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Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on 
nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the 
retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blind-
ness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration 
(AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent 
photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. 
Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline 
transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to 
fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and 
sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates 
and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with 
retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will 
cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal 
metabolism and health.
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Abbreviations
RPE  Retinal pigment epithelium
PRODH  Proline dehydrogenase
SLC  Solute carrier family
OAT  Ornithine aminotransferase
P5C  Pyrroline-5-carboxylate
TCA cycle  Tricarboxylic acid cycle
TGF-β  Transforming growth factor-beta
EMT  Epithelial-to-mesenchymal transition

AMD  Age-related macular degeneration
PVR  Proliferative vitreoretinopathy

Introduction

Vertebrate retinas are light-sensitive neuronal tissues with 
large metabolic demands for phototransduction, maintenance 
of ion gradients, and biosynthesis of daily-shed photorecep-
tor outer segments (Hurley et al. 2015). Due to the absence 
of a direct blood supply, photoreceptors must absorb nutri-
ents, including glucose, amino acids, fatty acids, ketone 
bodies and vitamins through the retinal pigment epithelium 
(RPE) (Du et al. 2013; Hurley et al. 2015; Li et al. 2020). 
The RPE consists of a monolayer of polarized epithelial cells 
that transports metabolites between the choroidal blood sup-
ply and the outer retina. Similar to tumor cells, retinas have 
robust aerobic glycolysis (the Warburg effect) and produce 
large amounts of lactate from glucose. In turn, RPE utilizes 
lactate from the Warburg effect as a fuel to preserve glucose 
for the retina (Kanow et al. 2017). RPE phagocytizes ~ 10% 
of outer segments shed from photoreceptors each day and 
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processes them into fatty acids and ketone bodies as meta-
bolic substrates for the retina (Adijanto et al. 2014; Reyes-
Reveles et al. 2017). RPE could also recycle succinate into 
malate to feed the retina (Bisbach et al. 2020). This synergis-
tic effect is crucial for photoreceptor survival, as metabolic 
dysfunction or degeneration of RPE can result in photore-
ceptor degeneration, leading to blindness in retinal degenera-
tive diseases, including inherited retinal degenerations and 
age-related macular degeneration (AMD) (Ferrington et al. 
2020; Lefevere et al. 2017; Zhao et al. 2011a). Likewise, 
separation of the neural retina from RPE in retinal detach-
ment causes rapid photoreceptor degeneration (Lo et al. 
2011). Of note, recent studies demonstrate that RPE prefers 
to use proline as a metabolic substrate, and dietary proline 
protects retinas from degeneration induced by the oxidative 
damage in the RPE (Chao et al. 2017; Yam et al. 2019). 
Mutations of genes involved in proline metabolism have pre-
viously been shown to cause inherited retinal degeneration 
(O’Donnell et al. 1978; Wolthuis et al. 2014). Furthermore, 
the proline transporter, SLC6A20, is highly enriched in the 
RPE and is associated with macular thickness (Bennis et al. 
2015; Gao et al. 2019; Strunnikova et al. 2010). This review 
discusses proline transport and metabolism in RPE and how 
proline can affect retinal metabolism, retinal health, and reti-
nal degenerative diseases.

Proline catabolism, synthesis and transport 
in RPE

The metabolic fate of proline

The RPE is capable of using proline as a major metabolic 
substrate. Typical RPE culture medium contains 0.447 mM 
proline, which is almost completely consumed within 24 h 
in primary human RPE culture (Chao et al. 2017; Yam et al. 
2019). Infusion of 13C proline in vivo also shows that RPE 
actively consumes this substrate (Yam et al. 2019). Why 
does RPE need so much free proline? The fate of proline uti-
lization includes the synthesis into proline-rich proteins and 
catabolism into ornithine and glutamate for the urea cycle 
and mitochondrial tricarboxylic acid (TCA) cycle (Fig. 1).

Proline makes up to 25% of collagen, the most abun-
dant protein in the human body (Phang et al. 2010). Col-
lagen is a major component of the extracellular matrix 
(ECM), which is very dynamic in its turnover to inter-
act with cytokines and growth factors in response to 
cellular environmental changes. RPE cells attach to a 
collagen-rich, five-layered ECM structure called Bruch’s 
membrane (BrM), a molecular sieve for small molecule 
exchange between RPE and choroid blood circulation 
(Murali et al. 2020). RPE is critical for the composition, 
stability and thickness of BrM in healthy and diseased 

conditions (Campochiaro et al. 1986). 14C-proline trac-
ing showed that cultured RPE synthesizes and secretes 
collagen in a time-dependent manner, peaking between 
60 and 108 days (Li et al. 1984). Proline analogs such 
as cis-hydroxyproline and azetidine carboxylic acid can 
incorporate into collagen polypeptides, destabilizing the 
collagen structure, inhibiting collagen synthesis and accel-
erating collagen degradation (Tan et al. 1983; Uitto et al. 
1984). Cis-hydroxyproline inhibits RPE proliferation and 
collagen synthesis, while simultaneous addition of proline 
to the culture blocks these inhibitory effects (Yoo et al. 
1997). The thickness of ECM underneath the RPE cell 
layer can reach 30 µM after 360 days of culture (Kigasawa 
et al. 1998). About half of proline in collagen peptides 
is post-translationally modified into 4-hydroxyproline or 
3-hydroxyproline by prolyl-4-hydroxylase or prolyl-3-hy-
droxylase (Wu et al. 2011). This hydroxylation is impor-
tant for increasing the stability of the collagen triple helix 
structure. Aside from the 28 classic collagens, many other 
proteins contain collagen-like triple helix domains, includ-
ing complement 1q (C1q), adiponectin, ficolins, and mac-
rophage receptors (Ricard-Blum 2011). These proteins are 
critical in immune recognition and anti-inflammation, both 
of which are involved in the pathogenesis of AMD (Cao 
et al. 2015; Nita et al. 2014a; Tan et al. 2020).

Proline is catabolized through flavin-dependent proline 
dehydrogenase (PRODH) in the mitochondrial matrix into 
pyrroline-5-carboxylate (P5C) (Fig. 1). PRODH can donate 
electrons directly to ubiquinone through  FADH2. P5C is a 
key intermediate in proline metabolism, as it connects with 
other amino acids and also serves as a precursor for proline 
synthesis. P5C produces glutamate through a NAD-depend-
ent P5C dehydrogenase (P5CDH), encoded by ALDH4A1 
gene in the mitochondria. Glutamate, an important neu-
rotransmitter in the retinal neurons, is also a precursor for 
glutamine, gamma-aminobutyric acid (GABA) and mito-
chondrial TCA cycle intermediates (Li et al. 2020). Gluta-
mate can convert into αKG to enter the TCA cycle through 
either glutamate dehydrogenase or transaminases such as 
aspartate transaminase (AST), alanine transaminase (ALT), 
and phosphoserine aminotransferase (PSAT). RPE relies on 
aminotransferases rather than glutamate dehydrogenase for 
this process (Xu et al. 2020). Proline stimulates the produc-
tion of glutamate, aspartate, alanine, serine, αKG, and other 
TCA cycle intermediates in human RPE culture, whereas the 
inhibition of PRODH substantially decreases these metabo-
lites (Chao et al. 2017). Similar to cancer cells, RPE cells 
can use reductive carboxylation that produces mitochondrial 
citrate directly from αKG through NADP-dependent isoci-
trate dehydrogenase 2 (IDH2). This reductive carboxylation 
allows for the synthesis of citrate without acetyl-CoA and 
the export of NADPH into the cytosol to confer resistance to 
oxidative damage (Du et al. 2016). Tracing with 13C proline 
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in RPE shows that proline can efficiently be catabolized 
through this reductive carboxylation pathway (Chao et al. 
2017).

P5C can also reversibly convert into ornithine through 
ornithine aminotransferase (OAT), depending on the availa-
bility of P5C or ornithine. Ornithine is a critical intermediate 
in the urea cycle and is closely involved in the metabolism 
of arginine, citrulline, creatine and polyamines (Wu et al. 
2005) (Fig. 1). In neonates, OAT is an important source for 
arginine. OAT whole-body knockout mice die within 2 days 
of birth with symptoms of ornithine deficiency but survive 
with arginine administration (Wang et al. 1995). Human 

neonates with OAT deficiency have low concentrations of 
ornithine and citrulline but high concentrations of proline in 
their plasma (de Sain-van der Velden et al. 2012). In cultured 
human fetal RPE, 13C proline labels about half of the pool 
of ornithine within one hour (Chao et al. 2017), confirming 
that OAT is active and that ornithine turns over rapidly in 
the RPE.

Sources of free proline

In addition to dietary intake, the major sources of pro-
line in mammalian tissues are from de novo synthesis and 

Fig. 1  The metabolic fate of proline. Proline is catabolized into 
P5C, a key intermediate which serves as a precursor for glutamate, 
glutamine and ornithine.  FADH2 and NADH from the catabolism 
fuel the electron transport chain to generate ATP. Glutamate can 
be transaminated into αKG, producing alanine, aspartate and ser-
ine. RPE is highly efficient in reductive carboxylation, generating 
mitochondrial citrate directly from αKG through IDH2. Substrates 
including glutamine, glutamate, serine, αKG, aspartate, citrate and 
isocitrate are exported to the apical photoreceptors. P5C is reversibly 
converted into ornithine depending on the availability of precursors. 
Ornithine enters the urea cycle to produce arginine, citrulline, and 

creatine. Ornithine is also a precursor for polyamines. Additionally, 
proline is incorporated into proteins, especially proline-rich proteins 
such as collagen to form the RPE extracellular matrix. 3PG 3-phos-
phoglycerate, αKG alpha-ketoglutarate, Ala alanine, ALT alanine 
transaminase, Asp aspartate, AST aspartate transaminase (GOT1 & 
GOT2 isozymes), GS glutamine synthetase, IDH2 isocitrate dehydro-
genase 2, OAA oxaloacetate, OAT ornithine aminotransferase, ODC 
ornithine decarboxylase, P5C pyrroline-5-carboxylate, P5CDH P5C 
dehydrogenase, PRODH proline dehydrogenase, PSAT phosphoserine 
aminotransferase, Pyr pyruvate
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degradation of proline-enriched proteins such as collagen. 
Glutamate, glutamine, ornithine and arginine are precur-
sors for proline synthesis, but the pathways can be cell- and 
species-specific (Fig. 2). P5C is the common intermediate in 
proline synthesis. Glutamate and glutamine can produce P5C 
through P5C synthase (P5CS), encoded by the ALDH18A1 
gene. P5CS is an ATP- and NADPH-dependent mitochon-
drial enzyme. Patients with mutations of ALDH18A1 have 
hypoprolinemia and retinal degeneration (Baumgartner et al. 
2000, 2005; Wolthuis et al. 2014). Fibroblasts from these 
patients are deficient in their ability to convert glutamate 
into proline for protein synthesis, demonstrating that pro-
line synthesis from glutamate is critical for normal proline 
metabolism. Ornithine and arginine can convert into P5C 
through the reverse reaction of OAT. The direction towards 
proline synthesis is dominant in adults, which is the opposite 
of neonates (de Sain-van der Velden et al. 2012; Wang et al. 
1995). The abnormalities of OAT mutations in patients are 
limited to gyrate atrophy in the eye (Mitsubuchi et al. 2008), 
suggesting that there might be a special need for proline 
metabolism in the RPE and retina.

Proline synthesis from P5C needs NAD(P)H-dependent 
P5C reductase (PYCR). PYCR has three known isoforms 
using both NADH and NADPH. PYCR1 and 2 are located 
in the mitochondria and prefer NADH as the co-factor, 

while PYCR3 is located in the cytosol and prefers NADPH 
(Fig. 2). The expression of PYCR isoforms is cell-specific, 
and different isoforms may contribute differently to pro-
line synthesis. In Lu1205 cells, knockdown of PYCR1 
and PYCR2 reduce the ratio of proline to glutamate, while 
knockdown of PYCR3 decreases the ratio of proline to orni-
thine (De Ingeniis et al. 2012). It is postulated that PYCR3 
and PRODH can work together to shuttle proline between 
mitochondria and cytosol, also called the proline cycle. This 
cycle can transfer electrons from NADPH into the mitochon-
dria and stimulate flux of the pentose phosphate pathway 
(PPP) (Phang et al. 2010). Mutations of PYCRs have similar 
clinical features to ALDH18A1 but without visual defects 
(Wolthuis et al. 2014). Although, the knockout of PYCR1 
in zebrafish shows disrupted RPE and retinal degeneration 
(Liang et al. 2019).

Proline incorporated proteins are another important 
source of free proline. Proline-rich collagen can serve as a 
reservoir to store proline. During stress or nutrient-depriva-
tion, collagen degrades into proline to fuel energy metabo-
lism (Olivares et al. 2017). Collagen can be cleaved into 
peptides by proteases such as matrix metalloproteinases 
(MMPs), which are inhibited by specific endogenous tissue 
inhibitors of MMPs (TIMPs). MMPs and TIMPs are criti-
cal regulators of ECM turnover and remodeling. Glucose 

Fig. 2  Sources of proline in RPE. Dietary proline is taken up by 
RPE cells likely through SLC6A20 transporter. Collagen and other 
proline-rich proteins are degraded via MMPs, and proline-containing 
fragments are further degraded into free proline by prolidase and pro-
linase enzymes. TIMPs are endogenous inhibitors of MMPs, whose 
mutation results in excess degradation of ECM. Proline is also gener-
ated via de novo synthesis from glutamate and ornithine substrates. 
Glutamate is converted into P5C intermediate through P5CS, which 
is then reduced to proline by PYCRs. Ornithine and arginine can also 

convert into proline via reverse reaction of OAT. Biosynthesis of pro-
line is energetically expensive, requiring 2 NADPH and 1 ATP from 
glutamate or glutamine pathway, and 1 NAD(P)H from arginine or 
ornithine pathway. The genetic identity of transporters responsible for 
proline transport between cytosol and mitochondria is still unknown. 
αKG alpha-ketoglutarate, MMP matrix metalloproteinases, OAT orni-
thine aminotransferase, P5C pyrroline-5-carboxylate, P5CS P5C syn-
thase, PYCR1,2,3 P5C reductase (isoforms 1,2,3), TIMP tissue inhibi-
tors of MMP
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stress, hypoxia and inflammation can activate MMPs to 
degrade collagen (Pandhare et al. 2009; Phang et al. 2010). 
Mutations of many ECM genes including MMPs and TIMPs 
are associated with retinal degeneration (Anand-Apte et al. 
2019; Garcia-Onrubia et al. 2020); however, how the abnor-
mal ECM turnover impairs proline supply and metabolism 
in RPE remains unknown.

Cells can take up MMP-hydrolyzed collagen fragments 
through the urokinase receptor associated protein (uPARAP/
Endo 180), and further degrade them into tripeptides, dipep-
tides and free amino acids by cathepsins and peptidases 
(Curino et al. 2005; Phang et al. 2010). The unique pyrroli-
dine ring in proline induces conformational constraints on 
the peptide bond to protect the iminopeptides from hydroly-
sis by most peptidases (Cunningham and O’Connor 1997). 
Prolidase and prolinase are the only known enzymes that are 
capable of hydrolyzing proline-containing dipeptides, also 
called iminodipeptides, into free proline. Prolidase such as 
peptidase D (PEPD) specifically hydrolyzes C-terminal pro-
line, while prolinase such as dipeptidyl peptidase IV (DPP4) 
and its family, specifically cleaves off N-terminal proline 

(Misiura and Miltyk 2020; Waumans et al. 2015). In addi-
tion to collagen, many bioactive peptides contain proline to 
protect them from unexpected degradation. Prolidase and 
prolinase can degrade proline in these peptides to modu-
late the immune response, cell growth and neural develop-
ment (Dunaevsky et al. 2020; Misiura and Miltyk 2020). 
Mutations of PEPD gene can cause prolidase deficiency, a 
rare autosomal recessive disorder with severe skin lesions, 
immunodeficiency and mental retardation (Kitchener and 
Grunden 2012). Some PEPD deficiency patients also have 
ocular symptoms including amblyopia, keratitis, optic atro-
phy, and chorioretinal atrophy (Ogata et al. 1981).

Proline transport and transporters

Proline requires specific transporters for its cellular import 
and export to maintain proline homeostasis. Twelve trans-
porters are capable of transporting proline (Table  1). 
SLC6A20 is the only proline transporter that is highly 
enriched in the RPE/choroid (Takanaga et al. 2005b). Mul-
tiple independent findings demonstrate that SLC6A20 or the 

Table 1  List of proline transporters in humans

4-OH-Pro 4-hydroxyproline, Ala alanine, Arg arginine, Asn asparagine, Cys cysteine, GABA gamma-aminobutyric, Gln glutamine, Gly glycine, 
His histidine, Ile isoleucine, Leu leucine, Lys lysine, Met methionine acid, Phe phenylalanine, Pro proline, Ser serine, Thr threonine, Trp trypto-
phan, Tyr tyrosine, Val valine
*Substrates are listed in the order of affinity from high to low. **Ions co-transported with the substrates

Gene Synonym Substrates* Tissue specificity Localization Ions** References

SLC6A7 PROT Pro Brain Membrane Na+,  Cl− Shafqat et al. (1995)
SLC6A15 B0AT2 Leu, Val, Ile, Met, Pro Brain Nucleus, vesicles Na+ Takanaga et al. (2005a)
SLC6A17 NTT4 Leu, Met, Pro, Cys, Ala, 

Gln, Ser, His, Gly
Brain Vesicles Na+,  Cl− Hagglund et al. (2013); 

Zaia and Reimer (2009)
SLC6A19 B0AT1 Leu, Met, Ile, Val, Asn, 

Phe, Ala, Ser, Thr, Gly, 
Pro

Intestine Membrane Na+ Broer (2006)

SLC6A20
Slc6a20a (mouse)

SIT1 Pro, betaine, 4-OH-Pro RPE/choroid, 
intestine, 
kidney

Membrane Na+,  Cl− Broer et al. (2009); Kow-
alczuk et al. (2005)

SLC36A1 PAT1 Ala, Gly, GABA, taurine, 
Pro, 4-OH-Pro

Brain, intestine Membrane, lysosome, 
nucleus

H+ Jensen et al. (2014); 
Schroder et al. (2007)

SLC36A2 PAT2 Ala, Gly, Pro, 4-OH-Pro, 
scarosine

Kidney, muscle Membrane H+ Kennedy et al. (2005)

SLC36A4 PAT4 Trp, Pro Ubiquitous Membrane, cytosol, 
Golgi

Unknown Pillai and Meredith (2011)

SLC38A1 SNAT1 Ala, Ser, Gln, Asn, His, 
Cys, Met, Gly, Thr, Pro, 
Tyr,Val

Ubiquitous Membrane Na+ Albers et al. (2001)

SLC38A2 SNAT2 Ala, Met, Asn, Gln, Ser, 
Pro, Gly, Thr, Leu, Phe

Ubiquitous Membrane, vesicles Na+ Hatanaka et al. (2000)

SLC38A4 SNAT4 His, Arg, Ala, Asn, Lys, 
Gly, Gln, Ser, Pro, Leu, 
Phe

Liver Membrane Na+ Hatanaka et al. (2001)

SLC1A4 ASCT1 Cys, Ala, Ser, Thr, Pro, 
4-OH-Pro

Brain Membrane Na+ Pinilla-Tenas et al. (2003)
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mouse homologue Slc6a20a is a highly conserved gene. By 
comparing the expression of mature human RPE cells with 
53 human tissues, Liu et al. found that SLC6A20 is an RPE-
specific gene (Liu et al. 2019). By comparing the expression 
of genes from native and cultured RPE with 78 different 
tissues, Sheldon Miller and colleagues selected 154 “RPE 
signature genes” including SLC6A20 that were expressed 
tenfold higher in the RPE than any other tissues (Strun-
nikova et al. 2010). Similarly, Liao et al. profiled global 
gene expression of stem-cell-derived RPE cells, native and 
cultured human fetal RPE cells. They identified a set of 87 
RPE signature genes in which SLC6A20 is one of them (Liao 
et al. 2010). Meanwhile, Arthur Bergen and colleagues pro-
filed native human RPE and native C57 mouse RPE, and 
found SLC6A20 or Slc6a20a as one of the 22 signature 
genes shared by both human and mouse RPE (Bennis et al. 
2015). Interestingly, proline consumption increases during 
RPE differentiation (Yam et al. 2019), and SLC6A20 tran-
scripts are substantially upregulated during RPE maturation, 
whereas other proline transporters are either not detected or 
unchanged (Radeke et al. 2015). These reports strongly sug-
gest that SLC6A20 is responsible for mediating the robust 
proline consumption in differentiated RPE.

SLC6A20 is  Na+ and  Cl− dependent. Two  Na+ and one 
 Cl− molecule are co-transported together with each proline 
molecule (Broer et al. 2009). Human SLC6A20 is a unique 
gene with two transcript variants. Compared to variant 1, 
variant 2 lacks an alternate in-frame exon, resulting in a 
shorter protein. Mouse SLC6A20 has two homologous 
genes, Slc6a20a and Slc6a20b, located next to each other 
along the gene locus. Slc6a20a has 92% homology as human 
SLC6A20 and is functionally active in transporting proline 
(Kowalczuk et al. 2005). Slc6a20b has a longer N-terminus 
with 81% identity to human SLC6A20 but does not transport 
proline or other amino acids; hence its function still remains 
unknown (Kowalczuk et al. 2005).

In addition to RPE, SLC6A20 is also found in epithelial 
cells of the intestine, kidney and lung. SLC6A20 genetic 
polymorphisms are associated with Hirschsprung’s disease, 
iminoglycinuria, degenerative macular diseases and severe 
Covid-19 with respiratory failure (Ellinghaus et al. 2020; 
Gao et al. 2018; Kim et al. 2014; Lee et al. 2016; Xie et al. 
2019). Hirschsprung’s disease is a congenital and heteroge-
neous disorder characterized by missing nerves in the colon. 
The availability of proline may be important for neuronal 
cell development. Iminoglycinuria, a rare inherited disorder 
associated with multiple genetic mutations of glycine and 
proline transporters, results in poor amino acid absorption in 
the kidney and excess urinary excretion of proline, hydroxy-
proline and glycine. In humans, the macula is responsible for 
central, high acuity vision. Macular degenerative diseases 
such as AMD can result in structural changes to reduce mac-
ular thickness. A genome-wide association study (GWAS) 

of 68,423 participants identifies 139 loci associated with 
macular thickness, and SLC6A20 is one of the four most 
significant loci (Gao et al. 2018). Furthermore, SLC6A20 
expression is downregulated in retinas from human donors 
with AMD (Ratnapriya et al. 2019). Interestingly, a GWAS 
study of severe Covid-19 patients with respiratory failure 
identifies SLC6A20 as one of six associated genes (Elling-
haus et al. 2020). SLC6A20 can functionally interact with 
angiotensin-converting enzyme 2 (ACE2), the receptor 
for Covid-19 spike glycoprotein in the intestine and lung 
(Camargo et al. 2020; Singer et al. 2012; Wang et al. 2020). 
The expression of ACE2 in the RPE is very low, but the 
overexpression of ACE2 shows protection against RPE cell 
death and diabetic retinopathy (Dominguez et al. 2016; Fu 
et al. 2017). It is unclear whether this protective mechanism 
is associated with SLC6A20 function. Despite many genetic 
association studies, the significance of SLC6A20 in physiol-
ogy and disease remains largely unknown.

In addition to plasma transporters, proline also needs 
to be transported across the mitochondrial membrane 
to be oxidized by PRODH and P5CDH, located in the 
mitochondrial matrix. An early study of isolated rat liver 
mitochondria showed that proline does not travel through 
mitochondria by free diffusion but instead by an uniden-
tified energy-dependent transporter (Meyer 1977). Using 
14C proline and spectroscopic measurements in isolated rat 
kidney mitochondria, Atlante et al. characterized two mito-
chondrial proline transporters: proline uniporter and proline/
glutamate antiporter (Atlante et al. 1994). A mitochondrial 
proline transporter was also characterized in tsetse fly flight 
muscle mitochondria, which primarily use proline for energy 
(Njagi et al. 1992). Although the biochemical properties of 
mitochondrial proline transporters have been extensively 
characterized, the genetic identities of these transporters a 
still unknown.

Proline metabolism in retinal health

RPE uses proline as a metabolic fuel to nourish 
the neural retina

Proline is an energy substrate in many organisms including 
bacteria, plants, and animals (McDonald et al. 2018). Some 
species such as the tsetse fly and Colorado potato beetle use 
proline as the primary fuel to power their flight. Interest-
ingly, the utilization of proline in their muscles stimulates 
lipolysis of the fat body to synthesize more proline (Arrese 
and Soulages 2010). Proline can serve as an “alternative 
fuel” to generate oxaloacetate to enhance the oxidation of 
acetyl-CoA through TCA cycle (McDonald et al. 2018). 
Both human and mouse RPE prefer to use proline to fuel 
their mitochondrial TCA cycle (Chao et al. 2017; Yam et al. 
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2019). The addition of proline doubles the maximum  O2 
consumption compared to glucose alone in human RPE 
(Yam et al. 2019). This is consistent with reports in other 
species that proline can elicit maximal mitochondrial respi-
ration (McDonald et al. 2018). However, the neural retina 
rarely uses proline directly for its mitochondrial metabolism 
(Yam et al. 2019). Its robust production of lactate and suc-
cinate may repress the activity of PRODH, and the hypoxic 
microenvironment can downregulate complex IV (Bisbach 
et al. 2020; Hancock et al. 2016; Kowaloff et al. 1977). 
These factors may make proline catabolism unfavorable in 
the neural retina. Nevertheless, the neural retina uses pro-
line indirectly from the RPE, which exports proline-derived 
intermediates such as citrate, glutamate and aspartate 
towards the neural retina (Fig. 3).

What is the advantage of using proline as a metabolic 
substrate, especially in the RPE? First, proline has the 

highest solubility among the 20 amino acids, making it easy 
to store and transport (Bowden et al. 2018). It is 15-fold 
more soluble in aqueous solutions than glutamine, glutamate 
or branched chain amino acids. Second, proline synthesis is 
energetically expensive. Proline biosynthesis from glutamate 
or glutamine requires 2 NADPH and 1 ATP, while proline 
biosynthesis from arginine or ornithine requires 1 NAD(P)
H (Fig. 2). NADPH is critical for energy metabolism and 
cellular antioxidant defense (Bradshaw 2019). RPE lives in a 
highly oxidative environment, demanding efficient NADPH 
supply to combat oxidative stress (Datta et al. 2017; Du et al. 
2016). The uptake of proline can not only spare NADPH, 
but also result in the production of NADPH and glutathione 
(Fig. 4). Third, proline efficiently replenishes TCA cycle 
intermediates, despite the abundance of other substrates 
including glucose, lactate and fatty acids. Conventionally, 
these substrates enter the TCA cycle as acetyl-CoA which 

Fig. 3  RPE uses proline to fuel metabolism in both RPE and the 
retina. Blood glucose enters the RPE to be stored as small amounts 
of glycogen, and used minimally in the RPE mitochondrial metabo-
lism. Most glucose is transported into the retina, which undergoes 
robust aerobic glycolysis to produce massive amounts of lactate. The 
exported lactate can be utilized by RPE as a fuel to preserve glucose 
for the retina. RPE also phagocytoses shed photoreceptor outer seg-
ments and degrades lipids to be used in the TCA cycle. Proline in the 
RPE serves as both a carbon source to replenish TCA cycle interme-

diates, and as a nitrogen source to generate amino acids including 
glutamate and aspartate. These intermediates are exported in large 
amounts to fuel the TCA cycle in the retina, and support biosynthe-
sis of lipids to replenish outer segments. Glutamate in the retina is 
an important neurotransmitter, and also the precursor for GABA, 
glutamine and GSH. αKG alpha-ketoglutarate, Asp aspartate, GABA 
gamma-aminobutyric acid, Gln glutamine, Glu glutamate, GSH glu-
tathione, Ser serine



1796 J. Du et al.

1 3

is mostly oxidized as  CO2 and  H2O, and produces interme-
diates that leave the cycle (mitochondrial efflux) to support 
key biosynthetic pathways including synthesize of amino 
acids, fatty acids, or other nutrients (Fig. 3). To sustain the 
TCA cycle in the presence of fast influx and efflux, four or 
five carbon molecules are required to replenish the cycle, 
a process called anaplerosis. Stable isotope tracing stud-
ies show that proline-derived TCA cycle intermediates are 
exported to support retinal mitochondrial metabolism (Chao 
et al. 2017; Yam et al. 2019). Fourth, proline is an important 
nitrogen source. Our recent studies show that both human 
and mouse retinal explants preferentially uptake glutamate 
and aspartate, whereas proline could generate and release 
these amino acids to be used by the retina (Chao et al. 2017; 
Li et al. 2020). Glutamine is a common precursor for glu-
tamate and aspartate; however, glutamine catabolism can 
also produce toxic free ammonia. Interestingly, when pro-
line and other nutrients are available, RPE exports rather 
than consumes glutamine (Li et al. 2020). In rat hepatocytes, 
proline produces glutamate and aspartate much faster than 
glutamine (Baquet et al. 1991). Finally, proline can increase 
the availability of glucose. Photoreceptors in the outer retina 
rely on glucose for its energy metabolism, which has to be 
transported across RPE (Kanow et al. 2017). The block of 

glucose transport or excessive glucose utilization in the RPE 
is sufficient to cause photoreceptor degeneration (Kurihara 
et al. 2016; Swarup et al. 2019). Lactate utilization in the 
RPE could similarly spare glucose for the photoreceptors 
(Kanow et al. 2017). Additionally, proline is also a known 
glucogenic amino acid and is used in supplements to main-
tain blood glucose during exercise (Nogusa et al. 2014). 
It was shown to potently stimulate glycogen synthesis in 
hepatocytes (Baquet et al. 1991; Bode et al. 1992). Glycogen 
is rapidly accumulated in cultured RPE after refeeding the 
media (Senanayake et al. 2006). Preferential proline uptake 
by the RPE may contribute to glycogenesis to support the 
high metabolic demand for glucose by photoreceptors.

Proline generates glutathione and NADPH 
to protect against oxidative stress

Glutathione (GSH) coupling with NADPH is the primary 
antioxidant system in mammalian cells (Forman et al. 2009). 
GSH is a tripeptide synthesized from glycine, glutamate 
and cysteine. Its regeneration from oxidized GSH (GSSG) 
requires NADPH. Inhibition of PRODH in human RPE sub-
stantially diminishes the amount of intracellular GSH and 
its precursors (Yam et al. 2019), indicating that proline is a 

Fig. 4  Proline generates GSH and NADPH to counter oxidative 
stress. Proline can shuttle between the mitochondria and cytosol to 
form the proline cycle, which transfers electrons from NADPH into 
the mitochondria and stimulate flux of the pentose phosphate path-
way. Proline catabolism can stimulate NADPH formation by driv-
ing malic enzymes, folate cycle and reductive carboxylation through 
IDH1/2. Glutamate, cysteine and glycine forms the tripeptide GSH, 
which is used by antioxidant enzymes to scavenge reactive oxygen 

species (ROS) such as hydrogen peroxide  (H2O2). Oxidized glu-
tathione (GSSG) is then reduced back to GSH by NADPH-dependent 
glutathione reductase, thereby consuming NADPH. 3PG 3-phospho-
glycerate, αKG alpha-ketoglutarate, Asp aspartate, IDH isocitrate 
dehydrogenase (isoforms 1,2), GSH glutathione, GSSG oxidized 
GSH, ME malic enzyme (isoforms 1,3), OAA oxaloacetate, P5C pyr-
roline-5-carboxylate, ROS reactive oxygen species



1797Proline metabolism and transport in retinal health and disease  

1 3

critical component for GSH biosynthesis, likely by increas-
ing the availability of glutamate, glycine and serine (a pre-
cursor for cysteine) in the RPE (Fig. 4). Consistently, proline 
has been shown to confer strong protection against oxida-
tive damage in RPE and other cells in vitro (Krishnan et al. 
2008; Natarajan et al. 2012). Multiple pathways contribute 
to NADPH production including the PPP, NADP-dependent 
IDH1/2, NADP-dependent malic enzyme, and serine-driven 
folate pathways (Fan et al. 2014) (Fig. 4). Key enzymes in 
these NADPH production pathways are highly enriched in 
the RPE compared to the neural retina in both humans and 
mice (Li et al. 2020). PPP is the classic pathway for NADPH 
production. However, a recent NADPH tracing study shows 
that serine-driven NADPH is comparable to PPP in cancer 
cells (Fan et al. 2014). We have reported that reductive car-
boxylation through IDH1/2 is highly active in human RPE 
cells, conferring RPE protection against oxidative dam-
age (Du et al. 2016). Proline can activate PPP and NADP-
dependent malic enzymes, increase the flux of reductive car-
boxylation through IDH1/2, and stimulate serine metabolism 
in folate pathways (Allmann et al. 2013; Chao et al. 2017; 
Hagedorn and Phang 1986). Consequentially, dietary proline 
improves visual function in an RPE-specific oxidative dam-
age mouse model (Yam et al. 2019). These protections may 
be attributed to the enhancement of the GSH and NADPH 
system through proline catabolism.

Proline is specifically used in differentiated RPE

Terminally-differentiated RPE is pigmented to reduce light 
damage in the tissue, contains tight junctions to form a 
blood-retinal barrier, and polarized to bidirectionally trans-
port nutrients and waste products (Lakkaraju et al. 2020). 
Human RPE cells in culture typically take 4–6 weeks to 
adopt a polarized epithelial morphology. Interestingly, pro-
line is the only nutrient whose consumption increases with 
RPE differentiation (Yam et al. 2019). Poorly-differentiated 
RPE cells including ARPE-19 cells and hRPE-1 cells, con-
sume almost no proline as a nutrient (Yam et al. 2019). 
Consistently, the expression of SLC6A20 and PRODH are 
upregulated in RPE differentiation, whereas their expres-
sion is downregulated in de-differentiated RPE cells (Radeke 
et al. 2015). The dedifferentiation of RPE into a non-polar-
ized fibroblast-like phenotype is commonly referred to as 
epithelial-to-mesenchymal transition (EMT). RPE with 
EMT can lose its normal function, contributing to retinal 
degenerative diseases such as AMD and proliferative vit-
reoretinopathy (PVR) (Zhou et al. 2020). Co-treatment with 
TGF-β and TNF-α accelerates EMT in adult human RPE 
cells, which downregulates the transcripts of both SLC6A20 
and PRODH more than 400 fold (Boles et al. 2020). The 
downregulation of PRODH by TGF-β also occurs in renal 
and airway epithelial cells undergoing EMT (Brennan et al. 

2012; Tian et al. 2015). An important feature in RPE dif-
ferentiation is a reprogramming of metabolic dependency 
from glycolysis to mitochondrial oxidative phosphorylation 
(OXPHOS) (Agathocleous and Harris 2013; Zheng et al. 
2016). OXPHOS genes and mitochondrial mass significantly 
increase during RPE differentiation (Iacovelli et al. 2016). 
Proline may efficiently fuel mitochondrial metabolism to 
meet the increased metabolic demand in differentiation. 
Either inhibition of mitochondrial OXPHOS or augmenta-
tion of glycolysis in RPE can result in dedifferentiation and 
loss of its epithelial properties (Adijanto and Philp 2014; 
Kurihara et al. 2016; Rosales et al. 2019; Zhao et al. 2011a). 
Inhibition of mitochondrial OXPHOS, particularly of com-
plex III, blocks proline uptake in RPE, suggesting that the 
demand for proline catabolism is the driving force for the 
high proline utilization in differentiated RPE (Zhang et al. 
2021).

Proline metabolism in retinal diseases

Mutations of genes involved in proline metabolism are asso-
ciated with inherited retinal degenerations. A multitude of 
metabolomics studies on human plasma and vitreous sam-
ples repeatedly show that proline is among the most sig-
nificantly altered metabolite in retinal degenerative diseases 
including AMD, proliferative vitreoretinopathy (PVR), dia-
betic retinopathy, and glaucoma (Table 2). We will focus on 
retinal diseases that are highly relevant to RPE dysfunction 
or degeneration in this review.

Proline metabolism in inherited retinal 
degeneration

Inherited retinal degenerations consist of a diverse group 
of retinal diseases characterized by progressive vision 
loss due to genetic mutations (Duncan et al. 2018). Inborn 
errors or genetic deficiency of several enzymes in proline 
synthesis result in inherited retinal degenerations. Patients 
with ALDH18A1 (the gene encoding P5CS) mutations have 
retinal degeneration cutis laxa (loose skin), and fat pads 
(Wolthuis et al. 2014). Zebrafish carrying the pycr1 gene 
deficiency show behavioral abnormalities, damaged RPE 
and retinal degeneration (Liang et al. 2019). Mutation of 
prolidase causes proline deficiency and chorioretinal atro-
phy in patients (Ogata et al. 1981). OAT deficiency causes 
gyrate atrophy, characterized by progressive and lobular loss 
of RPE/choroid and accumulation of ornithine in the plasma 
(Lodato et al. 1981; O’Donnell et al. 1978). Attempts to 
correct ornithine accumulation by dietary reduction of its 
precursor, arginine, show efficacy in halting the progres-
sion of retinal degeneration (Kaiser-Kupfer et al. 1991; 
Wang et al. 2000). The OAT deficiency causes over tenfold 
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accumulation of ornithine in the plasma, which in vitro has 
been shown to inhibit P5CS (Hu et al. 1999). Excessive pro-
line with normal ornithine in the urine is correlated with 
atypical gyrate atrophy in patients, suggesting that proline is 
deficient in the RPE (Hayasaka et al. 1982; Saito et al. 1981). 
Oral supplementation of ornithine significantly increases 
plasma proline in healthy controls but not in patients with 
gyrate atrophy. Deficiencies of OAT in both humans and 
mice support the idea that OAT proceeds in the direction of 
proline synthesis from ornithine in the adults but the oppo-
site direction in neonates (de Sain-van der Velden et al. 
2012; Wang et al. 1995). Inhibition of OAT in conjunction 
with ornithine administration could induce cytotoxicity in 
both bovine and human RPE, whereas supplementation with 
proline prevents this ornithine-induced cytotoxicity (Ando 
et al. 2000; Ueda et al. 1998). Still, there are few data on how 
these genetic mutations influence tissue proline levels and 
proline utilization in the RPE.

Proline is essential for the biosynthesis of collagen and 
the maintenance of ECM structure and composition (Karna 

et al. 2020; Van de Water and Galinovic-Schwartz 1986; Yoo 
et al. 1997). Mutations in the genes coding for ECM compo-
nents are associated with retinal degeneration and choroidal 
neovascularization (Table 3). Mutations in the collagen 2A1, 
9A1 and 11A1 result in Stickler syndrome, where affected 
individuals have ear, nose, throat and ophthalmologic 
abnormalities (Boysen et al. 2020; Kaarniranta et al. 2006; 
Nikopoulos et al. 2011), underscoring the importance of 
collagen structure on pathophysiology. Furthermore, muta-
tions in ECM modulatory protein EFEMP1 lead to macular 
degeneration with subretinal deposits (Stone et al. 1999). 
TIMP-1 and -3 are secreted by RPE cells for regulation of 
MMP activity. TIMP-3 has the broadest inhibition spectrum 
and is tightly bound to the BrM in the human retina (Fariss 
et al. 1997). Mutations of the TIMP3 gene result in Sorsby 
fundus dystrophy (SFD), a rare autosomal dominant inher-
ited retinal degeneration that shares several similar clinical 
features with AMD including sub-RPE deposits, geography 
atrophy, and choroidal neovascularization (Anand-Apte et al. 
2019; Weber et al. 1994). Mutant TIMP-3 was later found 

Table 2  Proline levels in retinal diseases

*Value represents fold change (FC) of metabolite levels over control patients or absolute concentrations in µM. AMD age-related macular degen-
eration, DR diabetic retinopathy, PDR proliferative DR, OIR oxygen-induced-retinopathy, POAG primary open-angle glaucoma, PCG primary 
congenital glaucoma, ARC  age-related cataracts, CC congenital cataracts

Diseases Species Comparison (n) Samples Fasting Value* (FC/μM) References

AMD Human AMD (314)
Control (82)

Plasma Yes 0.76 (FC) Lains et al. (2019)

Human Early/intermediate AMD (72)
Control (72)

Serum No AMD: 263.6 Control: 254.4 Kersten et al. (2019)

Human Exudative-AMD (40)
Control (40)

Plasma Yes AMD: 191.2 Control: 165.4 Chao de la Barca et al. (2020)

Human Wet AMD (26)
Control (20)

Aqueous humor N/A 0.04 (FC) Han et al. (2020)

DR Human PDR (20)
Control (31)

Vitreous N/A 3.3 ~ 5.7 (FC) Paris et al. (2016)

Human PDR (21)
Diabetic control (21)

Plasma Yes 0.52 (FC) Zhu et al. (2019)

Human PDR (9)
Control (8)

Vitreous N/A PDR: 25.2 Control: 6.6 Haines et al. (2018)

Human PDR (28)
Control with macular hole (22)

Vitreous N/A 2.1 (FC) Wang et al. (2020)

Human DR (174)
Control (143)

Serum N/A 1.13 ~ 1.50 (FC) Yun et al. (2020)

Mouse OIR model (4)
Control (5)

Whole eye N/A 5.0 (FC) Paris et al. (2016)

Glaucoma Human POAG (36)
Control with cataract (27)

Plasma Yes POAG: 211.7 Control: 173.5 Leruez et al. (2018)

Human PCG (45)
Control with ARC (10)

Aqueous humor N/A 5.27 (FC) Chen et al. (2019)

Human PCG (45)
Control with CC (10)

Aqueous humor N/A 5.68 (FC) Chen et al. (2019)

Human POAG (26)
Control with cataract (26)

Aqueous humor Yes POAG: 29.0 Control: 29.6 Buisset et al. (2019)
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to be secreted at elevated levels by RPE cells, albeit having 
decreased inhibition on MMPs (Engel et al. 2021, bioRxiv). 
Consequentially, iPSC-derived RPE cells from SFD patients 
have increased intracellular levels of 4-hydroxyproline, indi-
cating enhanced ECM degradation. Degradation of ECM 
not only releases bound growth factors that can induce a 
response from RPE cells, MMP cleavage also produces short 
bioactive fragments called matrikines (Patel and Snelgrove 
2018). Tripeptide Pro-Gly-Pro was demonstrated in other 
tissues to have the capacity to regulate processes includ-
ing proliferation and migration (Ma et al. 2011), angiogen-
esis (Monboisse et al. 2014) and chemotaxis (Karsdal et al. 
2015). How matrikines affect RPE metabolism and the outer 
retinal environment has not yet been investigated.

Proline metabolism in AMD

AMD, the leading cause of irreversible central blindness in 
the elderly population, is characterized by drusen deposits, 
geographic atrophy, and choroidal neovascularization. The 
causes of AMD have been attributed to a multitude of envi-
ronmental and genetic factors, with aging being the major 
risk (Datta et al. 2017; Handa et al. 2019). RPE dysfunc-
tion due to impaired mitochondrial metabolism, oxidative 
stress, aging and inflammation, is thought to underlie the 
pathogenesis of AMD (Ferrington et al. 2020). Inhibition of 
mitochondrial metabolism, specifically in RPE, is sufficient 
to induce AMD-like retinal degeneration in mice (Kurihara 

et al. 2016; Rosales et al. 2019; Zhao et al. 2011a). RPE cells 
from AMD donors have impaired mitochondrial metabolism 
(Ferrington et al. 2017; Golestaneh et al. 2016). Patients 
with an A3243G point mutation in mitochondrial DNA 
have RPE atrophy, subretinal deposits, and maculopathy 
(Daruich et al. 2014; Fung et al. 2013; Smith et al. 1999). 
Altered mitochondrial metabolism is a metabolic signature 
of aging RPE and retina (Wang et al. 2018). The inhibition 
of mitochondrial metabolism in human RPE culture can 
block proline utilization and markedly reduce the secretion 
of intermediates and amino acids to support the neural retina 
(Zhang et al. 2021). In aging mice, plasma proline levels are 
reduced (Seo et al. 2016). Multiple metabolomics studies 
identified significant changes in proline in AMD patients 
(Hou et al. 2020) (Table 2). A recent targeted-metabolomics 
study also found proline to be one of six significantly 
changed metabolites among the 188 metabolites analyzed in 
the plasma of AMD patients (Chao de la Barca et al. 2020). 
Additionally, SLC6A20 is one of the most significant new 
loci linked to AMD from GWAS (Gao et al. 2019), while 
SLC6A20 expression is reported to be downregulated in reti-
nas from AMD donors (Ratnapriya et al. 2019). Likewise, 
a transcriptome database shows that P5CS is significantly 
downregulated in RPE from both dry and wet AMD donors 
(Newman et al. 2012).

Oxidative damage is another major cause of RPE dys-
function in AMD (Cai et al. 2000). Under conditions of 
oxidative stress, cellular GSH concentrations are markedly 

Table 3  Genetic mutations in ECM components that causes retinal pathology

Gene Genetic disease Retinal features Species References

COL2A1 Stickler syndrome, type I Membraneous vitreous
Retinal detachment
Paravascular pigmented lattice degeneration

Human
Mouse

Ballo et al. (1998); Richards et al. (2000); Go 
et al. (2003); Kaarniranta et al. (2006)

Epiphyseal Dysplasia, 
Multiple, with Myopia 
and Conductive Deafness

Asteroid hyalosis
Retinal thinning

Human Beighton et al. (1978)

COL9A1 Stickler syndrome, type IV Chorioretinal degeneration
Retinal detachment

Human Van Camp et al. (2006); Nikopoulos et al. 
(2011)

COL11A1 Stickler syndrome, type II
Marshall syndrome

Beaded vitreous
Retinal detachment
Paravascular pigmented lattice degeneration

Human Annunen et al. (1999); Richards et al. (1996); 
Boysen et al. (2020)

C1QTNF5 Macular dystrophy,
late onset

Macular degeneration
Chorioretinal atrophy
Choroidal neovascularization

Human
Mouse

Hayward et al. (2003); Ayyagari et al. (2005); 
Borooah et al. (2009); Shu et al. (2011); 
Chavali et al. (2011)

TIMP3 Sorsby fundus dystrophy Subretinal neovascularization
Central macular lesion
Chorioretinal atrophy
Retinal pigment epithelial atrophy
Geographic atrophy

Human
Mouse

Weber et al. (1994); Langton et al. (2000); 
Gliem et al. (2015); Weber et al. (2002)

EFEMP1 Doyne honeycomb retinal 
degeneration (Malattia 
Leventinese)

Radial drusen
Geographic atrophy
Abnormal retinal pigmentation
Choroidal neovascularization

Human
Mouse

Stone et al. (1999); Kermani et al. (1999); 
Tarttelin et al. (2001); Fu et al. (2007)



1800 J. Du et al.

1 3

reduced due to a combination of enhanced degradation and 
decreased synthesis (Wu et  al. 2004). Supplementation 
of GSH precursors protects RPE from oxidative damage 
(Kularatne et al. 2020; Terluk et al. 2019). The deficiency 
of Nrf2, a transcription factor in the GSH system, results 
in drusen-like deposits similar to AMD in mice. (Zhao 
et al. 2011b). We have found that inhibition of reductive 
carboxylation disrupts the redox balance and increases the 
sensitivity of cultured RPE cells to oxidative damage. Sup-
porting reductive carboxylation protects RPE cell viability 
from oxidative stress (Du et al. 2016). Proline is sufficient 
to increase reductive carboxylation, promote GSH synthesis 
and regeneration, and protect RPE against oxidative damage.

ECM remodeling resulting from RPE dysfunction plays 
an important role in AMD pathogenesis. The collagen-
rich BrM can be three-fold thicker with reduced elasticity 
in AMD (Nita et al. 2014b) as a result of reduced solubil-
ity and increased cross-linking with specific biomolecules 
(Eamegdool et al. 2020; Nita et al. 2014b). Basal laminar 
deposits and drusen are hallmarks of aging and early AMD 
(Bhutto and Lutty 2012; Fernandez-Godino et al. 2016, 
2018). ECM proteins including collagen, MMPs and TIMP3, 
are key components within these deposits, and ECM dys-
regulation may play a role in the AMD-like macular degen-
eration seen in patients with TIMP3 and EFEMP1 muta-
tions (Anand-Apte et al. 2019; Hulleman 2016) (Table 3). 
Autoradiographic studies of aged primate and human retina 
with 3H proline show that the rate of ECM turnover is much 
slower in the regions with drusen and basal deposits (Hirata 
and Feeney–Burns 1992). Local ECM degradation supplies 
proline to tissues or cells, which is especially important 
under conditions of oxidative stress (Pandhare et al. 2009). 
It remains to be determined whether proline utilization is 
impaired in AMD.

Proline metabolism in Proliferative 
Vitreoretinopathy (PVR)

PVR is one of the most common and severe complications fol-
lowing the treatment of rhegmatogenous retinal detachment, 
resulting in poor visual outcomes (Idrees et al. 2019). PVR is 
characterized by the formation of scar-like fibrocellular mem-
branes in the vitreous cavity and surfaces of the retina. These 
fibrocellular membranes are composed of excessive ECM and 
RPE cells that have undergone EMT, which can contract to 
result in retinal folds, re-detachment, and vision loss (Hiscott 
et al. 1999; Idrees et al. 2019). The dedifferentiation of RPE 
cells into fibroblast-like cells through EMT due to exposure 
to growth factors and cytokines is pivotal in the pathogenesis 
of PVR. These de-differentiated cells migrate to retinal sur-
faces, producing collagen (mostly type I), MMPs, fibronectin 
and TIMPs to rebuild the ECM (Greene et al. 2017; Hiscott 
et al. 1999). Treatment of human RPE with growth factors or 

cytokines could induce EMT and substantially increases type 
I collagen synthesis (Boles et al. 2020; Itoh et al. 2007; Jing 
et al. 2019). The proline analog, cis-hydroxyproline, inhibits 
collagen synthesis, attachment and migration of bovine RPE 
cells in dose- and time-dependent manner (Yoo et al. 1997). In 
a rabbit PVR model, cis-hydroxyproline significantly reduces 
the rate of retinal detachment (Radtke et al. 1986; Yasukawa 
et al. 2002). Epithelial cells including RPE that has undergone 
EMT can suppress the expression of PRODH (Boles et al. 
2020; Brennan et al. 2012; Tian et al. 2015). These studies 
suggest that RPE in PVR may have altered proline metabolism, 
shifting from proline catabolism to collagen synthesis.

Conclusion and perspectives

Proline transport and metabolism emerge as important regu-
lators in retinal physiology and diseases through modulating 
mitochondrial metabolism, ROS protection, ECM remodeling 
and cell differentiation. However, except for transcriptomics 
data, there is a lack of information on the expression and 
localization of proline transporters and key enzymes in proline 
metabolism in normal and diseased retinas. Furthermore, there 
is scarce data on proline levels in the RPE and neural retinas 
in retinal disease models. Performing loss-of-function experi-
ments specifically in RPE for genes in proline metabolism will 
provide important insights on the roles of proline in retinal 
health and diseases. These genetically deficient models will 
also be useful tools to investigate metabolic communications 
between RPE and the neural retinas. SLC6A20 and PRODH 
are downregulated in RPE with EMT and AMD, which could 
make them potential therapeutic targets for PVR and AMD.
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