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Abstract

Predictions of habitat suitability for invasive plant species can guide risk assessments at

regional and national scales and inform early detection and rapid-response strategies at

local scales. We present a general approach to invasive species modeling and mapping that

meets objectives at multiple scales. Our methodology is designed to balance trade-offs

between developing highly customized models for few species versus fitting non-specific

and generic models for numerous species. We developed a national library of environmental

variables known to physiologically limit plant distributions and relied on human input based

on natural history knowledge to further narrow the variable set for each species before

developing habitat suitability models. To ensure efficiency, we used largely automated

modeling approaches and human input only at key junctures. We explore and present

uncertainty by using two alternative sources of background samples, including five statistical

algorithms, and constructing model ensembles. We demonstrate the use and efficiency of

the Software for Assisted Habitat Modeling [SAHM 2.1.2], a package in VisTrails, which

performs the majority of the modeling analyses. Our workflow includes solicitation of expert

feedback on model outputs such as spatial prediction results and variable response curves,

and iterative improvement based on new data availability and directed field validation of ini-

tial model results. We highlight the utility of the models for decision-making at regional and

local scales with case studies of two plant species that invade natural areas: fountain grass

(Pennisetum setaceum) and goutweed (Aegopodium podagraria). By balancing model auto-

mation with human intervention, we can efficiently provide land managers with mapped pre-

dicted distributions for multiple invasive species to inform decisions across spatial scales.
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Introduction

The ongoing global spread of harmful exotic plant species is increasing their occupancy and

abundance, posing challenges for natural areas, where successful management of natural

resources may depend on prevention, containment, and control of invaders [1–3]. Knowledge

of where invasive plants occur is a pre-requisite for efficient mitigation of their impact and

minimization of their spread [4]. At broad geographic scales, such as across biomes, watch lists

and risk assessments rely on information about the current distribution of invasive species

across geographic and environmental conditions [5,6]. At local scales, such as protected areas

or U.S. counties, search efforts to find new populations of invasive species and to target man-

agement actions are guided by maps of invasive plant species occurrence and modeled habitat

suitability [7–9].

Species distribution models (SDMs) are commonly used to estimate potential distributions of

invasive species and to assess what areas contain suitable habitat. Correlative SDMs estimate the

occurrence of a species based on habitat attributes such as climate, soils, and land use [10]. These

models are then spatially projected to represent the modeled species’ potential habitat and pro-

vide an objective tool to understand the distribution of invasive species. However, the credibility

of different SDMs varies widely based on the quality of information used in making models,

choices made in the modeling process, and to what degree natural history information and

expert opinion factor into the modeling process [11,12]. Making the most credible SDM takes

considerable effort and often requires collecting information that is not readily available (e.g.,

on species absence and detection probability), while a fully automated process using a standard

set of existing information may produce many models quickly but has less credibility. Iterative

modeling, the incremental improvement of SDMs based on added information and modified

modeling processes over time, provides a way to minimize the tradeoffs between quality and

quantity of models created and to objectively demonstrate improvement of models with the use

of additional information, including new data, expert review, and field validation [13–15].

The intended use of habitat suitability model results is a critical consideration when devel-

oping SDM methodologies [16]. An automated methodology requiring little human interven-

tion in the modeling process can quickly produce models for a large number of species. Such

models can provide broad biogeographical perspectives and be informative for global and con-

tinental biodiversity assessments, but careful methodological consideration is always necessary

and guidelines have been developed for these contexts [17]. In contrast, tailoring the model

and input data, including collecting higher quality data than may readily exist, is appropriate

for high-stakes decisions like those involving regulatory decisions [18]. Invasive species often

sit at an intermediate point in terms of data availability, stakes of the decisions, and resources

available for modeling and management. The sheer number of established and potential exotic

plant species for which SDMs might provide critical distributional information remains a

major challenge [19,20], and at the same time, credibility for species-specific management

responses is often needed. Striking a balance among these aspects of SDMs can be a challenge,

especially when multiple species and multiple spatial scales are of interest.

Management of invasive plant species occurs at both broad and local scales and often

requires combining multiple analyses and reviewing multiple maps (Table 1). National-extent

maps are often too coarse in resolution (e.g., 1 km) for decisions within a management unit,

while fine resolution, small-extent (local) maps only include a tiny portion of the landscape,

making regional decisions and cross-agency coordination difficult. A small number of invasive

species cause a majority of the impacts to local biodiversity, ecosystem functioning, and

human well-being [21], but across large or diverse geographic areas, there may be many spe-

cies of management interest. Moving forward, the scope of species distribution models needs
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to be inclusive of large geographic regions, while the geographic precision of models needs to

be fine-scale enough to make predictions within an individual management unit. Developing a

set of input data covering a large geographic extent at a fine resolution for use in modeling the

broad set of invasive species of management interest could make a single set of models useful

for local targeting in the invaded range and regional or national risk assessment beyond the

current range boundaries.

Here, we outline a robust and efficient methodology for the initial development of multiple,

credible SDMs of invasive plant species. Our objective is to establish a modeling protocol that

leverages existing data and balances automation with human intervention to perform model

analyses for several species using a curated suite of contiguous U.S. variables at 90 m resolution

that could be useful at national, regional and local scales. The methods also utilize improved

computing power to create models with a large extent and fine grain size to deliver results use-

ful at multiple spatial extents (Fig 1). We use two invasive plant species to illustrate our model

development process, model validation using independent data, and model utility for manage-

ment: fountain grass (Pennisetum setaceum [Forssk.] Chiov.), a broadly-established invader in

the U.S. since the 1940s, and goutweed (Aegopodium podagraria L.), an invader in the U.S.

since the 1860s, but with a more limited distribution.

Methods

Occurrence and background data

We downloaded occurrence data for each species from multiple databases. We created a spe-

cies occurrence data script in the statistical software program R [30] to create a consistent

occurrence data acquisition workflow for the modeled species (‘Species Occurrence Data

Script’, Fig 1, https://doi.org/10.5281/zenodo.3581395. First, all known synonyms and U.S.

Department of Agriculture (USDA) Plants Database [31] acronyms were collected (excluding

subspecies, variants, and hybrids) using the Integrated Taxonomic Information System (ITIS;

www.itis.gov) as an authoritative taxonomy in the R library ‘taxize’ [32]. Next, occurrence data

repositories were queried from online sources: the Global Biodiversity Information Facility

(GBIF [33]), Biodiversity Information Serving Our Nation (BISON [34]), and the Early Detec-

tion & Distribution Mapping System (EDDMapS [35]). Records from the Bureau of Land

Management’s (BLM) and the National Park Service (NPS) National Invasive Species Informa-

tion Management System databases and data from the BLM Assessment Inventory and Moni-

toring program were added to these results. We filtered the aggregated data by observation

type (observation or specimen only), observation date (1980 to present), and coordinate

uncertainty (� 30 m). We removed any records with coordinates corresponding to state or

country centroids or other identifiable geographic and taxonomic errors. We also checked the

Table 1. Invasive species distribution model interpretation scales (national, regional, local) and their audience, use and select examples from the literature.

Scale Extent Example Audience Primary Use

National Contiguous U.S. Federal land management agencies, National policy

actors, Federal plant and animal health protection

organizations

Understand the potential scope of the problem [22,23].

Characterize the threat. Resource planning and allocation

among regions [15,24]. Restrictions on international trade.

Guide higher-resolution models at smaller extents [25]

Regional Exotic Plant Management Team

(EPMT) regions, States, Ecological

zones, Watershed

Regional coordinators (e.g., Great Lakes Early

Detection Network), District Managers, State weed

agencies, Conservation organizations

Coordinate invasive species surveys [26]. Inform local watch

lists, assessing & communicating regional risks [24,27–29].

Invasion prevention and management [26]

Local National Park, Reserve, National

Forest, County, Disturbance area

(e.g., fire)

Land managers, Local government agencies Early Detection and Rapid-Response [9]. Monitoring invasion

spread, developing containment strategies [8,24]. Inventory of

the scope of the invasion at local scale [25]

https://doi.org/10.1371/journal.pone.0229253.t001
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Fig 1. Workflow of the modeling framework showing data sources, model input data, automated and human processes, model output products

and the paths for model iterations.

https://doi.org/10.1371/journal.pone.0229253.g001
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entire dataset for duplicate records. We obtained data for fountain grass (accessed 24 July

2018) and goutweed (accessed 29 April 2019) [33–35]. Once downloaded and filtered, the data

were mapped and visually checked for accuracy (‘Examine Occurrence Maps’, Fig 1). We had

3,422 unique fountain grass locations and 1,168 unique goutweed locations for model develop-

ment that resulted from the data download script.

We used a background sample approach to develop SDMs for each species since absence

data are rare and can be unreliable for invaders that are still expanding [36]. We developed

models using two background method generation approaches since the choice of background

method, including location extent and placement, can strongly affect model results [37]. First,

we developed a continuous kernel density estimation (KDE) layer around the occurrences for

each species (termed ‘KDE Background Data’, Fig 1), restricted in extent to a minimum convex

polygon around occurrences that was buffered by 1/3 of the maximum difference between min-

imum and maximum X coordinates and minimum and maximum Y coordinates. This KDE

approach results in the background sample density correlating with the occurrence point den-

sity and was proposed as an appropriate method for spreading invasive species by up-weighting

locations that may be at the invasion front [36]. Our second background sampling approach

was the target guild method (termed ‘Target Background Data’, Fig 1), which uses presence

locations from similar species as background points [38], to mimic sampling bias in the pres-

ence data under the assumption that locations from the same data sets for similar species would

have the same sampling biases. To develop the background samples for this ‘target’ model

methodology, we obtained a list of species from the USDA Plants Database designated as intro-

duced across the entirety of the continental United States. We then obtained aggregated data

following the protocol above for all introduced species. We restricted the extent from which we

selected target background locations to a binary 99% isopleth KDE based on the presence loca-

tions to ensure we were limiting them to accessible areas [39]. To model a focal invader, we

subset the introduced species occurrences based on the life form of the species of interest (e.g.,

grass for fountain grass and forb or herb for goutweed) as defined by USDA Plants Database.

These occurrences, filtered by lifeform, became our target background data and were addition-

ally checked for accuracy by mapping their distribution.

Environmental variables

We compiled a national library of potential environmental variables to consider for the distri-

bution modeling. We only considered variables available throughout the contiguous U.S

(‘National Predictor Library’ Fig 1). These variables were compiled based on consideration of

what environmental factors may limit plant species’ distributions and we selected environmen-

tal variables that captured attributes such as water balance and temperature extremes known

to physiologically limit plant distributions [40]. We included the most up-to-date representa-

tion of climatic, topographic, soil, land use, and anthropogenic factors that have coverage

across the contiguous U.S. at the highest spatial resolution available (Table A in S1 File). The

curation of this library of variables was intentional and rigorous, and included custom derived

metrics and widely-used canned datasets such as Bioclim [41]. A total of 60 environmental var-

iables were compiled and were considered for model development (Table A in S1 File). All

environmental variables were processed to the Alber’s Equal Area coordinate reference system,

continental U.S. extent, cell size (90 m) using the nearest neighbor method of resampling and

alignment using the PARC (Project, Aggregate, Resample, Clip) module in the Software for

Assisted Habitat Modeling (SAHM, [42]) (‘Environmental Variable Preparation’, Fig 1).

A critical aspect of our modeling workflow was the species-specific selection of predictor

variables, which used a combination of automatic and human input processes (‘Species’
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Variable Selection’ and ‘Final Variable Selection’, Fig 1). First, we conducted a literature

review for each species to help inform which environmental variables from the national

library we compiled limit the distribution of each species. We also drew on our own natural

history knowledge of each species, and on initial conversations with management practition-

ers in the regions where these species are impacting ecosystems. We retained predictors for

modeling from the national library based on this species-specific information and by remov-

ing one of any pair of variables that had a maximum of the Pearson, Spearman, or Kendall

correlation coefficient |r|> 0.7 [43] to reduce issues of collinearity. This analysis was accom-

plished using the CovariateCorrelationAndSelection module in SAHM (‘Final Variable Selec-

tion’, Fig 1).

Habitat suitability modeling

We implemented multiple model algorithms for each species since statistical model choice is

the greatest source of quantifiable uncertainty in species distribution modeling [44,45], allow-

ing us to evaluate and reduce the potential biasing effects of algorithm choice on our results.

These included Maxent (v 3.4.1), Boosted Regression Trees (BRT), Random Forest (RF), Gen-

eralized Linear Model (GLM) and Multivariate Adaptive Regression Splines (MARS). We used

SAHM [42] within the VisTrails software framework [46] to fit models to each combination of

algorithm and background method (‘SAHM Model Fitting’, Fig 1). SAHM provides an estab-

lished, streamlined and replicable approach to preprocess model inputs, run multiple algo-

rithms and compare results. Three of the five models have an internal variable selection

process; BRT used bag fraction = 0.5; GLM used a bidirectional stepwise procedure using

Akaike’s Information Criterion (AIC), considering all interactions and squared terms; and

MARS used Mars Degree (Friedman’s μ) = 1 and GVL penalty = 2.0. Both Maxent and RF

retain all variables provided to them. We used a default set of parameters for each model algo-

rithm, and subsequently evaluated model-specific parameter settings for any resulting model

where the training and test area under the receiver operating characteristics (AUC-ROC) val-

ues based on 10 fold cross-validation had a difference > 0.05, which we defined a priori as a

threshold to indicate overfitting along with visual inspection of response curve complexity

(e.g.,[47], ‘Model Overfitting Assessment’, Fig 1). We developed 10 models for each species

(five modeling algorithms each with two background sampling approaches) to estimate suit-

able habitat. Any model that was either still overfit or had poor assessment metrics (i.e., test

AUC-ROC < 0.7 [43]) was dropped from further analysis. We produced a multivariate envi-

ronmental similarity surface (MESS) for each model [36] and overlaid this surface on maps to

highlight areas of extrapolation beyond the environments captured by the training data. All

models were developed using the training data described above and applied to predictors for

the contiguous U.S. at a spatial resolution of 90 m.

Each model was evaluated using a 10-fold cross-validation approach [48], which partitions

the training data into 10 equal subsets and runs 10 model iterations where 9 subsets are used

for model development (training data) and the final subset is used to test the model perfor-

mance (test data). The 10 iterations are then averaged together to provide a final measure of

model performance. SAHM produces several statistical measures (‘Generate Model Statistics’,

Fig 1) including AUC-ROC, AUC-precision recall (AUC-PR), Kappa, True Skill Statistic

(TSS), percent correctly classified (PCC), sensitivity, and specificity which we compiled for

each model on the training and test data to evaluate performance. These metrics together can

help evaluate the quality of a model and generally a model with a test AUC value >0.7 is con-

sidered to have good performance and can be useful [49].
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Model outputs and iteration

Each continuous model was classified to represent suitable and unsuitable habitat using the

minimum predicted presence (MPP) threshold, one percentile threshold, ten percentile

threshold, and the maximum sensitivity plus specificity (MSS) threshold. Each threshold falls

on a spectrum from a more restrictive to more inclusive prediction of habitat suitability.

Depending on the intended use of the model, one threshold may be preferred over the other or

multiple thresholds may be used to present different representations of habitat suitability for

an invasive species [12,50,51]. Therefore, we provide multiple threshold options in our model-

ing workflow that can be considered by practitioners. The MPP, one percent and ten percent

thresholds are determined by the value at which the minimum, lowest one percent or lowest

ten percent of the training data occurrences was classified as being in unsuitable, respectively.

The MSS threshold is the value of the maximum of the true positive rate (sensitivity) plus the

true negative rate (specificity). For statistical evaluations of the models, we used the value at

which sensitivity equals specificity. Finally, all ten binary models for each species were com-

bined to create a single, equal weight model ensemble map to represent the number of models

predicting suitable habitat for the focal invasive species at a given threshold (‘Threshold and

Ensemble Model Outputs’, Fig 1). Along with these mapped outputs, SAHM produces variable

response curves showing the general relationship between each variable and suitability for the

species and a measure of variable importance. We evaluated variable importance for each

model based on change in the AUC statistic (ΔAUC) when values for that variable were per-

mutated between presence and background, then ranked variables within each model relative

ΔAUC.

Resource managers pointed us to an independent data set to evaluate the fountain grass

models in California, CalFlora (accessed 12 December 2018 resulting in 898 cleaned occur-

rence records not contained in the training occurrence data set [52]). These were used as an

independent validation data set for fountain grass to evaluate how many occurrences were cap-

tured at each model ensemble value for each threshold and provides a valuable resource to

independently validate model performance (‘Independent Data Evaluation’, Fig 1). We did

not have an independent test data set for goutweed. We also categorized the model ensemble

for each species using a model assessment rubric to describe each model’s attributes related to

species data, environmental predictors, modeling process, and model products using three

classifications: ‘interpret with caution’, ‘acceptable’, or ‘ideal’ following Sofaer et al. [12] who

defined criteria to classify each specific attribute of the model process into each of these catego-

ries. These classifications are meant to inform use, where different uses may require different

levels of classification (e.g., model to guide search to improve model versus a model used for

regulatory decisions).

Case study species

We selected two invasive species of interest to managers of natural areas: fountain grass (Pen-
nisetum setaceum [Forssk.] Chiov.) and goutweed (Aegopodium podagraria L.). Fountain grass

is a perennial C4 bunch grass native to North Africa and the Middle East, but has been widely

planted as an ornamental in the U.S. and has expanded into natural areas [53]. The species is

most problematic in the southwest U.S. and Hawaii, where it quickly outcompetes native flora

creating a monoculture that becomes a fire hazard and alters fire regimes in systems that are

not historically fire-adapted [54]. Fountain grass has been established since the 1940s [55] but

continues to expand into new environments where local early detection and rapid-response

efforts can reduce the rate of spread, achieve local containment, or reduce impacts [56].
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Goutweed (or Bishop’s weed) is a creeping, ornamental herbaceous perennial from Europe

that can grow up to 1 m tall. It was reported as potentially invasive as early at 1859 [57], and is

currently distributed in the northeast, northern Midwest, and northwest U.S. It reproduces

vegetatively via rhizomes, and can spread aggressively once established. Where it becomes

invasive, it can form dense patches that outcompete native vegetation and is difficult to remove

once established [57]. Goutweed is listed as one of the most common invasive species for Pic-

tured Rocks National Lakeshore.

Study area

We focus on three scales of invasion risk map interpretation for each species (Fig 2). At the

largest extent, both species were evaluated at the contiguous U.S. At the regional scale, we used

the National Park Service Exotic Plant Management Teams (EPMT) geographical regions.

These regions serve as the source of invasive plant management expertise and field support to

the national parks within each boundary. This may include inventory, treatment, and ecologi-

cal restoration. For fountain grass, we focused on the Lake Mead region and for goutweed we

focused on the Great Lakes region. Finally, at the local extent, we evaluated models for individ-

ual national park units. These units were Joshua Tree National Park and Pictured Rocks

National Lakeshore for fountain grass and goutweed, respectively (Fig 2). For regional risk

assessment from the perspective of the NPS EPMT, we considered the number of park units

within their focal management regions containing suitable habitat for the species. We used the

percentile threshold to calculate identify the park units and the area of suitable habitat within

each park unit. We also conducted a nearest occurrence location analysis to provide the dis-

tance to the nearest known occurrence if a park unit was not identified to have suitable

habitat.

Results

Model characteristics

We retained 16 variables for fountain grass model development (Table B in S1 File), although

the set varied depending on background method and differences in collinearity. The human

influence index and minimum winter temperature consistently fell in the top three variables

ranked by percent contribution across model runs. For target background runs, spring mean

potential evapotranspiration was also in the top three variable grouping. For KDE background

runs, over-winter evapotranspiration completed the top three except for BRT where it ranked

fourth. Fountain grass habitat suitability was associated with higher minimum winter tempera-

tures and moderate human influence (Figure A in S1 File). It was also generally associated

with higher over-winter evapotranspiration values and lower spring mean potential

evapotranspiration.

The models for goutweed retained 18 environmental variables (Table B in S1 File). The

most important variable for goutweed models with KDE background was the landscape condi-

tion model (ranging from 34% to 54%), with maximum mean summer temperature in the top

three for three of the KDE models. For the target background runs, average annual precipita-

tion, average minimum winter temperature and summer potential evapotranspiration were

generally the three most important variables. Goutweed habitat suitability decreased with

increasing landscape condition and suitability was dependent on having at least 1,500 mm of

mean annual precipitation (Figure A in S1 File).
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Fig 2. A-F: Potential habitat suitability model ensemble (maximum value of 10) using the one percentile threshold for fountain grass

(Pennisetum setaceum) (A,C,E) and goutweed (Aegopodium podagraria) (B,D,F) at each extent: national extent (A, B), regional

extent defined by the Exotic Plant Management Team Regions including C) Lake Mead and D) Great Lakes), and the local extent

defined by E) Joshua Tree National Park and F) Pictured Rocks National Lakeshore.

https://doi.org/10.1371/journal.pone.0229253.g002
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Model performance

All model performance metrics are specific to the focal dataset, and are generally higher for

lower prevalence species. Metrics provide a reliable comparison among models for a given spe-

cies and dataset, while comparisons of model performance across species are confounded by

variation in prevalence. Random cross-validation indicated reasonable model fit for fountain

grass, with the minimum AUC and AUC-PR values across all ten models> 0.91 and> 0.79,

respectively (Table C in S1 File). Threshold-dependent performance metric values (at the

Sensitivity = Specificity threshold) for PCC, Kappa and True Skill Statistic values were

all> 83%, > 0.62 and> 0.67, respectively. In general, BRT and RF models had the highest

cross-validation statistics while GLM and MARS had the lowest. Models utilizing the KDE

background method performed better than the target background models with the exception

of the GLM model.

Goutweed models had cross-validation AUC values> 0.88 (Table C in S1 File). AUC-PR

values varied, with the MARS KDE model having the lowest performance at 0.43 and the BRT

target model having the highest at 0.75. The threshold-dependent evaluation metrics were also

mixed with Kappa ranging from 0.34 (GLM KDE and MARS KDE) to 0.69 (RF target). The

True Skill Statistic was more similar across models with all values> 0.64. Similar to fountain

grass models, BRT and RF generally performed better than GLM and MARS. However, the

target background models performed better than the KDE background models for goutweed

(Table C in S1 File).

The CalFlora independent dataset for fountain grass supported good performance across

the threshold model ensemble (Fig 3). The majority of the occurrences were in areas where six

or more models agreed across all thresholds. As expected, the most restrictive 10th percentile

model ensemble (i.e., where 10% of training points are excluded from the binary definition of

suitability) had the lowest sensitivity, with most of the independent records located in areas

where three to six models agreed. In the inclusive MPP threshold model ensemble, all occur-

rences were located in areas where seven or more models agreed.

National spatial results

The national map for fountain grass using the one percentile threshold model ensemble

showed high suitability in the southwestern U.S. extending from California to Texas (Fig 2).

The map also highlighted the southeast from Florida to South Carolina as potentially suitable

for fountain grass. The national map for goutweed (also using the one percentile threshold)

predicted relatively high suitability in the northeast and Midwest U.S. It also showed moderate

suitability in the northwest where goutweed has also become a problematic invasive species.

Across the U.S., there was a large amount of extrapolation in all models as indicated by the

MESS maps (Fig 2). Fountain grass has areas of extrapolation in the northern third of the

contiguous U.S. and portions of the southeast. Goutweed model extrapolation occurred

across much of the west and the southeastern U.S.

Regional risk assessment

The regional map of the model ensembles at the one percentile threshold reported suitable

habitat in several parks not known to contain the species (Tables 2 and 3). There are 14 parks

that intersect the Lake Mead EPMT region, including seven with predicted suitable habit

(ranging from < 1% to 64% of the park unit) and two with known occurrences. Two of the

parks that have predicted suitable habitat and no known occurrences were within 20 km of a

known location. There are 12 parks occurring in the Great Lakes EPMT region, all of which

are predicted to contain at least some suitable habitat for goutweed ranging from 27 to 20,373

PLOS ONE Modeling workflow balancing automation and human input for invasive plant management at multiple scales

PLOS ONE | https://doi.org/10.1371/journal.pone.0229253 March 9, 2020 10 / 21

https://doi.org/10.1371/journal.pone.0229253


ha, representing 9% to 98% of park units. Three of the 12 parks had occurrence records in the

aggregated data used to develop the model, with an additional six parks having a location

within 15 km of the park boundary.

Local habitat suitability

When evaluating the local extent model ensemble predictions, Joshua Tree National Park

contains a predicted 204,957 ha of fountain grass suitable habitat (64% of the park; calculated

using the one percentile threshold and including any location where at least half the models

agreed it was suitable). There are several known occurrence points, most of which are in the

western portion of the park (Fig 2). Discussions with park staff revealed a new population

found within the middle of the park occurred in predicted suitable habitat from the model

ensemble. Portions of the remote eastern portion of the park, which has not been surveyed,

contain suitable habitat as well, and managers discussed wanting to prioritize surveys in those

locations after viewing the mapped predictions. Within Pictured Rocks National Lakeshore,

there are an estimated 18,185 ha of suitable habitat (61% of the park). Two of the known occur-

rence points occur within the park boundary (Fig 2). Areas of high suitable habitat were pre-

dicted in the northeastern portion of the park in the coastal grassland and shrubland

vegetation and along known trails and roads (Fig 2).

Fig 3. Model ensemble values associated with the independent observation data for fountain grass from CalFlora

for four different threshold metrics including minimum predicted presence, one percentile, ten percentile and the

maximum of sensitivity plus specificity.

https://doi.org/10.1371/journal.pone.0229253.g003
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The threshold values for both species provided a range of potential ways to view and inter-

pret the results. By definition, the MPP provides the most inclusive predictions of suitable hab-

itat while the ten percentile threshold is the most conservative and the differences between

these can be substantial (Fig 4). Providing a spectrum of threshold values to view the results

allows users to select an option that suits their management or decision making needs.

Discussion

Our results suggest that this methodology provides a framework to balance efficient automa-

tion with species-specific model tuning to produce invasive species habitat suitability models

useful for different management contexts and at multiple geographic extents. These models

provide an entry point for an iterative modeling workflow. The methodology is built on readily

available occurrence information and environmental variables covering the contiguous U.S. to

provide efficiencies in developing large numbers of species-specific models. Using these inputs

with the methodology provides a consistent modeling approach for multiple species that can

be reviewed and compared. Similar frameworks for invasive species have been suggested how-

ever they are often conceptual, have limited human input or suggest the development of multi-

ple models across spatial scales [24,58–61]. Sofaer et al. [12] identified the development of

credible and repeatable models as an important issue limiting the use of species distribution

models, and this framework provides a credible process as illustrated in the evaluation table

(Table 4) and outputs such as response curves for expert review that are easily repeatable

(Table B and Figure A in S1 File). This framework also supports iterative modeling, as input

from users on environmental variables or new data can be readily incorporated to produce

new model versions [12,59]. In addition, data quality is the fundamental driver of model qual-

ity which is why we gathered presence information from multiple sources and subjected them

to rigorous, but generally automated, filtering [62,63]. As model outputs are shared with local

practitioners, additional presence locations may become available for use in subsequent itera-

tions. We considered alternative assumptions about the available environment related to

invader spread (weighting points farther from others more [KDE] or basing weights solely on

density of sampling [target]), corresponding to different sets of background locations [36,38].

Further, we used human input to evaluate the natural history of the species and select species-

specific covariates, but for efficiency and scalability, we limited the selection to a set of vari-

ables designed to encompass and represent factors that limit plant distributions in different

regions of the country.

Our results provide one model ensemble prediction for each species that can be interpreted

across broad to local extents whereas most published single invasive species maps are only

applicable to one or two extents (Table 1). At the national extent, these models show the cur-

rent status or scope of the problem across the nation, highlighting regions of invasion or

potential invasion that may be geographically distant from one another. For example, fountain

grass is known to be a problematic invader in the west; however, the national model shows

that the southeast portion of the country could also be susceptible to invasion (Fig 2). Inter-

preting the models at the national scale assesses the species’ impact across very different eco-

logical regions of the country and the risk of invasion could be overlooked if the model was

not developed at the national scale [5]. These models can also be interpreted regionally to

assess the potential for invasion in the context of multiple land ownerships and uses. At the

regional level, we identified multiple national parks that have not detected the invasive species

of concern but likely have suitable habitat based on our model predictions (Tables 2 and 3).

The use of the model at this regional extent can assess the level of risk of an invader by evaluat-

ing the potential suitable habitat for a management area as it relates to the proximity to the
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Fig 4. Fountain grass (Pennisetum setaceum) models of four different thresholds including minimum predicted presence (MPP), one

percentile, ten percentile and maximum of sensitivity plus specificity (MSS). Model predictions are shown at three scales; A) national, B)

regional (Lake Mead Exotic Plant Management Team region in blue) and C) local (Joshua Tree National Park in green).

https://doi.org/10.1371/journal.pone.0229253.g004

PLOS ONE Modeling workflow balancing automation and human input for invasive plant management at multiple scales

PLOS ONE | https://doi.org/10.1371/journal.pone.0229253 March 9, 2020 13 / 21

https://doi.org/10.1371/journal.pone.0229253.g004
https://doi.org/10.1371/journal.pone.0229253


closest known occurrence based on the data used to develop the model [64]. Finally, at the

local extent, these models can be used to guide early detection and rapid-response (EDRR) or

control efforts. Model results can be viewed within administrative boundaries and at a resolu-

tion of 90 m, providing enough detail for managers to guide surveys to local incipient popula-

tions and to target control actions towards locations that will contribute to containment or

impact reduction [65].

We developed our models with Sofaer et al.’s [12] model assessment rubric in mind and

evaluated our models using this framework (Table 4). Our models consistently scored in the

Table 2. Regional analysis table for a) fountain grass (Pennisetum setaceum) in Lake Mead EPMT unit including the potential suitable area for the one percentile

threshold, percent of park is the percent of the park area that is classified as potentially suitable, number of observed occurrences indicates if presence locations

from the park were available for model development, and minimum distance to occurrence is the minimum distance from the park boundary to a known occurrence

used in model development.

Park name Potential suitable area

(acres)

Percent of park

(%)

Number of observed

occurrences

Minimum distance to occurrence

(km)

Joshua Tree National Park 506,459 64% 308 0

Death Valley National Park 668,933 20% 2 0

Tule Springs Fossil Beds National

Monument

4,160 18% 0 5

Castle Mountains National Monument 3,520 17% 0 18

Mojave National Preserve 106,067 7% 0 11

Zion National Park 117 <1% 0 117

Arches National Park 38 <1% 0 289

Timpanogos Cave National Monument 0 0 0 353

Pipe Spring National Monument 0 0 0 120

Hovenweep National Monument 0 0 0 193

Manzanar National Historic Site 0 0 0 70

Bryce Canyon National Park 0 0 0 163

Great Basin National Park 0 0 0 187

Cedar Breaks National Monument 0 0 0 148

https://doi.org/10.1371/journal.pone.0229253.t002

Table 3. Regional analysis table for bishop’s goutweed (Aegopodium podagraria) in Great Lakes EPMT unit including the potential suitable area for the one percen-

tile threshold, percent of park is the percent of the park area that is classified as potentially suitable, number of observed occurrences indicates if presence locations

from the park were available for model development, and minimum distance to occurrence is the minimum distance from the park boundary to a known occurrence

used in model development.

Park name Potential suitable area

(acres)

Percent of park

(%)

Number of observed

occurrences

Minimum distance to

occurrence

Keweenaw National Historical Park 1,826 98% 0 0

Ice Age National Scenic Trail 153 97% 0 9

Lower Saint Croix National Scenic Riverway 8,336 74% 9 0

Indiana Dunes National Lakeshore 11,393 72% 0 34

Mississippi National River and Recreation

Area

38,322 71% 0 2

Saint Croix National Scenic Riverway 45,798 66% 0 1

Sleeping Bear Dunes National Lakeshore 44,427 63% 0 1

Pictured Rocks National Lakeshore 44,935 61% 3 0

Apostle Islands National Lakeshore 29,385 40% 1 0

Voyageurs National Park 23,201 11% 0 9

Isle Royale National Park 50,343 9% 0 42

Grand Portage National Monument 67 9% 0 21

https://doi.org/10.1371/journal.pone.0229253.t003
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‘acceptable practices’ category with a few metrics scoring as ‘ideal’ (‘interpretation support

products’ and ‘reproducibility’) and two as ‘interpret with caution’ (‘model review’ for gout-

weed and ‘iterative’ for both; the latter is by design as we were interested in defining an entry

point for iterative modeling). For many models, it would be impossible to score ‘ideal’ using

readily available data rather than data collected based on a statistically designed study for the

specific species. The ‘interpret with caution’ categories could move to ‘acceptable practices’

with a second iteration. As the model results are evaluated and used in the field, additional

data will be provided and practitioners and experts will also have an opportunity to review and

evaluate the model results. Further, our model results provide a ranking of the environmental

variable contribution to the model combined with figures of the response curves (Table B and

Figure A in S1 File). Compiling and presenting these results not only inform the modelers

what factors may be important and how the species may respond to those factors but also serve

as an important resource for practitioners and species experts to evaluate the model credibility.

This can provide another aspect of model validation or enable model iteration and

improvement.

Table 4. Model assessment rubric from Sofaer et al. [12] for fountain grass and goutweed models.

Fountain grass Goutweed

Species Data Presence data quality Acceptable: Location data evaluated for accuracy

(taxonomic, spatial coordinates). Locations compared with

reported distributions.

Acceptable: Location data evaluated for accuracy

(taxonomic, spatial coordinates). Locations compared with

reported distributions.

Absence/

background data

Acceptable: Background data selected using target

background approach to reflect sampling biases of invasive

plants or weighted based on presence point density (mimic

spreading species with less background at expanding edges).

Acceptable: Background data selected using target

background approach to reflect sampling biases of invasive

plants or weighted based on presence point density (mimic

spreading species with less background at expanding edges).

Evaluation data Acceptable: Cross-validation of training data. Acceptable: Cross-validation of training data.

Environmental

Predictors

Ecological and

predictive relevance

Acceptable: Predictors chosen based on natural history

information for a perennial C4 grass.

Acceptable: Predictors chosen based on natural history

information.

Spatial and temporal

alignment

Acceptable: Predictors match sampling period as closely as

possible. Used available resolution closest to that desired for

mapped products.

Acceptable: Predictors match sampling period as closely as

possible. Used available resolution closest to that desired for

mapped products.

Modeling Process Algorithm choice Acceptable: Used a range of algorithms (regression based,

tree based, machine learning) that were evaluated separately

based on a priori criteria for inclusion in final model.

Acceptable: Used a range of algorithms (regression based,

tree based, machine learning) that were evaluated separately

based on a priori criteria for inclusion in final model.

Sensitivity Acceptable: Evaluated five different algorithms and two

background generation methods. Analyzed each algorithm’s

settings separately based on a priori criteria.

Acceptable: Evaluated five different algorithms and two

background generation methods. Analyzed each algorithm’s

settings separately based on a priori criteria.

Statistical rigor Acceptable: Examined collinearity issues and visually

evaluated residual map for spatial patterns.

Acceptable: Examined collinearity issues and visually

evaluated residual map for spatial patterns.

Performance Acceptable: Evaluated multiple evaluation metrics to ensure

they met a priori criteria. Visually examined mapped

products to evaluate ecological plausibility. Included

independent occurrence data set.

Acceptable: Evaluated multiple evaluation metrics to ensure

they met a priori criteria. Visually examined mapped

products to evaluate ecological plausibility.

Model review Acceptable: Review by regional species experts of initial

response curves and regional and local maps experts pointed

to independent data for evaluation.

Interpret with caution: Reviewed only by model developers.

Needs regional species expert review.

Model Products Mapped products Acceptable: Ensemble of binary maps created for various

thresholds that correspond to different intended uses.

Acceptable: Ensemble of binary maps created for various

thresholds that correspond to different intended uses.

Interpretation

support products

Ideal: Model attributes described. Invasive plant

management community engaged in development of

models and the format of delivery.

Ideal: Model attributes described. Invasive plant

management community engaged in development of

models and the format of delivery.

Reproducibility Ideal: Inputs, scripts, settings, and results available. Ideal: Inputs, scripts, settings, and results available.

Iterative Interpret with caution: First iteration Interpret with caution: First iteration

https://doi.org/10.1371/journal.pone.0229253.t004
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As the practice of modeling habitat suitability evolves and expands, challenges arise with

how much of the process can be automated versus which areas need human intervention.

There is a desire to develop habitat suitability models for collections of species using similar

methods to support a number of initiatives [58,60,66]. In the development of our framework,

we included places in the model process for human input. We found the estimation, predic-

tion, pre- and post-processing of models can be automated reasonably well. We built in auto-

mation of the occurrence data processing, model input data preprocessing (via SAHM) and

model product development while having human intervention at key steps such as environ-

mental variable selection for each species and examination of model parameters to determine

overfitting and ecoplausibility (Fig 1). By using SAHM as opposed to keeping the scripting in

R, we are able to take advantage of the well-developed graphical user interface for the human

inputs of variable selection and examining model outputs (Fig 1). In addition, SAHM has a

more efficient and robust method for model tracking and documentation [42]. We developed

this approach with the understanding that human time and knowledge are valuable, whereas

computing time and power are now readily available [42]. Humans provide judgment, adapt-

ability, motivation, and can draw on experiences while automation can improve consistency,

speed, and advanced computation [67]. This combination provides the speed and consistency

of automation while incorporating the species-specific tailoring of human knowledge and crit-

ical junctures in the modeling process.

A key aspect in our approach is a framework for iterative modeling in which use of the

model will improve future versions (‘Expert Review’ and ‘Model Application’ feed back into

model development, Fig 1). Iterative modeling provides an opportunity to develop a suite of

necessarily imprecise models for multiple species and improve models through their use. Mod-

els can undergo a new iteration upon the collection of new occurrence data, new environmen-

tal variables or from the review of the response curves and spatial results from experts. For

example, as remote sensing technology improves spatial resolution and coverage, these new

environmental data can be incorporated into the environmental variable library to provide

additional predictive power that has been shown to effectively map invasive spices populations

in localized examples [9]. As shown with gypsy moth, operational iterative modeling can

improve models over time and lead to better informed management actions [15]. Our models

represent the first iteration of these predictions. Future versions will need to be determined

based on the frequency and quality of incoming data or expert review. Iterative monitoring

and modeling are essential to continually improving models to inform decisions and manage-

ment actions [4,59,68]. For example, model-informed decision-making that includes surveys

for new populations can be used to assess model performance and the information gathered

can be included in iterative model updates.

There are many pitfalls, assumptions, and caveats of correlative species distribution models

[11] that are evaluated in Table 4. Despite these caveats, species distribution models can be

useful in informing management activities (see examples in [12]). We addressed the primary

challenges we identified as impacting distribution modeling. We incorporated multiple factors

that may control species distribution at different scales, moving beyond strictly climate enve-

lopes. This suite covers a range of categories of predictor type and included the best available

resolutions for nationally consistent data. Since our scope was limited to plants, we created a

suite of common distributional drivers that drive many invasive plant species’ distribution

while also moving beyond readily available bioclimatic variables [41]. However, this suite

could easily be augmented to include variables that would also be applicable to other taxo-

nomic groups. We used aggregated occurrence data and accounted for potential biases in two

different ways to overcome limitations in available data. Our framework allows for the flexibil-

ity to include other background selection approaches that have been recently proposed (e.g.,
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[69]) in this process if they demonstrate improvements to the modeling process. These prod-

ucts could be used to develop sampling schemes that could provide more information to

improve models in the future [15,26]. Finally, we use model ensembles to encompass uncer-

tainty among algorithms, and visualize response curves to assess overfitting and ecoplausibility

and compare among models [8,36].

Our methodology and results present and demonstrate an approach to develop and use

national-scale invasive species habitat suitability models that support multi-scale interpreta-

tion that can support multiple uses and audiences. We provide a framework that leverages the

skills of modeling experts, the species-specific knowledge from field managers and researchers,

and a process for iterative modeling. We use readily available occurrence and national extent

environmental variable data to develop invasive species suitability models that are grounded in

acceptable practices for species distribution modeling [11,36]. Future development should

focus on application of the framework to other invasive plant species, implementation of the

iterative process, and delivery of model results to practitioners. The model results are seamless

across the continental U.S. and can easily be applied to other species of interest. Once the

framework has been applied to a large set of species, the set of model results can be combined

to identify potential hot spots of invasion or efficiencies in management across species (e.g.,

single crew targeting multiple species in an area). A key step is to provide a mechanism to eas-

ily transfer the results from this methodology to managers making decisions at these different

geographic extents.

Supporting information

S1 File. Supplementary material that includes environmental variables considered for

invasive habitat suitability modeling (Table A), the percent contribution of each environ-

mental variable by model for fountain grass and goutweed (Table B), environmental
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(Figure A), and model performance metrics for fountain grass and goutweed (Table C).

(DOCX)

Acknowledgments

We would like to thank the National Park Service Exotic Plant Management Team Units for

their contributions to this work. Any use of trade, firm, or product names is for descriptive

purposes only and does not imply endorsement by the US government. The views expressed

in this publication are solely those of the authors and do not necessarily reflect the views of the

US Government.

Author Contributions

Conceptualization: Nicholas E. Young, Catherine S. Jarnevich, Helen R. Sofaer, Ian Pearse,

Peder Engelstad, Thomas J. Stohlgren.

Data curation: Catherine S. Jarnevich, Julia Sullivan, Peder Engelstad.

Formal analysis: Nicholas E. Young, Catherine S. Jarnevich, Helen R. Sofaer, Julia Sullivan,

Peder Engelstad.

Funding acquisition: Catherine S. Jarnevich.

Investigation: Nicholas E. Young, Catherine S. Jarnevich, Helen R. Sofaer, Ian Pearse, Thomas

J. Stohlgren.

PLOS ONE Modeling workflow balancing automation and human input for invasive plant management at multiple scales

PLOS ONE | https://doi.org/10.1371/journal.pone.0229253 March 9, 2020 17 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0229253.s001
https://doi.org/10.1371/journal.pone.0229253


Methodology: Nicholas E. Young, Catherine S. Jarnevich, Helen R. Sofaer, Ian Pearse, Julia

Sullivan, Peder Engelstad.

Project administration: Nicholas E. Young, Catherine S. Jarnevich.

Resources: Catherine S. Jarnevich.

Software: Peder Engelstad.

Validation: Helen R. Sofaer, Julia Sullivan.

Visualization: Nicholas E. Young, Catherine S. Jarnevich, Helen R. Sofaer, Peder Engelstad.

Writing – original draft: Nicholas E. Young, Catherine S. Jarnevich, Helen R. Sofaer, Ian

Pearse, Thomas J. Stohlgren.

Writing – review & editing: Nicholas E. Young, Catherine S. Jarnevich, Helen R. Sofaer, Ian

Pearse, Julia Sullivan, Peder Engelstad, Thomas J. Stohlgren.

References
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50. Jiménez-Valverde A, Lobo JM. Threshold criteria for conversion of probability of species presence to

either–or presence–absence. Acta Oecologica. 2007 May 1; 31(3):361–9.

51. Liu C, Berry PM, Dawson TP, Pearson RG. Selecting thresholds of occurrence in the prediction of spe-

cies distributions. Ecography. 2005 Jun; 28(3):385–93.

52. Calflora. Information on California plants for education, research and conservation [Internet]. The Cal-

flora Database [a non-profit organization]. 2019 [cited 2018 Dec 12]. https://www.calflora.org/

53. Williams DG, Mack RN, Black RA. Ecophysiology of Introduced Pennisetum Setaceum on Hawaii: The

Role of Phenotypic Plasticity. Ecology. 1995; 76(5):1569–80.

54. D’Antonio CM, Vitousek PM. Biological Invasions by Exotic Grasses, the Grass/Fire Cycle, and Global

Change. Annual Review of Ecology and Systematics. 1992; 23(1):63–87.

55. Robbins WW, 1884–1952. Alien plants growing without cultivation in California. 1940 [cited 2019 Sep

12]; http://agris.fao.org/agris-search/search.do?recordID=US201300450761

56. Westbrooks RG, Manning ST, Waugh JD. Early detection and rapid response: a cost-effective strategy

for minimizing the establishment and spread of new and emerging invasive plants by global trade, travel

and climate change. Invasive species and global climate change. 2014;305–25.

57. Mack RN. Plant Naturalizations and Invasions in the Eastern United States: 1634–1860. Annals of the

Missouri Botanical Garden. 2003; 90(1):77–90.

58. Stockwell DRB, Beach JH, Stewart A, Vorontsov G, Vieglais D, Pereira RS. The use of the GARP

genetic algorithm and Internet grid computing in the Lifemapper world atlas of species biodiversity. Eco-

logical Modelling. 2006 May 15; 195(1):139–45.

59. Uden DR, Allen CR, Angeler DG, Corral L, Fricke KA. Adaptive invasive species distribution models: a

framework for modeling incipient invasions. Biol Invasions. 2015 Oct 1; 17(10):2831–50.

60. Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP. Wallace: A flexible plat-

form for reproducible modeling of species niches and distributions built for community expansion. Meth-

ods in Ecology and Evolution. 2018; 9(4):1151–6.

PLOS ONE Modeling workflow balancing automation and human input for invasive plant management at multiple scales

PLOS ONE | https://doi.org/10.1371/journal.pone.0229253 March 9, 2020 20 / 21

https://doi.org/10.1890/07-2153.1
http://www.ncbi.nlm.nih.gov/pubmed/19323182
https://doi.org/10.1890/07-1772.1
http://www.ncbi.nlm.nih.gov/pubmed/19137944
http://link.springer.com/10.1007/11890850_2
http://link.springer.com/10.1007/11890850_2
https://doi.org/10.4269/ajtmh.15-0330
http://www.ncbi.nlm.nih.gov/pubmed/26217042
https://doi.org/10.1126/science.3287615
http://www.ncbi.nlm.nih.gov/pubmed/3287615
https://www.calflora.org/
http://agris.fao.org/agris-search/search.do?recordID=US201300450761
https://doi.org/10.1371/journal.pone.0229253


61. Sánchez-Tapia A, de Siqueira MF, Lima RO, Barros FSM, Gall GM, Gadelha LMR, et al. Model-R: A

Framework for Scalable and Reproducible Ecological Niche Modeling. In: Mocskos E, Nesmachnow S,

editors. High Performance Computing. Springer International Publishing; 2018. p. 218–32. (Communi-

cations in Computer and Information Science).

62. Reese GC, Wilson KR, Hoeting JA, Flather CH. Factors Affecting Species Distribution Predictions: A

Simulation Modeling Experiment. Ecological Applications. 2005; 15(2):554–64.

63. Elith J, Graham CH, Anderson RP, Dudı́k M, Ferrier S, Guisan A, et al. Novel methods improve predic-

tion of species’ distributions from occurrence data. Ecography. 2006; 29(2):129–51.

64. Bradley BA. Assessing ecosystem threats from global and regional change: hierarchical modeling of

risk to sagebrush ecosystems from climate change, land use and invasive species in Nevada, USA.

Ecography. 2010; 33(1):198–208.

65. Lodge DM, Simonin PW, Burgiel SW, Keller RP, Bossenbroek JM, Jerde CL, et al. Risk Analysis and

Bioeconomics of Invasive Species to Inform Policy and Management. Annual Review of Environment

and Resources. 2016; 41(1):453–88.
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