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Abstract: There is little data on human milk oligosaccharide (HMO) composition in Sub-Saharan
Africa. Iron fortificants adversely affect the infant gut microbiota, while co-provision of prebiotic
galacto-oligosaccharides (GOS) mitigates most of the adverse effects. Whether variations in maternal
HMO profile can influence the infant response to iron and/or GOS fortificants is unknown. The aim
of this study was to determine HMO profiles and the secretor/non-secretor phenotype of lactating
Kenyan mothers and investigate their effects on the maternal and infant gut microbiota, and
on the infant response to a fortification intervention with 5 mg iron (2.5 mg as sodium iron
ethylenediaminetetraacetate and 2.5 mg as ferrous fumarate) and 7.5 g GOS. We studied mother–infant
pairs (n = 80) participating in a 4-month intervention trial in which the infants (aged 6.5–9.5 months)
received daily a micronutrient powder without iron, with iron or with iron and GOS. We assessed:
(1) maternal secretor status and HMO composition; (2) effects of secretor status on the maternal
and infant gut microbiota in a cross-sectional analysis at baseline of the intervention trial; and (3)
interactions between secretor status and intervention groups during the intervention trial on the infant
gut microbiota, gut inflammation, iron status, growth and infectious morbidity. Secretor prevalence
was 72% and HMOs differed between secretors and non-secretors and over time of lactation. Secretor
status did not predict the baseline composition of the maternal and infant gut microbiota. There
was a secretor-status-by-intervention-group interaction on Bifidobacterium (p = 0.021), Z-scores for
length-for-age (p = 0.022) and weight-for-age (p = 0.018), and soluble transferrin receptor (p = 0.041).
In the no iron group, longitudinal prevalence of diarrhea was higher among infants of non-secretors
(23.8%) than of secretors (10.4%) (p = 0.001). In conclusion, HMO profile may modulate the infant
gut microbiota response to fortificant iron; compared to infants of secretor mothers, infants of
non-secretor mothers may be more vulnerable to the adverse effect of iron but also benefit more from
the co-provision of GOS.
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1. Introduction

Human milk oligosaccharides (HMOs) represent the third most abundant solid milk component
after lipids and lactose in human breast milk, with a concentration of 5–10 g/L and more than 200
different structures [1]. The HMO composition of breast milk varies between mothers, differs across
geographic regions, and changes over the course of lactation [2–4]. HMOs with L-fucose (Fuc) residuals
in α-1-2-linkage such as 2-fucosyllactose (2′FL) and lacto-N-fucopentose I (LNFPI) are only present
in breast milk of women with a functional α-1-2-fucosyltransferase (FUT2) (the secretor phenotype),
but are absent in breast milk of women with a homozygous mutation in the FUT2 gene (the non-secretor
phenotype) [5]. Frequency of the secretor phenotype is estimated at ~80% worldwide but varies
between geographical regions [3,6]. The secretor phenotype predicts a higher risk for viral infections
(e.g., norovirus [7,8], rotavirus [9–11] and respiratory viruses [12]), while the non-secretor phenotype
predicts risk for enterotoxigenic Escherichia coli (ETEC) infection [13]. Two recent large cohort studies
in the United Kingdom and Canada found no association between maternal secretor status and the
overall maternal gut microbiota composition [14,15].

Most HMOs are not absorbed in the gastrointestinal tract of the breastfed infant and reach the
colon intact, where they can act as prebiotics [16]. Bifidobacterium spp., with strain specific ability, and
Bacteroides spp., both express enzymes for efficient use of HMOs as a carbon source [16]. The effects
of HMOs on the breastfed infant gut microbiota likely depend on the breast milk HMO profile, and
because there are differences in HMO composition between secretors and non-secretors [4,17], the
effects may vary by maternal secretor status [18–20]. Abundances of Bifidobacterium were found to
be higher among infants of secretor mothers [18–20], but not all studies agree [21–23]. Moreover,
HMOs may act as anti-adhesive antimicrobials by operating as receptors for potential pathogenic
bacteria (e.g., pathogenic E. coli, Campylobacter jejuni and Helicobacter pylori) and viruses [1,24–28]. High
relative abundances of α-1-2-linked-fucosyloligosaccharides and a higher ratio of α-1-2-linked- to
non-α-1-2-linked-fucosyloligosaccharides predict lower risk of infant diarrhea [29,30]. Recent studies
suggest HMO composition might affect infant growth [31–33], but not all studies agree [34].

To treat or prevent iron deficiency anemia (IDA) many infants in low-income countries receive
iron fortificants between 6–24 months of age [35]. However, iron is an essential micronutrient for most
gut bacteria and is important for virulence and colonization of potential enteropathogens [36].
Two trials in Kenyan infants have reported lower abundances of Bifidobacteria and higher
abundances of enteropathogens and enteropathogenic E. coli in infants receiving iron-containing
micronutrient powders (MNPs) [37,38]. We have recently shown that co-provision of prebiotic
galacto-oligosaccharides (GOS) in iron-containing MNPs mitigates most of the adverse effects of the
iron on the infant gut microbiota and increases iron absorption [37,39]. As ‘natural prebiotics’, HMOs
could provide similar protection from the adverse effects of iron fortificants on the infant gut microbiota,
and these protective effects could depend on specific HMO composition of breast milk and maternal
secretor status.

Therefore, our study aim was to: (1) determine breast milk HMO concentrations and secretor status
of lactating Kenyan mothers and investigate the effect of maternal secretor status on the maternal and
infant gut microbiota composition and gut inflammation, as well as on infant iron status and growth;
and (2) investigate the effect of maternal secretor status on the infant response to iron fortificants
with or without co-provision of GOS, in terms of effects on the infant gut microbiota, enteropathogen
abundances, inflammation, iron status, growth and infectious morbidity. We hypothesized that:
(1) maternal secretor status would not affect the maternal gut microbiota but would affect the infant
gut microbiota, with infants of secretor mothers having higher abundances of Bifidobacterium and
Bacteroides but lower abundances of enteropathogens; and (2) the adverse effect of iron on the infant
gut microbiota, as well as the beneficial effects of co-provision of GOS on the infant gut microbiota and
on iron absorption, would be stronger among infants of non-secretor mothers.
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2. Materials and Methods

2.1. Study Design

This study was nested within a 4-month, double-masked randomized controlled intervention
trial, conducted between October 2014 and January 2016 in southern coastal Kenya; its methods
have been previously described in detail [37]. The intervention trial was approved by the ethics and
research committees of the Kenyatta National Hospital/University of Nairobi, Kenya (P521/10/2013)
and the Zurich Cantonal Ethical Commission (2014–0232); this sub-study was approved by the
Kenyatta National Hospital/University of Nairobi, Kenya (P521/10/2013). The participating mothers
gave informed consent for themselves and their infant by either a written signature or a fingerprint.
An independent Data Safety Monitoring Board monitored the intervention study. The study was
registered at ClinicalTrials.gov; identifier: NCT02118402.

In the intervention trial, we included generally healthy infants 6.5–9.5 months of age who had
received no vitamin and mineral supplements 8 weeks and no antibiotics 10 weeks prior to study entry,
who had a hemoglobin (Hb) >70 g/L, and Z-scores weight-for-age (WAZ) and weight-for-length (WLZ)
both >−3. Enrolled infants (n = 155) were randomly assigned to three intervention groups using a
computer-generated list and three color codes: (1) the control group, receiving daily for 4 months a
MNP containing several minerals and vitamins but no iron and 10.5 g of maltodextrin as a carrier
in the sachet, (2) the Fe group, receiving daily for 4 months the same MNP but with 2.5 mg iron as
sodium iron ethylenediaminetetraacetate (NaFeEDTA) and 2.5 mg iron as ferrous fumarate, and (3) the
FeGOS group, receiving daily for 4 months the alike MNP as the Fe group, except the maltodextrin
was replaced with 10.5 g of 75% GOS (Vivinal GOS 75 Powder, Friesland Campina, Wageningen, The
Netherlands). Table 1 shows the composition of the MNPs used in the study. Study participants and
investigators were masked to group assignment. Weekly for 4 months we dispensed seven MNP
sachets and 2 kg of unfortified, refined maize flour to the mothers. During the weekly visits, we
assessed compliance by questioning the caregiver and collecting the previous week’s used and unused
MNP sachets, and infant morbidity over the previous seven days using a forced-choice questionnaire
on days affected by: diarrhea (defined as ≥ 3 loose stools in a day) and/or mucus in stool; respiratory
tract infections (RTIs) (defined as cough and/or difficult or rapid breathing); fever; and/or other illness.

Table 1. Composition of the micronutrient powder formulations used in this study.

Components Control Group Fe Group FeGOS Group

Amount per sachet Amount per sachet Amount per sachet
Vitamin A 400 µg 400 µg 400 µg
Vitamin D 5 µg 5 µg 5 µg

Tocopherol Equivalents 5 mg 5 mg 5 mg
Thiamine 0.5 mg 0.5 mg 0.5 mg
Riboflavin 0.5 mg 0.5 mg 0.5 mg
Vitamin B6 0.5 mg 0.5 mg 0.5 mg
Folic Acid 90 µg 90 µg 90 µg

Niacin 6 mg 6 mg 6 mg
Vitamin B12 0.9 µg 0.9 µg 0.9 µg
Vitamin C 30 mg 30 mg 30 mg

Copper 0.56 mg 0.56 mg 0.56 mg
Iodine 90 µg 90 µg 90 µg

Selenium 17 µg 17 µg 17 µg
Zinc 4.1 mg 4.1 mg 4.1 mg

Phytase 190 FTU 190 FTU 190 FTU
Maltodextrin 10.5 g 10.5 g

Galacto-oligosaccharides 10.5 g
Iron (as ferrous fumarate) 2.5 mg 2.5 mg

Iron (as NaFeEDTA) 2.5 mg 2.5 mg

FTU, phytase unit; NaFeEDTA, sodium iron ethylenediaminetetraacetate; GOS, galacto-oligosaccharides.
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All of the mothers of the participating infants (n = 155) were asked to join this sub-study;
80 mothers gave informed consent and were included in this sub-study. Fecal samples from all included
mothers and infants were collected at baseline, after 3 weeks and after 4 months of the intervention
for determination of the gut microbiota by 16S rDNA sequencing, enteropathogens by quantitative
polymerase chain reaction (qPCR) and fecal calprotectin. Mothers were carefully instructed on fecal
sample collection and were given plastic diapers (for collection of the infant fecal sample), spatulas
and screw-cap plastic containers containing a carbon dioxide generator system to create an anaerobic
atmosphere (Microbiology Anaerocult A mini, Merck, Darmstadt, Germany). The fecal samples were
collected at home into the containers. The study team aliquoted and stored the fecal sample at −20 ◦C
the same day until further analysis. Breast milk samples for analysis of HMOs were obtained by
manual expression by the mother into a clean plastic container. The samples were kept cool until the
study team aliquoted and stored them at −20 ◦C the same day until further analysis. From all mothers
(n = 80) we collected a breast milk sample at one time point; the time point of this sample collection
was not standardized. From a sub-group of all mothers (n = 16) we collected breast milk samples at
two different time points of lactation for determination of potential changes in HMO composition
over time; the time points of collection of these two samples were standardized in that the second
sample was collected 3 months later in lactation than the first sample. A blood sample from all infants
was collected at baseline and after 4 months of the intervention for determination of Hb, plasma
ferritin (PF), soluble transferrin receptor (sTfR), C reactive protein (CRP), alpha-glycoprotein (AGP)
and intestinal fatty acid binding protein (I-FABP). At baseline and after 4 months of the intervention
we measured infant weight and length. At baseline we recorded demographic characteristics, brief
medical history and feeding habits of the infant and mothers, including information on breastfeeding,
using a questionnaire and local health records.

2.2. Laboratory Methods

Breast milk samples: HMO composition in maternal breast milk samples was quantitatively
determined using high-performance anion-exchange chromatography coupled with pulse amperometric
detection (HPAE-PAD) [40,41]; details are given in the Supplementary Material (Supplementary Methods
and Table S1).

Fecal samples: Details on the protocol used for DNA extraction of infant and maternal fecal samples
are given in the Supplementary Material (Supplementary Methods). Using a 2-step PCR, barcoded
amplicons from the V3–V4 region of 16S rRNA genes were generated. For initial amplification
of the V3–V4 part of the 16S rRNA we used universal primers appended with Illumina adaptor
sequences. PCR products were purified, checked on a Bioanalyzer (Agilent) and quantified. Illumina
MiSeq with the paired-end (2×) 300 bp protocol and indexing was used for sequencing, followed
by de-multiplexing and quality control. Details of the method are given in the Supplementary
Material (Supplementary Methods). Selected enteropathogenic bacteria (Clostridium difficile, Clostridium
perfringens, enterohemorrhagic E. coli with shiga toxin 1 (EHEC stx1), enterohemorrhagic E. coli with
shiga toxin 2 (EHEC stx2), enteropathogenic E. coli with the attaching and effacing gene (EPEC
eaeA), enterotoxigenic E. coli with heat-stable enterotoxin (ETEC ST), enterotoxigenic E. coli with
heat-labile enterotoxin (ETEC LT), Salmonella spp. and Staphylococcus aureus) were targeted in infant and
maternal fecal DNA using qPCR. Details of the qPCR method are given in the Supplementary Material
(Supplementary Methods). Primers used for qPCR [42–44] are given in Table S2. We measured fecal
calprotectin in all infant fecal samples using the Calprest ELISA assay for fecal samples (Eurospital,
Trieste, Italy).

Blood samples: We collected a venous blood sample (3 mL) from the infant at baseline and
4 months. Using a HemoCue 300 analyzer (HemoCue, Angelholm, Sweden) we measured Hb on the
day of collection. After centrifugation to separate plasma, we froze the plasma on the day of collection
until further analysis of PF, sTfR, CRP and AGP using a multiplex immunoassay [45]. We measured
plasma I-FABP using a commercially available ELISA (Hycult Biotech, Uden, The Netherlands).
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2.3. Data and Statistical Analysis

We defined total fucosylated HMOs as the sum of 2′FL, 3-fucosyllactose (3′FL), LNFPI, lacto-N-
fucopentaose II (LNFPII) and lacto-N-fucopentaose III (LNFPIII); total sialylated HMOs as the sum of
6-sialyllactose (6′SL), 3-sialyllactose (3′SL), sialyllacto-N-tetraose d (LSTd), sialyllacto-N-tetraose a (LSTa)
and disialyl-lacto-N-teraose (DSLNT); and total non-fucosylated and non-sialylated HMOs as the sum of
lacto-N-neotetraose (LNnT), lacto-N-teraose (LNT) and lacto-N-neohexaose (LNnH). We analyzed absolute
and relative concentration of HMOs; details are given in the Supplementary Material (Supplementary
Methods). We defined a mother as being non-secretor if there were no detectable concentrations of
α-1-2-linked fucosylated HMOs (2′FL and LNFPI) in her breast milk sample. Z-scores for length-for-age
(LAZ), WAZ and WLZ were calculated using the WHO Anthro software (Version 3.2.2.1). We calculated
body iron stores (BIS) from the sTfR/PF ratio using the following equation: BIS (mg/kg) = ((log(sTfR / PF)
− 2.8229) / 0.1207 [46]. We calculated total BIS by multiplying BIS with infant weight.

We analyzed 16S rRNA gene sequences using a workflow based on Qiime 1.8 [47]. We
performed operational taxonomic unit (OTU) clustering (open reference), taxonomic assignment and
reference alignment with the pick_open_reference_otus.py workflow script of Qiime, using uclust as
clustering method (97% identity) and GreenGenes v13.8 as reference database for taxonomic assignment.
Reference-based chimera removal was done with Uchime [48]. The RDP classifier version 2.2 was
performed for taxonomic classification [49]. We performed statistical tests as implemented in SciPy
(https://www.scipy.org/), downstream of the Qiime-based workflow. We used the Fluidigm Real-Time
PCR Analysis Software and Excel (Microsoft Office 2010) for processing the qPCR data, including melting
curve analysis. Details of the methods are given in the Supplementary Material (Supplementary Methods).

We performed multivariate redundancy analyses (RDAs) on the infant and maternal gut microbiota
composition as assessed by 16S rRNA gene sequencing in Canoco version 5.11 using default settings
of the analysis type “Constrained” [50]; details of the method and comparisons are given in the
Supplementary Material (Supplementary Methods). We tested for between group differences at
baseline (secretor vs. non-secretor mothers and infants of secretor mothers vs. infants of non-secretor
mothers, respectively) in alpha diversity and abundance of the taxa of primary interest (Bacteroidetes,
Bifidobacterium, Clostridiales, Enterobacteriaceae and Lactobacillus) and of all taxa, using Wilcoxon rank-sum
tests with FDR correction for multiple testing. We tested for differences in alpha diversity (PD whole
tree, and for Bifidobacterium diversity analysis also Shannon index), phylogenetic distance (weighted
UniFrac within individuals between baseline and 3 weeks sample, and between baseline and 4 months)
and abundance of the taxa of primary interest and of all taxa, at baseline, 3 weeks and 4 months between
the intervention–secretor-status groups (control group infants of secretor mothers (control-S) and of
non-secretor mothers (control-NS), Fe group infants of secretor mothers (Fe-S) and of non-secretor
mothers (Fe-NS), FeGOS group infants of secretor mothers (FeGOS-S) and of non-secretor mothers
(FeGOS-NS)), using Kruskal–Wallis tests with Dunn’s post hoc test to adjust for multiple comparisons.
Details of the comparisons are given in the Supplementary Material (Supplementary Methods).

We analyzed demographic, anthropometric and biochemical data using the R statistical
programming environment (R. 3.4.1 software; R Core Team). Normally distributed data are shown
as mean ± SD and non-normally distributed data as median (IQR). We tested for changes over
time of lactation in HMO concentration using Wilcoxon signed-rank tests. We tested for between
group differences (secretor vs. non-secretor mothers and infants of secretor mothers vs. infants of
non-secretor mothers, respectively) of biochemical data at baseline using t-tests or Wilcoxon rank-sum
tests. The interaction between maternal secretor status (secretor and non-secretor) and intervention
groups (control, Fe and FeGOS) was investigated by fitting linear mixed-effect models using CRAN
package lme. We defined the fixed effects on the variance as time, secretor status, intervention
group, time-by-secretor-status, time-by-intervention-group, secretor-status-by-intervention group and
time-by-secretor-status-by-intervention-group, and the random structure as the subject to control
between-subject differences. Post hoc analyses were performed to investigate the effect of time within
group (intervention–secretor-status groups). Details of the methods and comparisons are given

https://www.scipy.org/
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in the Supplementary Material (Supplementary Methods). We evaluated infant morbidity using
longitudinal prevalence ratio (LPR) [51,52]; details of the method are given in the Supplementary
Material (Supplementary Methods).

In all analyses, p values < 0.05 were considered statistically significant.

3. Results

3.1. Characteristics of the Study Population

Eighty mother–infant pairs were enrolled; 5 mother–infant pairs were excluded due to inadequate
fecal and/or breast milk sample collection. Data from 75 mother–infant pairs were included in the
data analyses. Characteristics of the study population at baseline, overall and by maternal secretor
status are given in Table 2. Median duration of exclusive breastfeeding was 6 months. At baseline,
all infants were already receiving complementary foods, mainly maize porridge, and all were still
partially breastfed. During the period of the intervention study, more than 50% of the mothers reported
breastfeeding >5 times per day and the remaining mothers reported breastfeeding between 1–5 times
per day. During the intervention study, compliance with the MNP sachets was 96%, 97% and 95% in
the control, Fe and FeGOS groups, respectively.

Table 2. Characteristics of the study population at baseline. Age, parity, gender, anthropometrics,
hematological and inflammation status, fecal calprotectin and plasma I-FABP. Differences in these
variables among Kenyan mothers (n = 75) and Kenyan infants (n = 75) at baseline, by maternal
secretor status.

All (n = 75) Secretor (n = 54) Non-Secretor (n = 21)

Mothers
Age (y) 1 26 (22–30) 3 25 (20–29) 28 (25–33)

Parity (n) 2 3 (1,10) 4 3 (1,10) 4 (1,9)
Infants

Age (mo) 7.2 (7.0–8.2) 7.2 (7.0–8.2) 7.1 (7.0–7.9)
Gender (m/f) (n (%)) 34 (45%)/41 (55%) 25 (47%)/29 (54%) 9 (43%)/12 (57%)

Weight (kg) 7.5 (7.0–8.5) 7.5 (7.0–8.5) 7.5 (7.0–8.2)
Length (cm) 67.5 (66.0–69.5) 67.5 (66.0–69.4) 68.0 (66.0–69.5)

WAZ −0.43 ± 1.15 5 −0.35 ± 1.18 −0.63 ± 1.06
WLZ −0.18 ± 1.25 −0.07 ± 1.26 −0.46 ± 1.22
LAZ −0.40 ± 1.09 −0.40 ± 1.09 −0.39 ± 1.12

Hemoglobin (g/L) 104 (97–111) 104 (97–113) 104 (98–107)
Plasma ferritin (µg/L) 16.5 (10.0–31.6) 17.2 (10.3–38.4) 15.8 (9.7–24.6)

Soluble transferrin receptor (mg/L) 11.0 (8.6–14.8) 10.2 (8.3–13.8) 12.6 (10.1–16.8)
C reactive protein (mg/L) 1.1 (0.5–6.0) 1.1 (0.4–5.7) 1.1 (0.6–10.8)
Alpha-glycoprotein (g/L) 1.0 (0.7–1.7) 1.0 (0.7–1.8) 0.9 (0.6–1.7)
Fecal calprotectin (µg/g) 228.9 (132.7–347.5) 218.3 (129.9–324.4) 281.1 (136.5–409.4)

I-FABP (pg/mL) 822.6 (677.3–1327.9) 861.0 (688.8–1420.0) 753.2 (527.2–1203.7)
1 All, n = 74, age missing for one mother in the secretor group. 2 Number of infants including infant enrolled into
this study. 3 Median (IQR), all such values. 4 Median (min, max), all such values. 5 Mean ± SD, all such values.
WAZ, weight-for-age Z-score; WLZ, weight-for-length Z-score; LAZ, length-for-age Z-score; I-FABP, intestinal fatty
acid binding protein. Between group differences (secretor vs. non-secretor) were tested using t-tests or Wilcoxon
rank-sum tests. There were no significant between group differences.

3.2. Maternal Secretor Status, HMO Composition and the Maternal Gut Microbiota

Maternal secretor status and HMO composition: A breast milk sample was collected from
75 mothers at one time point of lactation. Median (IQR) lactation stage (month postpartum) at the
time of this breast milk sample collection was for all mothers 14.1 (11.2–16.5), for secretor mothers
13.8 (11.2–15.9) and for non-secretor mothers 16.1 (11.4–18.0). Fifty-four of the mothers (72%) were
identified as being secretors and 21 (28%) as non-secretors. HMO concentrations among all mothers
and by secretor status are given in Table S3. Mean relative HMO concentrations by secretor status are
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shown in Figure 1A. Only breast milk of secretor mothers contained 2′FL and LNFPI, while there was
no measurable concentration of these two HMOs in breast milk of non-secretor mothers. Absolute and
relative concentrations of LNFPIII and relative concentration of LNT were higher among non-secretor
mothers compared to secretor mothers (p = 0.015 and p = 0.035, respectively). The higher absolute
concentrations of LNFPII and LNT among non-secretor mothers compared to secretor mothers failed
to reach significance (p = 0.097 and p = 0.075, respectively).
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I; LNFPII, lacto-N-fucopentaose II; LNFPIII, lacto-N-fucopentaose III; LNnT, lacto-N-neotetraose;
LNT, lacto-N-teraose; LNnH, lacto-N-neohexaose; 6′SL, 6-sialyllactose; 3′SL, 3-sialyllactose; LSTd,
sialyllacto-N-tetraose d; LSTa, sialyllacto-N-tetraose a; and DSLNT, disialyl-lacto-N-teraose. Differences
between groups and time points were tested using Wilcoxon rank-sum tests and Wilcoxon signed-rank
tests, respectively; * p < 0.05, ◦ p < 0.10.

HMO abundances over the course of lactation: From a sub-group of all mothers (n = 16) we
collected breast milk samples at two different time points of lactation. Median (IQR) lactation stage
(months postpartum) when the first and second breast milk samples were collected was 7.9 (7.8–8.5)
and 10.9 (10.7–11.5). Absolute and relative HMO concentrations at the two time points are given in
Table S4 and are shown in Figure 1B. Absolute concentrations of LNnT, 6′SL, LSTa, total sialylated
HMOs and total HMOs decreased over lactation (p = 0.022, p = 0.003, p = 0.006, p = 0.001 and p = 0.034,
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respectively). Absolute concentration of non-fucosylated and non-sialylated HMOs decreased among
secretor mothers (p = 0.042). Relative concentrations of LNnT, 6′SL, LSTa and of total sialylated
HMOs decreased over lactation (p = 0.022, p = 0.003, p = 0.006 and p = 0.001, respectively). Relative
concentration of 3′SL decreased among secretor mothers (p = 0.042). In contrast, relative concentrations
of 2′FL, 3′FL, LNT and of total fucosylated HMOs increased over lactation (p = 0.003, p = 0.004, p = 0.025
and p = 0.002, respectively).

Maternal gut microbiota composition by secretor status, by 16S rDNA sequencing: Per sample on
average 16657 bacterial 16S rDNA sequences were analyzed by 16S rDNA sequencing. At baseline,
among all mothers, among secretor mothers and among non-secretor mothers, respectively the
microbiota was composed of the phylum Actinobacteria (8.9%, 9.0% and 8.7% of the 16S rDNA reads),
Firmicutes (73.7%, 73.3% and 74.6%), Bacteroidetes (12.6%, 12.5% and 12.8%) and Proteobacteria (3.6%,
4.1% and 2.5%). Details on the microbiota composition are shown in Figure S1A–C. There were no
significant differences in the RDA on all OTUs and in the RDA on Bifidobacterium OTUs, in phylogenetic
diversity (alpha-diversity; PD whole tree), or in any individual taxa at baseline between secretor
mothers and non-secretor mothers.

Maternal gut microbiota by secretor status, by qPCR: abundances and occurrence of gut pathogens:
From all maternal fecal samples analyzed (n = 66), we detected C. perfringens in 67% (median log
gene copies/g feces in samples with detected abundances: 4.4 (IQR: 4.0–5.1)), EPEC eaeA in 39% (5.1
(4.4–5.5)), ETEC ST in 23% (4.1 (3.9–4.5)), EHEC stx2 in 18% (4.5 (4.1–5.4)), ETEC LT in 14% (5.7 (5.0–6.3)),
and EHEC stx1 in 9% (4.1 (3.9–4.3)). C. difficile was not detected. Abundance of C. perfringens was
significantly higher among non-secretor mothers (detected in 70%, 4.9 (4.7–5.6)) compared to secretor
mothers (65%, 4.1 (3.8–4.9)) (p = 0.028). There was no significant difference in the abundance of
the sum of virulence and toxin genes (VTGs) of pathogenic E. coli (eaeA, LT, ST, stx1, stx2) between
secretor mothers (61%, 5.1 (4.6–5.8)) and non-secretor mothers (50%, 4.4 (4.1–5.6)) (p = 0.125) and in the
abundance of the sum of all pathogens between secretor mothers (85%, 5.1 (4.3–5.8)) and non-secretor
mothers (85%, 5.3 (4.7–5.7)) (p = 0.698).

3.3. Cross-Sectional Analyses at Baseline: Comparison of Infants of Secretor Mothers and Infants of
Non-Secretor Mothers

Infant gut microbiota composition by 16S rDNA sequencing: Per sample on average 24696 bacterial
16S rDNA sequences were analyzed by 16S rDNA sequencing. At baseline, among all infants, among
infants of secretor mothers and among infants of non-secretor mothers, respectively the microbiota
consisted of the phyla Actinobacteria (68.2%, 66.7% and 72.2% of the 16S rDNA reads, which was
mostly represented by the family Bifidobacteriaceae (61.8%, 61.1% and 63.6%)), Firmicutes (27.2%, 28.7%
and 23.3%; including 10.6%, 10.4% and 11.2% Clostridiales, and 3.6%, 4.0% and 2.7% Lactobacillus),
Bacteroidetes (1.5%, 1.8% and 0.6%) and Proteobacteria (3.0%, 2.7% and 3.7%; with the predominant
family Enterobacteriaceae (2.9%, 2.6% and 3.7%)). Details are given in Figure S2A–C. There were no
significant differences in the RDA on all OTUs and in the RDA on Bifidobacterium OTUs, in overall
phylogenetic diversity (alpha-diversity; PD whole tree) and Bifidobacterium OTUs specific phylogenetic
diversity (PD whole tree and Shannon index), or in any individual taxa at baseline between infants of
secretor mothers and infants of non-secretor mothers.

Infant gut microbiota by PCR: abundance and occurrence of gut pathogens: From all analyzed
infant fecal samples (n = 75), we detected C. perfringens in 68% (median log gene copies/g feces in samples
with detected abundances: 4.6 (IQR: 3.9–5.1)), EPEC eaeA in 65% (5.4 (4.8–6.5)), C. difficile in 44% (5.6
(4.7–6.0)), ETEC LT in 27% (6.6 (5.8–8.0)), EHEC stx2 in 19% (4.3 (4.0–4.7)), ETEC ST in 15% (4.4 (4.1–5.8)),
S. aureus in 13% (4.5 (4.5–5.1)), EHEC stx1 in 7% (4.3 (3.9–4.7)) and Salmonella spp. in 3% (4.5 (4.4–4.6)).
Comparing infants of secretor mothers to infants of non-secretor mothers, there were no significant
differences in the abundance of the sum of all pathogens (p = 0.895), the abundance of the sum of VTGs
of pathogenic E. coli (p = 0.763), or when analyzing all pathogens separately. Secretor status did not
predict the sum of all pathogens and VTGs of pathogenic E. coli in a linear regression model.
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Infant anthropometrics, hematological and inflammation status, plasma I-FABP and fecal
calprotectin: There were no significant differences in anthropometrics, Hb, PF, sTfR, CRP, AGP,
I-FABP, or fecal calprotectin between infants of secretor mothers and infants of non-secretor mothers
(Table 2). In linear regression models, maternal secretor status did not significantly predict infant
weight, length, LAZ, WAZ, WLZ, Hb, PF, sTfR, CRP, AGP, I-FABP or fecal calprotectin.

3.4. Effect of Maternal Secretor Status on the Infant Response to the Iron and GOS Intervention

Infant gut microbiota composition by 16S rDNA sequencing: There were no significant differences
in the RDAs on all OTUs and in the RDAs on Bifidobacterium OTUs, in phylogenetic diversity
(alpha-diversity; PD whole tree), phylogenetic diversity on Bifidobacterium OTUs (PD whole tree), and
Shannon Index on Bifidobacterium OTUs, or in beta-diversity (weighted Unifrac) at baseline, 3 weeks
and 4 months when comparing the intervention–secretor-status groups (control-S (n = 21), control-NS
(n = 5), Fe-S (n = 16), Fe-NS (n = 8), FeGOS-S (n = 17) and FeGOS-NS (n = 8)). In the mixed-effect model
on Bifidobacterium abundances there was a significant secretor-status-by-intervention-group interaction
(p = 0.021). Post hoc tests for within intervention–secretor-status group differences showed a significant
decrease in Bifidobacterium abundances from baseline to 4 months in the Fe-NS group (p = 0.028). Relative
abundances of Bifidobacterium at baseline, 3 weeks and 4 months, by intervention–secretor-status
groups are shown in Figure 2A. In the cross-sectional analyses at baseline, 3 weeks and 4 months and
in the longitudinal analyses from baseline to 3 weeks and from baseline to 4 months there were no
significant differences in any other taxa when comparing the intervention–secretor-status groups.

Infant gut microbiota by qPCR: abundances and occurrence of gut pathogens: There was
a significant time-by-intervention-group (p = 0.007) and a secretor-status-by-intervention-group
interaction (p = 0.096) on the sum of all pathogens from baseline to 3 weeks. Log gene copies/g feces of
the sum of all pathogens at baseline and 3 weeks, by intervention–secretor-status groups are shown in
Figure 2B. Within the Fe intervention group infants of non-secretor mothers (Fe-NS) have a greater
increase in the sum of all pathogens. Within the FeGOS intervention groups the decrease in the sum of
pathogens was particularly pronounced among infants of non-secretor mothers (FeGOS-NS). Post hoc
tests for within group differences were not statistically significant after adjusting for multiple testing.

Fecal calprotectin and plasma I-FABP: There was a time-by-secretor-status-by-intervention-group
(p = 0.086), time-by-secretor-status (p = 0.066) and time-by-intervention-group (p = 0.068) effect on fecal
calprotectin from baseline to 3 weeks and a time-by-secretor-status effect from baseline to 4 months
(p = 0.017). Post hoc tests on within group differences from baseline to 3 weeks and from baseline to
4 months showed a significant decrease in the Control-NS group (p = 0.008 and p = 0.014, respectively).
There was no significant time-by-secretor-status-by-intervention-group, time-by-secretor-status or
secretor-status-by-intervention-group effect on I-FABP.

Infant anthropometrics: There was a significant time-by-secretor-status-by-intervention-group
effect (p = 0.023) and secretor-status-by-intervention-group effect (p = 0.022) on LAZ and a significant
secretor-status-by-intervention-group effect (p = 0.018) on WAZ. Post hoc tests on within group
differences from baseline to 4 months showed a significant decrease in LAZ in the Control-S and Fe-NS
groups (p = 0.031 and p = 0.002, respectively). LAZ at baseline and 4 months of the intervention,
by intervention–secretor-status groups is shown in Figure 2C.

Hemoglobin and iron status: There was a significant time-by-intervention-group effect on Hb
(p = 0.036) but no significant time-by-secretor-status-by-intervention-group, time-by-secretor-status or
secretor-status-by-intervention-group effect. The time-by-secretor-status effect on PF was borderline
significant (p = 0.052) and there was a significant time-by-intervention-group and secretor-status-by-
intervention-group effect on sTfR (p = 0.002 and p = 0.041, respectively). There was a significant
time-by-intervention-group effect and time-by-secretor-status effect on BIS (p = 0.011 and p = 0.023,
respectively) and on total BIS (p = 0.003 and p = 0.016, respectively). Post hoc tests on within group
differences from baseline to 4 months showed a significant increase in PF, BIS and total BIS in the
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FeGOS-NS group (p = 0.043, p = 0.012 and p = 0.002, respectively). Total BIS at baseline and 4 months,
by intervention–secretor-status groups is shown in Figure 2D.
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Figure 2. Relative abundances of Bifidobacterium and of the sum of virulence and toxin genes of the
10 targeted pathogens, length-for-age Z-score and total body iron, by group. Kenyan infants (n = 75)
receiving daily a micronutrient powder containing either no iron (Control–) (n = 26), containing 5 mg
of iron (Fe–) (n = 24), or containing 5 mg of iron and 7.5 g of galacto-oligosaccharides (FeGOS–)
(n = 25), and being breastfed by either a non-secretor mother (–NS) (n = 21) or a secretor mother
(–S) (n = 54). (A) Relative abundance of Bifidobacterium by group at baseline (0), 3 weeks (3w)
and 4 month (4m) of the intervention. (B) Log gene copies/g feces of the sum of all pathogens
by group at baseline (0) and 3 weeks (3 w) of the intervention. (C) Length-for-age Z-score by
group at baseline (0) and 4 month (4m) of the intervention. (D) Total body iron (mg) by group at
baseline (0) and 4 month (4m) of the intervention. We assessed an interaction between maternal
secretor status and intervention-groups by fitting linear mixed-effect models using CRAN package
lme. We defined the fixed effects on the variance as time, secretor-status, intervention-group,
time-by-intervention-group, time-by-secretor-status, secretor-status-by-intervention-group, and
time-by-secretor-status-by-intervention-group, and the random structure was defined as the subject.
There was a significant secretor-status-by-intervention-group effect on Bifidobacterium abundance
(p = 0.021), a significant time-by-secretor-status-by-intervention-group effect (p = 0.023) and a significant
secretor-status-by-intervention group effect (p = 0.022) on length-for-age Z-score, and a significant
time-by-intervention-group (p = 0.003) and time-by-secretor-status (p = 0.016) effect on total body
iron. Post hoc analyses were performed to investigate the effect of time within group. Boxes show the
median and 25th and 75th percentile; whiskers extend to the furthest data point that is within 1.5 times
the IQR. * p < 0.05; ** p < 0.01.

Infant morbidity: Longitudinal prevalence (percentage of weeks with illness) of diarrhea and/or
mucus in the stool was higher in the Control-NS group (23.8%) compared to the Control-S group
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(10.4%) (LPR = 2.28, 95% CI 1.38 to 3.77, p = 0.001) but was not different between FeGOS-NS (16.4%)
and FeGOS-S (11.0%) (p = 0.132) and between Fe-NS (9.4%) and Fe-S (12.5%) (p = 0.376). Longitudinal
prevalence of RTIs was higher in Fe-S (19.5%) compared to Fe-NS (10.9%) (LPR = 0.56, 95% CI 0.32 to
0.97, p = 0.040) but was not different between Control-NS (10.0%) and Control-S (14.0%) (p = 0.359) and
between FeGOS-NS (18.1%) and FeGOS-S (12.5%) (p = 0.135).

4. Discussion

Our main findings are: (1) a secretor prevalence of 72%; (2) significant differences in concentration
of HMOs between secretor and non-secretor mothers and over time of lactation; (3) no significant
differences in the overall gut microbiota composition, phylogenetic diversity, abundances of taxa of
primary interest and abundances of enteropathogens comparing secretor to non-secretor mothers
and infants of secretor to infants of non-secretor mothers, respectively, with the exception of a higher
abundance of C. perfringens among non-secretor compared to secretor mothers; (4) a significant
secretor-status-by-intervention-group interaction on Bifidobacterium abundance, LAZ and WAZ, and
sTfR; and (5) among infants in the intervention control group, a higher longitudinal prevalence of
diarrhea among infants of non-secretor compared to infants of secretor mothers.

Secretor prevalence (72%) in our study is at the lower end of published prevalence data. Worldwide
secretor frequency is estimated at ~80%, but varies across different geographic areas [3,6]: 67–95%
in the United States [3,7,18,53–55], 64–87% in the United Kingdom, Spain, Finland, Sweden and
Italy [2,14,17,56–60], 85% in India [56], 77% and 80% in China [20,61], and 51–81% in Africa (Burkina
Faso, Ethiopia, Ghana, Kenya, South Africa, The Gambia and Malawi) [3,54,60,62,63]. Secretor
prevalence in urban and rural Gambia is 85% and 65%, respectively, and in urban and rural Ethiopia is
78% and 65%, respectively [3]. In urban Kenya (Nakuru), secretor prevalence is 81% [3], and like the
above data from The Gambia and Ethiopia, our secretor prevalence in rural Kenya is lower, at 72%.

Our findings agree with previous studies reporting higher concentration of total HMOs [2,17,64]
and higher abundances of fucosylated HMOs [2,54,64] in secretor compared to non-secretor mothers,
but not all studies agree [18,54]. Two studies reported higher abundances of sialylated HMOs in
non-secretor compared to secretor mothers [2,54], while others (as in our study) found no difference [64].
Higher abundances of 2′FL, LNFPI and 3′FL have been reported in secretor compared to non-secretor
mothers [2,17], but others found 3′FL to be higher in non-secretor mothers [4]. Our findings agree with
previous studies reporting higher amounts of LNT, LNFPII and LNFPIII in non-secretor mothers [2,4,17].
Our findings also agree with previous studies reporting total HMO concentrations decrease over the
course of lactation [54]. The relatively low median total HMO concentration of 4.5 g/L in our study,
compared to reported values of 5–10 g/L [1], is likely explained by our sampling in the late stage of
lactation. Our finding of decreases over lactation of LNnT, 6′SL, LSTa and total sialylated HMOs but
increases of 3′FL, 2′FL, LNT and total fucosylated HMOs are in general agreement with previous data,
although findings vary [2,4,20,54,65].

To our knowledge, our study is the first to investigate the effect of maternal secretor status among
mothers and infants living in rural Kenya, an area with low hygiene conditions and a high burden of
infectious diseases. Our findings show that maternal secretor status does not have a major impact on
the gut microbiota of the mothers. Previous studies have linked maternal secretor status to a higher risk
for viral infections, including norovirus [7,8,66], rotavirus [9–11,58,67,68] and respiratory viruses [12]
in women. In contrast, maternal non-secretor status has been linked with symptomatic ETEC infection
in women [13]. In our study, there were no differences in abundance of enteropathogens comparing
secretor to non-secretor mothers, with the exception of higher C. perfringens among non-secretor
mothers. Our findings agree with two cohort studies in the United Kingdom (n = 1503) and Canada
(n = 1190), reporting no association between maternal secretor status and the overall gut microbiota
composition, microbiota diversity and relative abundance of taxa in women [14,15], while others
reported differences in the gut microbiota comparing secretor and non-secretor women [53,56,58].
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Our findings also show that secretor status does not have a major impact on the infant gut
microbiota in this setting. Some studies have found differences in the gut microbiota of infants of
secretor mothers compared to infants of non-secretor mothers [18–20], but others have not [21–23].
Our findings agree with studies from Finland, India and the United States reporting no differences
in the infant gut microbiome based on maternal secretor status [21–23] and with studies showing no
association between infant microbiota alpha-diversity and maternal secretor status [19,20]. Studies
in Australian toddlers, and from younger infants in China and the United States, reported higher
abundance of Bifidobacterium among children of secretor mothers [18–20]; this was not confirmed in
our study.

In our study, during the 4 months of intervention, among infants in the control group, longitudinal
prevalence of diarrhea and/or mucus in the stool was higher among infants of non-secretor mothers
compared to infants of secretor mothers. Two previous studies found lower incidence of diarrhea among
infants breastfed with milk being high in relative abundance of α-1-2-linked-fucosyloligosaccharides
or having a high ratio of α-1-2-linked- to non-α-1-2-linked-fucosyloligosaccharides [29,30]. Higher
relative amounts of LNT and lower levels of LNFPI and LNFPII were found in milk of Gambian
mothers whose infant was sick compared to milk of mothers whose infant was not sick [32].

There were no significant differences in anthropometrics at baseline between infants of secretor
mothers and infants of non-secretor mothers in our study. Recent studies suggest breast milk HMO
composition may affect infant growth [31–33], but not all studies agree [34]. Breast milk from
non-secretor mothers from severely stunted infants in Malawi showed different HMO concentrations
compared to breast milk from non-secretor mothers from healthy infants, with lower concentrations of
sialylated and fucosylated HMOs [31].

Importantly, the differing breast milk HMO profile of secretor and non-secretor mothers appeared
to modulate the impact of the iron and GOS intervention. Infants in the Fe group and of non-secretor
mothers were particularly vulnerable to the decrease in abundance of Bifidobacterium and to the increase
in the sum of all pathogens. However, infants of non-secretor mothers benefited the most from
the co-provision of GOS (FeGOS-NS group) in maintaining high abundances of Bifidobacterium and
reducing enteropathogens. Moreover, there was a secretor-status-by-intervention-group interaction on
iron status: within the FeGOS intervention group, there were greater improvements in PF, sTfR and BIS
among infants of non-secretor mothers, suggesting the enhancing effect of GOS on iron absorption [39]
might be stronger in infants of non-secretor mothers.

Our study has several strengths: (1) the quantitative analysis of HMOs in breast milk samples
including investigation of changes over duration of lactation; (2) the extensive characterization of
the infant and maternal gut microbiota using both 16S rDNA sequencing and qPCR for selected
enteropathogens; and (3) inclusion of mothers and infants from an area of poor hygiene with a high
burden of diarrhea and other infectious diseases. Our study was limited in that we did not standardize
the time of the day when the breast milk samples were collected nor on whether to collect fore or
hind milk, we did not investigate individual Bifidobacterium spp., and we enrolled a relatively small
sample size.

5. Conclusions

In conclusion, maternal secretor status modulated the effects of the iron and GOS intervention:
compared to infants of secretor mothers, infants of non-secretor mothers may be more vulnerable
to the adverse effect of fortificant iron on the gut microbiota, resulting in decreased abundances
of Bifidobacterium and increased abundances of enteropathogens, but also benefit more from the
co-provision of GOS in terms of beneficial effects on the gut microbiota and improving iron status.
Future studies would be valuable to investigate the effect of specific HMOs on iron absorption and
their effects on the gut microbiota when given with fortificant iron.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/11/2596/s1,
supplementary material: Supplementary Methods and Supplementary Results including Table S1: Gradient
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elution program, Table S2: Primers used for quantitative polymerase chain reaction, Table S3: Absolute and
relative concentration of human milk oligosaccharides (HMOs) in breast milk samples of Kenyan mothers (n = 75),
all and by secretor status, Table S4: Absolute and relative concentration of human milk oligosaccharides (HMOs)
in breast milk samples of Kenyan mothers (n = 16) at two time points of lactation, Figure S1: Gut microbiota
composition as assessed by 16S rDNA sequencing among Kenyan mothers at baseline. (A) All mothers, (B) secretor
mothers and (C) non-secretor mothers. The fraction of 16S rDNA reads (%), attributed to specific taxonomic levels
is given below the taxon name, Figure S2: Gut microbiota composition as assessed by 16S rDNA sequencing
among Kenyan infants at baseline. (A) All infants, (B) infants of secretor mothers and (C) infants of non-secretor
mothers. The fraction of 16S rDNA reads (%) attributed to specific taxonomic levels is given below the taxon name.
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