult is a set of self-consistent update equations that converge upon

he minimum of free-energy (see Appendix B and Friston et al.,

016a, b ). Although not relevant for the current treatment, these

quations have a lot of biological plausibility in terms of neuronal

rocesses – and indeed non-neuronal processes involving cellular

nteractions: for further discussion, see ( Friston et al., 2017a, b ).

n short, if these variational constructs are the only way to solve

 problem that is necessary to exist in a changing world, we can

lausibly assume that evolution uses these constructs: more pre-

isely, evolution is itself a form of variational free energy mini-

ization (see discussion). 

.3. Adaptive action and expected free-energy 

Policies, or sequences of actions, do not alter the current obser-

ations, but only observations in the future. This suggests that the

ynamics we are trying to characterize must be based upon gener-

tive models of the future. Furthermore, this means that an agent

elects those policies that it expects will make it keep minimizing

ree-energy in the future. This requires us to define an additional

uantity, expected free-energy G , to ensure the agent acts so as to

inimize the expected surprisal under a particular policy (i.e., pur-

ue uncertainty-resolving, information-seeking policies that exploit 

pistemic affordances ( Kiverstein et al., 2017 ) in their econiche).

bove, we have defined the free-energy as: 

 = E Q ( ̃ s ,π,θ ) [ ln Q ( ̃  s , π, θ ) − ln P ( ̃  o , ̃  s , π, θ ) ] 

In analogy with the variational free-energy, we can now define

n expected free-energy under a particular policy π : 

 ( π) = 

∑ 

τ

G ( π, τ ) 

 ( π, τ ) = E ˜ Q [ ln Q ( s τ | π) − ln P ( s τ , o τ | ̃  o , π)] 

here ˜ Q = Q( o τ , s τ | π) = P ( o τ | s τ ) Q( s τ | π) . In other words, the ex-

ectation is taken under a counterfactual distribution 

˜ Q over hid-

en states and yet to be observed outcomes (and not over hidden

tates and policies, as was the case for the variational free-energy).

earranging this expected free energy gives (see Appendix): 

 ( π, τ ) = D KL [ Q ( o τ | π) P ( o τ ) ] + E Q ( s τ | π) H [ P ( o τ | s τ ) ] 

Here, the second term is called ambiguity and reflects the

xpected uncertainty about outcomes, conditioned upon hidden

tates. The first term is the divergence between prior (i.e., pre-

erred or characteristic) outcomes and the outcomes expected un-

er a particular policy. This Bayesian risk or expected cost is the

mallest for a policy that brings about observations that are closest

o preferred observations. We can operationalise this sort of policy

election with a prior over policies that can be expressed as a soft-

ax function of expected free-energy: 

 ( π) = σ ( −G ( π) ) 
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In short, the agent selects policies that it expects will minimize

the free-energy of future observations (see Appendix A ). This is

equivalent to minimizing Bayesian risk and resolving ambiguity. 

So what does the minimization of free-energy entail in differ-

ent contexts? In the limiting case of perceptual inference (where

the agent cannot change the sensory array it is exposed to), free-

energy is minimized by finding the hidden states ˜ s that most likely

generated observed sensory states ˜ o , under the agent’s generative

model of how they co-occur. This makes the recognition distribu-

tion Q( ̃ s ) an approximate conditional distribution P ( ̃ s | ̃ o ) . Here, the

expected hidden states are the parameters of the variational distri-

bution, which are generally considered to be internal states of the

agent (e.g., neuronal activity). 

When actions are allowed, but the agent has no preferences for

particular states ( active inference without preferences ), free-energy

is minimized by finding the hidden states ˜ s that most likely gen-

erated observed sensory states ˜ o and those actions are selected

that minimize the ambiguity of observations given hidden states

P ( o t | s t ). This puts both action and perception in the fame of

hypothesis-testing, or optimizing the Bayesian model evidence of

an agent’s model of its environment, licensing a Helmholtzian in-

terpretation of the activity of the brain ( Friston et al., 2012 ). 

However, when the agent is equipped with preferred sensory

observations ( active inference with preferences ), the picture changes

profoundly ( Bruineberg et al., 2016 ). Besides finding the hidden

states ˜ s that most likely generated observed sensory states ˜ o the

goal is also to select those actions that bring about preferred out-

comes; enabling it to elude surprising states of affairs. To give an

intuitive example, the agent’s current sensations might best be ex-

plained by the conjecture that he is standing under a shower that

is too hot - a fairly unambiguous signal. But, if all is well, stand-

ing under un uncomfortably hot shower is itself a highly surprising

event. He will therefore reach for the tap to reduce the tempera-

ture and seek sensory evidence from the world that he is standing

under a comfortable shower, which is unsurprising. In other words,

the agent does not continue to infer the hidden cause of its orig-

inal surprising observations (i.e. that it is a very hot shower), but

rather intervenes in the world so as to bring about preferred states

that fit his prior expectations about the sorts of sensations he ex-

pects to encounter. 

Active inference with preferences therefore changes the epis-

temic pattern the agent engages in. Rather than, analogous to a rig-

orous scientist, inferring the causal structure of the world by prob-

ing it and observing the resulting data, the agent acts like a crooked

scientist, expecting the world to behave in a particular kind of way

and through changing the world, ensures that those expectations

come true ( Bruineberg et al., 2016 ). 

This changes the interpretation of free-energy minimization: in

active inference without prior preferences, the minimum of free-

energy coincides with an agent that comes to infer the hidden

structure of the world. In active inference with preferences, the

minimum of free-energy is attained when sensations are generated

by characteristic or preferred states that are realized through ac-

tion ( Friston, 2011 ). 8 In this latter way, crucially, the free-energy

principle provides a common currency for both epistemics (find-

ing out about the state of the world) and value (engaging with the

world to seek out preferred outcomes). Agents are adaptive if they

expect to be in states they characteristically thrive in and, through

action, make those expectations come true. 

What we have shown in this section is that what exactly is

the minimum of free-energy differs depending on the assumption

one makes about the nature of the agent and the task at hand:
8 If now what the agent prefers is itself a product of its phylogenetic and onto- 

genetic history, then what results is akin to an enactive theory of cognition ( Friston 

and Allen, 2016; Bruineberg, Kiverstein and Rietveld, 2016 ). 

 

t  

–  

a  
t coincides with an epistemic fit if one assumes perceptual infer-

nce and active inference without preferences, and it coincides an

pistemically enriched value-based, pragmatic fit in the case of ac-

ive inference with preferences. In the context of certain percep-

ual decision-making experiments carried out in a lab, such as the

idely used random-dot motion task (e.g., Ball and Sekuler, 1982;

ewsome and Pare, 1988 ) it might make sense to treat a rational

gent as not having intrinsic preferences for a direction of motion.

owever, in an ecological setting, what matters is not just what

he cause of the current sensory input is, but to be sensitive to the

mplicit pragmatic and epistemic affordances that enable the se-

ection of actions that lead to preferred, or characteristic, sensory

xchanges. 

Because the prior preferences ensure that creatures act in ways

hat minimize expected free-energy, if they have the right sort of

enerative model, agents will, in acting, obtain the sensory ev-

dence they expect. Incidentally, the addition of expected free-

nergy elegantly solves the dark-room problem ( Friston et al.,

012 ): although being in a dark room makes sensory input very

redictable, it is not the kind of situation a human phenotype ex-

ects to find itself in for long periods (although a bat might). The

gent therefore treats these observations as surprising and tends

o more characteristic sensory exchanges with the environment.

his concludes our formal description of active (embodied) infer-

nce and the ensuing sort of self-organisation that emerges from

t. We now turn to simulations to illustrate that free-energy mini-

ization cuts both ways in an agent-environment exchange. 

. Simulation of niche construction 

So far, we have addressed the motivation for, and derivation of,

he free-energy principle and how actions underwrite the mini-

ization of expected free-energy. We now turn to simulations of

iche-construction using a free-energy minimizing agent. In order

o do this, we need to make specific assumptions about the struc-

ure and parameters of the generative model that is constituted by

he agent – and the generative process in the econiche. In brief, we

ill use a very simple model of the world that can be thought of

s a maze that can be explored. Crucially, the very act of moving

hrough the maze changes its state; thereby introducing a circu-

ar causality between the environment (i.e., maze) and a synthetic

reature (i.e., agent), who traverses the environment, in search of

ome preferred location or goal. 

To build this simulation, we will assume some specific condi-

ional independencies that render the generative model a so-called

arkov Decision Process (MDP). The main two features of Markov

ecision processes are i.) that observations at a particular time o t 
epend only on the current hidden state s t , and 2.) the proba-

ility of a hidden state s t+1 depends only on the previous hidden

tate s t and the policy π ( t ) (see Fig. 2 , right panel). Each of the

robabilistic mappings or transitions is parameterized by a distri-

ution matrix ( Fig. 2 , left hand side). The outcome or likelihood

atrix is given by A , where A i j = P ( o t = i | s t = j ) . The probability

ransition matrix of hidden states over time is given by B , where

 i j (u ) = P ( s t+1 = i | s t = j, π(t) = u ) . C denotes prior (preferred) be-

iefs about outcomes P ( o t ) and D denotes beliefs about the initial

tates at t = 1. These conditional probabilities can be seen in Fig. 2 .

s above, we define the variational distribution as: 

 ( ̃  s , π, A ) = Q ( π) Q ( A ) 

T ∏ 

t 

Q ( s t | π) 

In what follows, we describe the particular form of the genera-

ive model – in terms of its parameters, hidden states and policies

that will be used in the remainder of this paper. An agent starts

t a specified location ( Fig. 3 - green circle) on an 8 × 8 grid and is
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Fig. 2. Generative model and (approximate) posterior. Left panel: A generative model is the joint probability of outcomes ˜ o , hidden states ˜ s , policies π and parameters 

θ : see top equation. The model is expressed in terms of the likelihood of an observation o t given a hidden state s t , and priors over hidden states: see second equation. In 

Markov decision processes, the likelihood is specified by an array A , parameterized by concentration parameters α. As described in Table 3 , this array comprises columns of 

concentration parameters (of a Dirichlet distribution). These can be thought of as the number of times a particular outcome has been encountered under the hidden state 

associated with that column. The expected likelihood of the corresponding outcome than simply entails normalising the concentration parameters so that the sum to 1. The 

empirical priors over hidden states depend on the probability of hidden states at the previous time-step conditioned upon an action u (determined by policies π ), these 

probabilistic transitions are specified by matrix B . The important aspect of this generative model is that the priors over policies P ( π ) are a function of expected free-energy 

G ( π ). That is to say, a priori the agent expects itself to select those policies that minimize expected free-energy G ( π ) (by minimizing its path integral 
∑ 

τ
G ( π, τ ) ). See the 

main text and Table 1 for a detailed explanation of the variables. In variational Bayesian inversion, one has to specify the form of an approximate posterior distribution, which 

is provided in the lower panel. This particular form uses a mean field approximation, in which posterior beliefs are approximated by the product of marginal distributions 

Q ( s t | π ) over unknown quantities. Here, a mean field approximation is applied to both posterior beliefs at different points in time Q ( s t | π ), policies Q ( π ), parameters Q ( A ) and 

precision Q ( γ ). Right panel: This Bayesian graph represents the conditional dependencies that constitute the generative model. Blue circles are random variables that need 

to be inferred, while orange denotes observable outcomes. An arrow between circles denotes a conditional dependency, while the lack of an arrow denotes a conditional 

independency, which allows the factorization of the generative model, as specified on the left panel. 
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D  
quipped with a prior belief it will reach a goal location ( Fig. 3 –

ed circle) within a number of time steps, (preferably) without

reading on ‘closed’ (black) squares. The agent’s visual input is lim-

ted, in the sense that it can only see whether its current location

s open (white) or closed (black). This means that, in the absence

f prior knowledge, an agent needs to visit a location in order to

ather information about it. 

Each trial comprises several epochs. At each epoch, the agent

bserves its current position, carries out an action: moving up,

own, left, right, or stay, and samples its new position. A trial is

omplete after a pre-specified number of time steps. In addition

o visual input, we also equip the agent with positional informa-

ion; namely its current location. This means that there are two

utcome modalities ( o t ): what (open/white vs. closed/black) and

here (one of 64 possible locations) (see Fig. 3 ). The generative

odel of these outcomes is simple: the hidden states ( s t ): corre-
 T  
pond to the 64 positions. The likelihood mapping for the where-

odality corresponds to an identity matrix, returning the veridical

ocation for each hidden state. For the what -modality, the likeli-

ood matrix specifies the probability of observing an open versus

 closed state: A 

what 
i j 

= P ( o t = white | s t ) , parametrized by concen-

ration parameters (see below). The (empirical) probability transi-

ions are encoded in five matrices (corresponding to the 5 poli-

ies of the agent: B π
i j 

= P ( s t+1 = i | s t = j, π) . These matrices move

he hidden ( where ) states to the appropriate neighbouring location

iven the policy. The D vector designates the true starting loca-

ion of the agent. Prior beliefs over allowable policies depend on

xpected free-energy G ( π ), which depends on prior preferences,

r costs, over outcomes C (see below). When the parameters are

nknown, as is the case for A , the parameters are modeled using

irichlet distributions over the corresponding model parameters.

he Dirichlet form is chosen because it is the conjugate prior for
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Fig. 3. The layout of the environment: The agent’s environment comprises an 8 × 8 grid. At each square the agent observes its current location (‘where’ hidden state) and 

either an ‘open’ or ‘closed’ state (‘what’ hidden state). The mapping from hidden states to observations in the ‘where’ modality is direct (i.e., one-to-one). In the ‘what’ 

modality, the statistics of the environment are given by the A -matrix. An outcome is generated probabilistically based on the elements of the A-matrix at a particular 

location. The agent starts at the left bottom corner of the grid (green circle) and needs to go to the left top corner (red circle). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

Table 2 

Variational update equations. 

Variational updates for the parameters (i.e. expectations) of the approximate posterior distribution 

Perception and state-estimation 

s πt = σ ( v πt ) 
˙ v πt = Ā �o t + B π

t−1 
s π

t−1 
− B πt · s π

t+1 
− v πt 

o πt = A s πt 
Evaluation and policy selection 

π = σ (−F − G ) 

F π = 

∑ 

t 

s πt · ( ln s πt − B π
t−1 

s π
t−1 

) − ∑ 

t 

s πt · Ā · o t 

G π = 

∑ 

t 

o πt · (W · s πt + ln o πt + C t ) + H · s πt 

Precision and confidence 
ˆ β = ( π − π0 ) · G + β − ˆ β

π0 = σ ( −G ) 

Bayesian model averaging and learning 

E Q [ s t ] = 

∑ 

π
π π · s πt 

ln ̂  A t = ψ(α) − ψ( α0 ) 

ˆ a t = a t + o t � s t 
Change of the environment 

ln ̂  A t = ψ(α) − ψ( α0 ) 

ˆ a t = a t + [ 
1 

0 
] � s t−�

Action selection 

u t ′ = max 
u 

π · [ π(t) = u ] 

 

 

 

 

3

 

t  

c  
the categorical distributions that are used in this paper. The dis-

tribution is parameterised by a vector of concentration parameters

( α) (see Table 3 ). Based on the particular generative model, one

can derive the update equations ( Table 2 ) that underwrite the min-

imization of free-energy (see Appendix B and Friston et al., 2015 ). 
a  
.1. Preferred outcomes and prior costs 

The problem the agent faces is twofold. First, we want the agent

o move from its start location to its target location; however, it

an only see its current location and is only able to plan one move

head. Second, the agent does not like treading on black (closed)
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quares, but at least initially, does not know which squares are

lack and which are white. Its job is then to find its way to the

arget location while avoiding black squares. The A matrix contains

he agent’s prior beliefs or preferences about outcomes in both

odalities – what and where . At each epoch, the agent updates its

rior beliefs based upon what it has come to know about the en-

ironment and selects its actions accordingly. In the current simu-

ation, the agent’s preferences or prior beliefs are that it will move

owards a target location without transgressing into black squares.

he subtle issue here is that the agent needs to select a policy that

rings it closer to its goal state (taking into account what it knows

bout the layout of the environment) without performing an ex-

austive search or planning into the far ahead future. 

Intuitively, the agent’s preferences can be understood in the fol-

owing way: at each epoch, the agent expects to occupy locations

hat are not black, within the reach of its policies and are most

asily accessible from the target location. Given that the agent’s

references are reconfigured after each epoch, the agent will in-

vitably end up at its target location. More formally, the expected

ost (i.e. negative preference) of a sensory outcome at a future

ime τ can be described in the following way: 

 τ = − ln p ( o τ ) = ln ([ exp ( T ) s 1 < e −3 ] + e −32 ) − ln exp ( T ) s T 

Where: 

 i j = 

⎧ ⎨ 

⎩ 

− ∑ 

i 
 = j 
T i j i = j 

A i ∃ u : B 

u 
i j 

> 0 

0 otherwise 

Although the first term might look complicated, it just corre-

ponds to a prior cost (of −32) whenever the condition in square

rackets is not met, and zero otherwise. In other words, it assigns a

igh cost to any location that is occupied with a small probability

hen starting from the initial location s 1 . The second term corre-

ponds to the (negative) log probability a given state is occupied

hen starting from the target location ( s T ), favoring states that are

ccupied with high probability. Prior beliefs about transitions are

ncoded in a ‘diffusion’ matrix exp ( T ). As noted in ( Kaplan and

riston, 2018 ) the form of these priors is somewhat arbitrary but

airly intuitive. In brief, the graph Laplacian ( T ) allows us to express

rior beliefs about preferred locations in terms of the probability of

eing in a particular place. Heuristically, the graph Laplacian mod-

ls the dispersion of this probability – when moving in every al-

owable direction – as time progresses. If we combine this proba-

ility with the equivalent dispersion of probability mass from the

oal location, their intersection identifies a plausible (preferred) lo-

ation that can be accessed from the current location – and pro-

ides access to the goal. 

The details of this particular prior cost function do not mat-

er too much– they just serve to model preferences that lead

o goal-directed behaviour under constraints and uncertainty. We

ave used these priors previously to simulate foraging in mazes

 Kaplan and Friston, 2018 ). Here, we use the same setup but gen-

ralized to include an effect of navigating through the maze on the

aze itself [Matlab code and demo routines detailing this gener-

tive model of spatial navigation are available in the DEM Tool-

ox of the SPM open source software : http://www.fil.ion.ucl.ac.

k/spm/ ] 

.2. Learning and the likelihood matrix 

Although the graph Laplacian provides the agent with prior

references (i.e., costs C τ ), these are not the only factors underly-

ng policy selection. The expected free-energy also contains an am-

iguity term (see above and Appendix A ) that is minimized when

gents minimize the uncertainty of observations afforded by a par-

icular location. This implies that the agent expects to explore its

http://www.fil.ion.ucl.ac.uk/spm/
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Fig. 4. Exemplar trials: The left column shows the layout of the environment ( A -matrix) and the right column shows the agent’s expectations about the environment (A- 

matrix). The rows show the starting condition and the location after each trial. The green, red and blue circles designate the starting, target and final position respectively. 

The red-dotted line shows the agent’s trajectory at other moves within a trial. In this and all subsequent examples, each trial comprised 16 moves. This figure illustrates four 

consecutive trials and consequent changes in the likelihood matrices that constitute the generative process (i.e. environment) and model (i.e. agent). 
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environment, even when this exploration does not bring it closer

to its target state. This can be seen in Fig. 4 , which shows the re-

sults of the simulation of successive trials. In the absence of any

accumulated knowledge about the environment, the agent heads

straight to its target state and then (rather than stay there) ex-

plores the local environment. In the next trial, the agent heads to

its target state, while avoiding those locations that it now knows

are closed. In the third trial, the agent has found the shortest

(open) path to its target state, but still explores its surrounding,

whenever in its vicinity ambiguity can be reduced. In trial four,

and thereafter, the agent follows its “well trodden” and unambigu-

ous white path. 

At the beginning of a series of trials, the agent is initially naïve

about the structure of the maze. This naivety can be quantified
y equipping the agent with priors parameterized by Dirichlet

istributions. The underlying concentration parameters of this

rior can be thought of as the number of observations (or

seudo-observations) of a particular outcome the agent has already

ade before the start of a trial. In our case, the agent has separate

oncentration parameters for each outcome at each location. There

re two relevant dimensions for the set of concentration parame-

ers at a particular location: their absolute and their relative size.

hen the absolute size of the concentration parameters is low, the

gent learns the hidden state (open or closed) of a location after

ne observation. When the concentration parameters – reporting

he number of times open or closed outcomes have been experi-

nced – are high, the agent needs many more observations to be

onvinced a state is open or closed (see Table 3 ). In short, the con-
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Fig. 5. Dependency on concentration parameters : The figures show the environment (in terms of the likelihood of outcomes at each location) and trajectories (top) and 

expectations (bottom) after the 4th trial for agents with prior concentration parameters of 1/8, 1/2, and 2 respectively. The expected likelihood (lower row) reports the 

agent’s expectations about the environment (i.e., the expected probability of an open – white – or closed – black – outcome). We see here that with low priors the agent 

is more sensitive to the outcomes afforded by interaction with the environment and quickly identifies the shortest path to the target that is allowed by the environment. 

However, as the agent’s prior precision increases, it requires more evidence to update its beliefs; giving the environment a chance to respond to the agent’s beliefs and 

subsequent action. In this case, a ‘desire’ path (i.e. shortcut) is starting to emerge after just four trials (see upper right panel). We focus on this phenomenon in the next 

figure. 
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9 In fact, strictly speaking, the simulations did allow the environment to change 

because we used prior concentration parameters of 4 for the environment. One can 

see this in the upper panels of Figure 5 , which shows the environmental likelihood 

matrix changes slightly, after four trials or paths. 
entration parameters determine both the prior expectations about

he world and the confidence placed in those expectations. This

onfidence or precision determines the impact of further evidence,

hich decreases with greater confidence. 

Crucially, different prior settings of the concentration parame-

ers lead to qualitatively different behaviours. In Fig. 5 we illustrate

he different behaviours the agent exhibits as a function of its

nitial concentration parameters. This figure shows the trajectories

f agents at their fourth trial. The fast-learning, or naïve, agent

ith low concentration parameters (left) finds the route to the

arget, where its learning history is shown in Fig. 4 . An agent with

ntermediate concentration parameters (middle) needs more obser-

ations to learn a particular location is open or closed. Once it is

onfident enough that the intervening region - between its current

ocation and its target location – is closed, it will stay put in an

pen location. The slow-learning, or stubborn, agent with high

oncentration parameters (right) is, after four trials, convinced that

he locations it has visited are closed. In subsequent trials, it will

xplore a trajectory parallel to its current one, and once it knows

hese states are also closed, stays put in the same place as the

gent with medium concentration parameters. Although all three

gents start with the same set of beliefs about the structure of

heir environment, they each ascribe different levels of confidence

o these beliefs. This means that they learn (change these beliefs)

t different rates, resulting in qualitatively different behaviours.

e will use this simple but fundamental difference among agents

r phenotypes to illustrate the remarkable impact these differences

n prior beliefs can have on econiche construction in later simu-

ations. 

.3. The environment adapting to an agent 

So far, we have considered a stationary environment. That is

o say, an agent can move around and selectively sample from its
nvironment, but not change it. 9 Things change profoundly when

e allow the agent to change the statistical structure of the en-

ironment itself. In the following simulations, we parameterized

he generative process with a Dirichlet distribution, just as we did

or the generative model. In particular, we now have both an ob-

ervation matrix A , embodying what the agent believes about the

apping between locations s and observations o , and an gener-

tive matrix A , denoting the actual mapping between locations s

nd observations o . The update equations for the observation ma-

rix and generative matrix (bold) reflect the implicit symmetry of

gent-environment interactions: 

ˆ 
 t = Dir( ̂  a t ) ̂  a t = a t + o t � s t 

ˆ 
 t = Dir( ̂  a t ) ̂  a t = a t + 

[
1 

0 

]
� s t 

The concentration parameters a of the observation matrix at

ime t are updated by adding + 1 to the concentration parameter

f a particular outcome o t at a particular location s t . The concen-

ration parameters a of the generative matrix at time t are updated

y adding + 1 to the concentration parameter of the open outcome

t the location that the agent visited. In other words, the more of-

en an agent visits a particular location, the more likely this loca-

ion will provide the agent with open observations. The motivation

ehind these update rules was to show how easily so-called ‘desire

aths’ can emerge: the more a path through long grass is trodden,

he more ‘walkable’ it becomes. 

The relative value of the environmental concentration parame-

ers a determines the probability of a particular location providing
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Fig. 6. Dependency on concentration parameters of the agent and environment: This figure shows the layout of the environment ( A -matrix) and the agent’s expectations 

about the environment (A-matrix) at the end of the 4th trial, as a function of the prior concentration parameters of both the agent and the environment. The left and right 

columns show the trajectory for high and low learning rates for the agent (with prior concentration parameters of 1/8 and 2), respectively. The top and bottom row show the 

trajectory for high and low learning rates of the environment (prior concentration parameters of 1 and 16), respectively. Note the unambiguous emergence of a ‘desire’ path 

in all scenarios apart from an environment with high concentration parameters and an agent with low concentration parameters (bottom left); i.e., an agent who is willing 

to learn but an environment that is not yielding. The most unambiguous desire path is clearly evident when the agent is relatively fastidious (with high prior concentration 

parameters) and the environment is compliant (with low concentration parameters (upper right). 
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the agent with an open or closed observation. In all initial situa-

tions, we set the concentration parameters to either a low value

(1/8) or a high value (1024). The absolute value of the concentra-

tion parameters can be interpreted in exactly the same way as in

the generative model; namely, the propensity to update in light

of new evidence. Here, the evidence is provided by action of the

agent on the environment and the propensity for environmental

updates corresponds to the inertia of the environment, or the abil-

ity of the environment to ‘remember’ the trajectory of the agent.

In short, the environment can impress an agent to a greater or

lesser extent, depending upon the agent’s prior beliefs. In exactly

the same way, and environment may be, literally, impressed by an

agent – to a greater or lesser extent. The degree of ‘impression’

in both cases rests upon the prior precisions encoded by (in this

example) prior concentration parameters in the generative model

(agent) and generative process (environment) respectively. 

Fig. 6 shows the effects of the different prior concentration pa-

rameters on the dynamics of both the agent’s observation matrix

A and the environmental generative matrix A . As above, this Fig-

ure shows the path at the fourth trial, as well as the underlying

A and A at the end of the fourth trial. The bottom row is similar

to Fig. 5 : when the environment has high concentration parame-

ters, the agent takes a very long time to change the statistics of

the environment. The upper left panels report the situation where

concentration parameters are low for both the agent and the en-

vironment. The trajectory of the agent over the four trials is iden-

tical to the trajectory of the agent with high environmental con-

centration parameters (bottom right). Since the agent learns a lo-

cation is closed at once, it never revisits the location to confirm

its beliefs, and will therefore not learn about the environmental

changes. Although a more efficient path has become available, the

agent is unable to exploit this path because the agent places too

much confidence in its past experience to explore alternative poli-

cies; i.e., its prior beliefs have precluded openness to any epistemic

affordance. The upper right panels report the context where con-

centration parameters are high for the agent, and low for the en-
ironment. Like all agents, the agent starts out heading directly for

he target state, but in so doing changes the generative matrix A so

hat it is more likely to provide the agent with open observations.

ecause the learning rate of the agent is slower than the rate of

hange of the environment, the agent carves out an open path by

oving repeatedly down the same path (without knowing it has

one so). 

In summary, depending on the prior concentration parameters

f both the agent and the environment, the agent either 1.) learns

and consolidates) the initial path through its environment, 2.)

earns the initial path through its environment, but, in learning,

pens up new paths, 3.) does not learn an open path or 4.) carves

ut a new path to its target location. 

.4. Agent-environment convergence 

Over time, the agent learns the structure of its environment

hile the environment accumulates knowledge about the agent’s

ehaviour, which depends – in a circular fashion – on the agents

xpectations. We can quantify the implicit coupling between the

gent and environment by exploiting the symmetry between the

enerative matrix A and observation matrix A . This symmetry al-

ows us to create a ‘phenotypic space’ that is shared by the agent

nd environment; namely, the patterns of concentration param-

ters (of both the generative and observation matrix) that show

he greatest changes over time. This phenotypic space can be con-

tructed by generating a covariance matrix consisting of the con-

atenated generative and observation matrices over time and over

rials. The patterns through phenotypic space can be obtained effi-

iently as the principal components or eigenvectors of the covari-

nce matrix between expectations in both matrices over time. 

These eigenvectors define a metric space that summarizes ex-

ectations about the consequences of being in any particular loca-

ion. Crucially, this space is shared by the agent and environment,

hich allows us to plot the evolution of the agent – and the en-

ironment – in the same space and ask how they move in rela-
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Fig. 7. Trajectories of agent and environment in phenotypic space: the phenotypic space is defined by the first two eigenvectors of the covariances among the expectations 

of (both agent and environment) of an open outcome, at each location, over time. The upper and lower panels show the trajectory for low and high prior precision for the 

agent (with initial concentration parameters of 1/8 and 2), respectively. The left and right panels show the trajectory for low and high prior precision of the environment 

(with initial concentration parameters of 1 and 16), respectively. Open and closed circles designate the environment and the agent respectively, while the grey scale designates 

the evolution over time. In this example, the trajectories converge to the same point in phenotypic belief space because the expectations were expressed as deviations from 

the respective final expectations of the agent and environment. 
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ion to one another. Furthermore, we can visualize the influence of

he environment on the agent and vice versa in a compact form

ia trajectories in this phenotypic space. We will use the (space

panned by the) first two eigenvectors to depict the coupling be-

ween the agent and the environment. We can focus our analysis

n the first two eigenvectors, because they together capture 98%

f the variance. For ease of visualization, we used the deviations

rom the final expectations of the agent and environment for each

imulation. This ensures that their respective trajectories converge

n the same point in phenotypic space. 

Fig. 7 plots the corresponding trajectories for the agent (black

losed circles) and the environment (red open circles) for each of

he four conditions (high and low concentration parameters in the

gent and the environment respectively). This licenses a metric

nterpretation of how the agent’s expectations evolve over time

the learning rate), the changes in environmental expectations (the

nertia) and the movement of both the agent’s expectations and

he environment, with respect to each other. The upper and lower

anels show the trajectory for low and high prior precision for the
gent (with initial concentration parameters of 1/8 and 4), respec-

ively. The left and right panels show the trajectory for low and

igh prior precision of the environment (with initial concentration

arameters of 1 and 16), respectively. Open and closed circles des-

gnate the environment and the agent respectively, while the grey

cale designates the evolution over time. 

The key thing to take from these results is the relative ex-

ursion of the environment and agent in their shared phenotypic

paces. It is immediately apparent that the relative prior preci-

ion of (implicit) beliefs held by the agent and environment de-

ermine how much they move in this space. For example, when

oth have a low prior precision (in terms of concentration pa-

ameters) both move substantially through phenotypic space and

rucially, converge on the same direction after a sufficient pe-

iod of time (see upper left panel). What is remarkable here is

hat the direction through phenotypic space coincides when the

nvironment and agent are sensitive to each other. Conversely,

hen the environment is less responsive (i.e., has a higher con-

entration parameters) it moves relatively little in the phenotypic
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Fig. 8. Temporal evolution of variational and expected free energy: these graphs report the progressive changes in (negative) variational and expected free energy (upper 

panels) and simulated reaction times (lower panel) averaged over 16 moves of 32 successive exposures to the environment. The results are shown for an agent with low (solid 

lines) and high (dotted lines) prior concentration parameters or confidence in its beliefs – in environments with low (black lines) and high (red lines) prior concentration 

parameters (red lines). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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space – while the agent does all the heavy lifting in terms of

adapting to the environment. The lower panels show the equiv-

alent excursions when the agent has greater convictions in its

prior beliefs (with high prior concentration parameters). The key

thing to observe here is that large distances are traversed in phe-

notypic space and there is a failure to find a common direc-

tion. 

This example illustrates an interesting and possibly counterin-

tuitive phenomenon; namely, that the learning ‘about each other’

depends in a sensitive way on the relative confidence placed in

prior beliefs (i.e., the Dirichlet parameters in this example). This

confidence has a profound effect on the rate at which the agent

learns about the environment and vice versa – and the degree to

which their respective expectations converge. 

3.5. Fitness and performance 

Using the principal components (i.e. eigenvectors) to define a

joint phenotypic space allows one to visualize the development

or learning trajectories of the agent and environment. However,

this does not mean that the metric distance in phenotypic space

reflects the ‘fitness’ of the agent-environment system. In terms
f fitness, what matters is the time integral of variational free-

nergy (free action), given the locations that are actually visited

and outcomes experienced). More formally, from the perspective

f the free-energy principle fitness corresponds to model evidence

 Campbell, 2016; Frank, 2012 ): 

n P ( ̃  o ) ≈ −F ( ̃  s , π, θi ) 

In other words, the model evidence is scored by the minimum

f free-energy, given a set of observations ˜ o and a set of parame-

ers θ i (most notably the A –matrix learned after a series of trials).

n this interpretation of free energy, one could assess the ‘fitness’

f a range of agents (parameterized by θ i ) for a given set of en-

ironmental data ˜ o . However, the point of this paper is not to in-

erpret evolution and learning as the optimization of parameters

iven a fixed environment, but rather as the convergence of both

gent and environment as a function of their reciprocal interaction .

he environmental data ˜ o is itself dependent on the statistics of

he environment θj (specific to a context j ) and the policies the

gent pursues: 

 i, j = min 

˜ s ,π
F ( ̃  s , π | ̃  o i j , θi ) 
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Here, ˜ o i j is the sensory data received by agent i in environment

 . 

This allows us to evaluate and compare the fitness of each of

he four agents in each of the four environments. For simplicity,

e have disabled learning of the agent as well as adaptation of

he environment. The result is a 4 × 4 matrix that rates the accu-

ulated free-energy for a trial for an agent i in environment j . 

Fig. 8 shows the changes in variational free energy, expected

ree energy and reaction times (i.e., computational time taken to

xecute a path) during 32 successive exposures to the environ-

ent, where each exposure (or path) comprised 16 moves. These

re the same simulations reported in Fig. 7 . The solid lines report

he changes in free energies and reaction times for agents with

ow prior concentration parameters or confidence in their beliefs

bout (location-dependent) outcomes. These can be thought of as

elatively naive agents who have little experience of any world.

onversely, the dotted lines refer to agents who are a more experi-

nced (with prior concentration parameters of 4). As above, these

wo sorts of agents were exposed to environments that were mal-

eable (black lines) and less sensitive to the agent’s behaviour (red

ines), in virtue of being equipped with prior concentration param-

ters of 1 and 16 respectively. There are a number of interesting

ehaviours that these results feature. 

First, notice that the free energies fluctuate from exposure to

xposure. This reflects the fact that the free energy is a function

f sensory encounters that change from moment to moment. The

econd, perhaps counterintuitive, observation is that the (negative)

ariational free energy decreases on the first few trials. Note that

e have plotted negative free energy in the graphs, which can be

nterpreted as the quality or ‘fitness’ of exchange with the environ-

ent. This initial decrease in free energy reflects the fact that the

nvironment is changing and the agents model is playing “catch

p”. The key thing here is that the free energy becomes relatively

tationary as the agent and environment ‘get to know each other’.

his captures the essence of the variational principle of least of sta-

ionary action that underwrites the (nonequilibrium) steady-state

hat active inference aspires to. 

Third, there are some interesting differences between the four

imulations. The naive or inexperienced agent in a rigid (high

rior concentration parameter) environment appears to fare best

in terms of having the lowest free energy. In other words, the 

aive agent learns quickly about its unambiguous world and dili-

ently follows the path specified by environmental cues. It there-

ore avoids all the uncertainty and ambiguity about having to

hoose between potential shortcuts and the path evidenced by the

nvironment. However, this is not the case for the naive agent in a

alleable environment. Here, the environment itself changes as a

esult of being explored, which means that the agent’s generative

odel is never quite fit for purpose. Although this agent quickly

arves out a shortcut, there is a price to be paid in terms of the un-

ertainty about what will be observed (and what the best course

f action is). Note how the black line dips sharply (in the upper

eft panel) before recovering to steady-state free energy levels. 

The more cautious agents (dotted lines) show a different sort

f dissociation in terms of free energy. The cautious agent – in a

alleable environment – takes a little longer to carve out its short-

ut and subsequently learn the consequences of the impressions it

eaves on the environment. This results in a slow but progressive

ecrease in free energy, in contrast to the same sort of agent in a

igid environment – that never quite offers an unambiguous short-

ut. As a consequence, the agent is persistently and mildly sur-

rised by the outcomes it encounters. The evolution of expected

ree energy (shown as negative expected free energy in the figure)

ollows the same sort of trend. Again, perhaps counterintuitively,

he naive agent in a rigid environment appears to be the ‘happiest’

in the sense of expecting the lowest free energy, while the naive
gent in a compliant environment always expects to be mildly sur-

rised, in virtue of the fact that it keeps changing the environment

t is trying to predict. 

Finally, the reaction times (i.e., the computational times aver-

ged over all moves that constitute a path) show two interesting

eatures. First, there is a generic increase in computation time with

xperience. This reflects the fact that the agent’s generative model

s becoming more precise as it requires experience. The result-

ng increase in prior precision translates into an increase in com-

lexity and computational cost. This relationship between preci-

ion and computational complexity (i.e. reaction time) is mirrored

n terms of the differences among the different simulations, with

xperienced agents expressing the longest reaction times – and en-

ironments with greater prior precision appearing to supplement

his computational cost. Clearly, these are anecdotal observations;

owever, they speak to the interesting relationship between the

ynamics of perception and the probabilistic fundaments of active

nference. 

. Conclusion 

To summarize, we have presented an active inference scheme

hat exhibits epistemic foraging, goal-directed behaviour and (un-

ntentional) niche construction using a minimal setup. The key

ontribution of this paper is to show that free-energy minimization

s a process of the mutual adaptation of agent and environment : the

gent learns from the environment by exploration and the agent’s

xploration changes the environment until attracting set of states

n the agent-environment system is attained. One should note the

ormal similarity between the update equations for the environ-

ent ( A -matrix) and for the agent ( A -matrix) used in this paper.

ach is parameterized in terms of the underlying concentration pa-

ameters of a Dirichlet distribution, and both the agent and the

nvironment ‘accumulate concentration parameters’ at places the

gent frequents. Formally speaking, this means that the environ-

ent infers or remembers the expectations of the agent in the

ame way as the agent infers or remembers the layout of the en-

ironment. What matters from the perspective of the free-energy

rinciple is the convergence of the agent and environment to a

ree-energy minimum – that is only defined for a particular agent

n a particular environment. 

Of course, the agent and environment are not completely sym-

etric: in the current simulations, the environment is fairly sim-

le and is merely reactive; it does not form expectations about the

ehaviour of the agent and does not tend to optimize itself by lur-

ng the agent into particular behaviours. However, it is not hard

o imagine more active niches, for example environments popu-

ated with other agents. One can think of an environment consist-

ng of multiple agents, where the sensory states of one agent are

enerated by the action of the other agents. Over time, the agents

utually constrain each other until an attracting (synchronization)

anifold is reached ( Friston and Frith, 2015 ). In such a case, a stub-

orn agent (one with high concentration parameters) might persist

n its behaviour despite evidence to the contrary. In so doing, it

orces more flexible agents (with lower concentration parameters–

r less confidence in their prior beliefs) to adapt to the behaviour

f the confident agent. This makes the behaviour of the confident

gent the predominant determinant or ‘driver’ of joint dynamics.

his circular causality between an agent and its environment will

e an important avenue for future research. 

The metaphor of the agent and environment ‘driving’ each other

hrough phenotypic space, as portrayed in this paper, is in line

ith extended evolutionary synthesis ( Laland et al., 2015 ). In more

raditional approaches to evolutionary biology the fitness land-

cape is thought of as fixed over time: an agent, or species, is able

o scale the peaks to a greater or lesser degree. Extended evolu-
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tionary synthesis, on the other hand, is sensitive to the way agents

alter their own conditions of existence. On this view, the fitness

landscape is not fixed, but co-evolving with the form and affor-

dances of the agent ( Walsh, 2014 ). From an extended evolution-

ary synthesis perspective, the agent’s preferences and conditions of

survival also change over phylogenetic and ontogenetic time-scales.

In this paper, however, focusing on the emergence of desire paths

and niche construction, we have kept the agent’s preferences fixed.

Note, finally, that we could have equipped the agent with

knowledge about how its own actions change the statistics of the

environment. This could be done by equipping the agent with be-

liefs that a change in the A -matrix depends on its action. This

would lead to a more explicit form of niche construction; be-

haviour in which agents plan the best route through the environ-

ment and then carve out that route. In the present context, this

would be less interesting, because everything we want to show

(the emergence of adaptive shortcuts or desire paths in the en-

vironment), would already be provided to the agent. By not equip-

ping the agent with this knowledge, we can investigate niche con-

struction that emerges from the agent’s epistemic foraging and

goal-directed behaviour, rather than as the result of planning. 

In conclusion, this paper offers a proof-of-principle simula-

tion of niche construction under the free-energy principle. Agent-

centered treatments have so far failed to address situations where

environments change alongside agents, often due to the action of

agents themselves. The key point of this paper is that the mini-

mum of free-energy is not at a point in which the agent is max-

imally adapted to the statistics of a static environment, but can

better be conceptualized an attracting manifold within the joint

agent-environment state-space as a whole, which the system tends

toward through mutual interaction. 
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Appendix A. Variational and expected free-energy 

We have defined free-energy in terms of a generative model

P ( ̃  o , ̃  s , π, θ ) and an arbitrary (variational) distribution Q( ̃ s , π, θ ) .

The free-energy can be written in several forms to show what its

minimization entails: 

F ( ̃  s , π, ϑ ) = D KL [ Q ( ̃  s , π, θ ) ‖ 

P ( ̃  s , π, θ | ̃  o ) ] ︸ ︷︷ ︸ 
di v ergence 

− ln P ( ̃  o ) ︸ ︷︷ ︸ 
log e v idence 

Optimizing the variational distribution Q( ̃ s , π, θ ) to minimize

free-energy implies that the divergence between the variational

distribution Q( ̃ s , π, θ ) and the posterior P ( ̃ s , π, θ | ̃ o ) is minimized,

rendering Q( ̃ s , π, θ ) an approximate posterior. Furthermore, be-

cause the KL-divergence is always greater than zero, minimizing

free energy provides an upper bound on the negative log evi-

dence. 

F ( ̃  s , π, θ ) = D KL [ Q ( ̃  s , π, θ ) ‖ 

P ( ̃  s , π, θ ) ] ︸ ︷︷ ︸ 
complexity 

− E Q [ ln P ( ̃  o | ̃  s , π, θ )] ︸ ︷︷ ︸ 
accuracy 

This formulation shows that free-energy is a trade-off between

complexity (defined as the divergence between the variational dis-

tribution Q( ̃ s , π, θ ) and the prior P ( ̃ s , π, θ ) ) and accuracy (defined
s surprisal of observations under the variational distribution). 

 ( ̃  s , π, θ ) = −E Q ( ̃ s ,π,θ ) ln P ( ̃  o , ̃  s , π, θ ) ︸ ︷︷ ︸ 
energy 

− H [ Q ( ̃  s , π, θ ) ] ︸ ︷︷ ︸ 
entropy 

This formulation shows the analogy between variational free-

nergy and Helmholtz free-energy in thermodynamics. It also

hows that the free-energy can be expressed in terms of two quan-

ities that the agent has access to: namely, the (sufficient statistics)

f the variational distribution and a generative model. 

The generative model is defined as: 

 ( ̃  o , ̃  s , π, θ ) = P ( π | θ ) P ( o 1 | s 1 , θ ) P ( s 1 | θ ) P ( θ ) 

T ∏ 

t=2 

P ( o t | s t , θ ) 

× P ( s t | s t−1 , π, θ ) 

Where P ( θ ) denotes prior probabilities over model parameters,

nd P ( o t | s t , θ ) and P ( s t | s t−1 , π, θ ) denote a likelihood matrix and a

robability transition matrix respectively. The outstanding specifi-

ation of this model question is how the prior over policies P ( π | θ )

s to be defined. 

The logic here is that if an agent expects itself to follow poli-

ies that lead to adverse outcomes, the agent would quickly cease

o exist. Any agent that does not cease to exist would therefore

xpect itself to follow policies that it expects to minimize free-

nergy. This can be expressed by making the prior over policies

oftmax function of (negative) expected free-energy G : 

p(π | θ ) = σ ( −G ( π) ) 

The softmax function both introduces a biasing effect based on

he effectiveness of the policies and normalizes the expected free-

nergies: it becomes highly likely that the agent pursues policies

hat it expects will minimize free-energy into the future. 

xpected free-energy 

The expected free-energy for a particular policy is the energy of

ounterfactual observations and hidden states expected under their

osterior predictive distribution Q ( o τ , s τ | π ) minus the entropy of

he posterior predictive distribution of the hidden states: 

 ( π) = 

∑ 

τ

G ( π, τ ) 

 ( π, τ ) = −E ˜ Q [ ln P ( o τ , s τ | π, θ ) ] ︸ ︷︷ ︸ 
energy 

− H [ Q ( s τ | π) ] ︸ ︷︷ ︸ 
entropy 

here ˜ Q = Q( o τ , s τ | π) = P ( o τ | s τ ) Q( s τ | π) . In other words, the ex-

ectation 

˜ Q is over hidden states and outcomes that will be ob-

erved in the future (and not over hidden states and policies, as

as the case for the variational free-energy). Intuitively, this can

e thought of as the free-energy one expects in the future, if one

ere to pursue a particular policy. 

Given P ( s τ , o τ , π, θ ) = P ( s τ | o τ , π, θ ) P ( o τ ) and

( s τ | o τ , π, θ ) Q( o τ | π) = P ( o τ | s τ , π, θ ) Q( s τ | π) , we can express

he expected free energy as (see Appendix A of Friston et al.,

015 for a derivation): 

 ( π, τ ) = D KL [ Q( o τ | π) P ( o τ )] ︸ ︷︷ ︸ 
expected cost 

+ E Q [ H[ P ( o τ | s τ )]] ︸ ︷︷ ︸ 
expected ambiguity 

This expression means that the minimization of G ( π , τ ) entails

inimizing the KL-divergence between (prior) preferred observa-

ions and the expected observations under a particular policy (i.e.,

xpected cost) - and minimizing the expected entropy of an out-

ome under a particular policy (i.e., expected ambiguity). Hence,

olicies are considered more likely if they realize prior preferences

hile, at the same time, avoiding ambiguous outcomes that can

esolve uncertainty about the hidden or latent states of the world. 

http://dx.doi.org/10.13039/501100003246
http://dx.doi.org/10.13039/501100000833
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ppendix B. Update equations 

We have parameterized the generative model as follows: 

 ( ̃  o , ̃  s , π, A ) = P ( π) P ( A ) P ( s 1 ) P ( o 1 | s 1 , A ) 

T ∏ 

t=2 

P ( o t | s t , A ) 

× P ( s t | s t−1 , π) 

nd, using the mean field approximation, we have defined our vari-

tional distribution as: 

 ( ̃  s , π, A ) = Q ( π) Q ( A ) 

T ∏ 

t 

Q ( s t | π) 

We take the following definition of free-energy: 

 ( ̃  s , π, A ) = D KL [ Q( ̃  s , π, A ) ‖ 

P ( ̃  s , π, A ) ] ︸ ︷︷ ︸ 
complexity 

− E Q [ ln P ( ̃  o | ̃  s , π, A ) ︸ ︷︷ ︸ 
accuracy 

We can now decompose the free-energy using the conditional

ndependencies in the variational distribution and the generative

odel: 

 ( ̃  s , π, A ) = 

∑ 

t 

E Q [ F ( π, t ) ] + D KL [ Q ( π) || P ( π) ] 

+ D KL [ Q ( A ) || P ( A ) ] 

Where: 

 (π, t) = D KL [ Q ( s t | π) || P ( s t | s t−1 , π)] ︸ ︷︷ ︸ 
complexity 

− E Q [ ln P ( o t | s t )] ︸ ︷︷ ︸ 
accuracy 

Using the facts that P (π ) = σ ( −G (π ) ) , and

 KL [ Q(x ) || P (x )] = E Q [ ln Q(x ) − ln P (x )] , we can write this as: 

 ( ̃  s , π, A ) = E Q ( π) [ F ( π, t ) + ln π − G ] 

+ E Q ( A ) [ ln Q ( A ) − ln P ( A ) ] + . . . 

We can now minimize the free-energy F by finding the func-

ional derivates of F with respect to all of the elements of the vari-

tional distribution Q( ̃ s , π, θ ) and equate them to 0, under the

onstraint that each of the elements of Q expresses a probability

istribution (i.e. sums up to one). This is naturally done using La-

range multipliers ( Beal, 2003; Friston et al., 2008 ). When for ex-

mple calculating the derivative of F with respect to Q ( s t ′ | π) , we

an construct a Lagrangian 

˜ F using the free-energy expression F , a

agrange multiplier λ and the constraint that 
∑ 

s 
Q ( s t ′ | π) sums up

o 1. 

˜ 
 = F − λ

(∑ 

s 

Q ( s t ′ | π) − 1 

)

We now demand that the functional derivative of the La-

rangian 

˜ F with respect to Q ( s t ′ | π) equals zero, in which case we

ave found an expression for Q ( s t ′ | π) which is both a free-energy

inimum and interpretable as a probability distribution. 

∂ ̃  F 

∂Q ( s t ′ | π) 
= 0 

We can now plug in the expression for F and do the derivation,

n which case we find: 

E 
/Q ( s t ′ | π) ln P ( ̃  o , ̃  s , π, θ ) + ln Q ( s t ′ | π) − 1 − λ = 0 

here E /Q( s 
t ′ | π) designates the expectation with respect to all fac-

ors of Q except Q ( s t ′ | π) . Rearranging and combining all terms not

ependent on Q ( s t ′ | π) in a constant ln Z , we find: 

n Q ( s t ′ | π) = E 
/Q ( s t ′ | π) [ ln P ( o t ′ | s t ′ ) + ln P ( s t ′ | s t ′ −1 , π) 

+ ln P ( s t ′ +1 | s t ′ , π) ] − ln Z 
Since the only terms that depend and are dependent on

 ( s t ′ | π) are the hidden states in the previous and next time step

its Markov blanket), we can write this as: 

n Q( s t ′ | π) = ln P ( o t ′ | s t ′ ) + E Q ( s t ′ −1 ) ln P ( s t ′ | s t ′ −1 , π) + E Q ( s t ′ +1 ) 

ln P ( s t ′ +1 | s t ′ , π) − ln Z 

The transition probabilities P ( o t | s t ) and P ( s t | s t−1 , π) can be ex-

ressed using the A and B matrices of the generative model (see

ain text). Filling this in gives: 

n s πt ′ = o t ′ · Ā + B 

π
t ′ −1 

s πt ′ −1 − B 

π
t ′ · s πt ′ +1 − ln Z 

In order to ensure that free-energy is minimized and inference

ettles on the belief specified by the equation above, we can de-

ne the change of current belief ˙ s π
t ′ as proportional to difference

etween our current belief s π
t ′ and the free-energy minimizing be-

ief specified above. The resulting dynamics then perform a gradi-

nt descent on free-energy – to settle on the beliefs that minimize

ree-energy. 

 

π
t ′ = σ

(
v πt ′ 

)
˙ v πt ′ = o t ′ · Ā + B 

π
t ′ −1 

s πt ′ −1 − B 

π
t ′ · s πt ′ +1 − v πt ′ 

This is one of the variational update equations denoted in

able 2 . The others can be derived in analogous manner. They have

 degree of biological plausibility in the sense that they are ordi-

ary differential equations. Note that while the free-energy is min-

mized separately for each factor of Q ( s t ′ | π) , the free-energy de-

ends on its Markov blanket Q ( s t ′ −1 | π) , Q ( s t ′ +1 | π) , and observa-

ions o t ′ , which are themselves minimized. The resulting message

assing scheme comprises a series of coupled differential equa-

ions that, at each time step t → t + 1 , is perturbed by an obser-

ation o t+1 . Within that time step, the system relaxes to a new

xed point. By construction, the specifics of the differential equa-

ions ˙ v πt ensures that the fixed point coincides with the minimum

f free-energy. Although it is not the main focus of the current pa-

er, such update equations can be linked to hierarchical message

assing in the brain ( Friston et al., 2017a ). 
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