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Abstract
Background. Combined whole-exome sequencing (WES) and somatic copy number alteration (SCNA) information 
can separate isocitrate dehydrogenase (IDH)1/2-wildtype glioblastoma into two prognostic molecular subtypes, 
which cannot be distinguished by epigenetic or clinical features. The potential for radiographic features to discrim-
inate between these molecular subtypes has yet to be established.
Methods. Radiologic features (n = 35 340) were extracted from 46 multisequence, pre-operative magnetic res-
onance imaging (MRI) scans of IDH1/2-wildtype glioblastoma patients from The Cancer Imaging Archive (TCIA), 
all of whom have corresponding WES/SCNA data. We developed a novel feature selection method that leverages 
the structure of extracted MRI features to mitigate the dimensionality challenge posed by the disparity between 
a large number of features and the limited patients in our cohort. Six traditional machine learning classifiers 
were trained to distinguish molecular subtypes using our feature selection method, which was compared to least  
absolute shrinkage and selection operator (LASSO) feature selection, recursive feature elimination, and variance 
thresholding.
Results. We were able to classify glioblastomas into two prognostic subgroups with a cross-validated area under 
the curve score of 0.80 (±0.03) using ridge logistic regression on the 15-dimensional principle component analysis 
(PCA) embedding of the features selected by our novel feature selection method. An interrogation of the selected 
features suggested that features describing contours in the T2 signal abnormality region on the T2-weighted fluid-
attenuated inversion recovery (FLAIR) MRI sequence may best distinguish these two groups from one another.
Conclusions. We successfully trained a machine learning model that allows for relevant targeted feature extraction 
from standard MRI to accurately predict molecularly-defined risk-stratifying IDH1/2-wildtype glioblastoma patient 
groups.

Key Points

• Radiologic features separate risk-stratifying, WES/SCNA-defined glioblastoma subtypes.

• Tailored radiogenomic feature selection outperforms all-purpose feature selection 
methods.

• Contours on the T2-FLAIR MRI sequence may encode glioblastoma risk-stratifying 
information.

Radiogenomic modeling predicts survival-associated 
prognostic groups in glioblastoma
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Glioblastoma is a highly aggressive disease which is largely 
characterized by somatic copy number alterations (SCNAs), 
which are changes in chromosome structure resulting in 
gains or losses of either region of chromosomes (eg, EGFR 
amplification, CDKN2A/B deletion, and loss of chromosomal 
region 9p) or whole chromosomes (eg, gain of chromosome 
7 and loss of chromosome 10).1–5 Certain SCNA signatures 
in glioblastoma have demonstrated prognostic utility with 
implications for risk-stratification beyond conventional 
histological grading.3,6–9 Using dimensionality reduction 
mapping of combined whole-exome single nucleotide mu-
tations and exome-wide SCNAs, diffuse gliomas from The 
Cancer Genome Atlas (TCGA) display regional mapping 
clusters.3 Projection of a second independent cohort of 
paired initial and recurrent glioblastomas onto the TCGA ref-
erence map additionally indicates that there are genomic-
based regions where patients have glioblastomas that are 
deemed unresectable at recurrence (Group 1) (Figure 1A). 
Furthermore, the isocitrate dehydrogenase (IDH) 1 and 2 
wildtype glioblastoma patients in this Group 1 have worse 
overall survival than those IDH-wildtype glioblastoma pa-
tients represented in the region overlapping with the paired 
cohort (Group 2) (Figure 1B). Group 1 tends to be relatively 
genomically stable with respect to copy number alterations 
beyond gain of chromosome 7, loss of chromosome 10, and 
loss of the chromosomal 9p region. We have previously 
shown that assignment to one of these two genomically de-
termined groups (Figure 1A, C) is not predicted by clinical 
factors (age, sex, Karnofsky Performance Status) or epige-
netic signatures (including genome-wide methylation and 
gene expression).3 The role of radiology in distinguishing 
these two groups is unknown. Given the implications of 
group membership to patient outcome, along with the rel-
ative abundance of pre-operative magnetic resonance im-
aging (MRI) and the lack of routine whole-exome sequencing 
of glioblastoma samples, we sought to determine whether 
radiographic features can differentiate Group  1 from 
Group 2. To do this, we turned to a cohort of IDH-wildtype 
glioblastomas with multisequence, pre-operative MRI in 
The Cancer Imaging Archive (TCIA) and used radiogenomic 
methods to train machine learning classifiers to discrimi-
nate between these two groups.

Radiogenomics is an evolving field in medical imaging 
that employs supervised and unsupervised learning to 

relate quantitative imaging features to the underlying ge-
nomic characteristics of the imaged tissue.10 Radiogenomic 
pipelines typically consist of image acquisition, image nor-
malization, feature extraction, and prediction using either 
coupled feature selection and machine learning models or 
end-to-end prediction using deep convolutional neural net-
works.11,12 In neuro-oncology, radiogenomic approaches 
have been used to predict IDH mutations,12–16 1p/19q-
codeletion,16,17 O6-methylguanine-DNA methyltransferase 
promoter methylation,17,18 several gene-level SCNAs,19 
and tumor treatment responses.20 Though powerful, 
radiogenomic methods in neuro-oncology are prone to 
overfit classification tasks because MRI data is high di-
mensional, relatively scarce, extremely heterogenous, and 
inherently noisy because of MRI scanner manufacturer, 
sequence protocol, and patient movement vary. This is es-
pecially true for complex machine learning models, such 
as deep neural networks, which excel in certain glioma 
imaging tasks, such as tumor segmentation, but struggle 
with nuanced classification and regression tasks, such as 
survival prediction.21,22 Even traditional machine learning 
models can be overwhelmed by the size of the feature 
spaces extracted by open-source radiogenomic software 
(n > 10 000).23,24 To reduce dimensionality, standard feature 
selection methods such as least absolute shrinkage and se-
lection operator (LASSO) feature selection, recursive fea-
ture elimination, and variance thresholding are commonly 
employed. However, these methods can also overfit clas-
sification tasks in small studies where predictions must be 
made on large, noisy data. To address this, we propose a 
novel feature selection method that allows simple machine 
learning models to accurately predict Groups 1 and 2 and 
gives insight into what radiographic features discriminate 
these two molecularly defined groups from one another.

Materials and Methods

TCGA Glioma Datasets

Genomic whole-exome sequencing and somatic copy 
number alteration data for TCGA glioblastomas, as well 
as lower-grade astrocytic and oligodendroglial tumors, 

Importance of the Study

Whole exome sequencing and DNA somatic 
copy number alteration data are predictive of 
IDH-wildtype glioblastoma patient survival 
but are rarely clinically available. MRI is rou-
tinely available for glioblastoma patients, but 
its relationship to exome wide genomic data 
is unknown. In neuro-oncology, MRI-based 
radiogenomic models that associate imaging 
data with tumor genomic profiles are com-
monly sensitive to overfitting because MRI data 
is extremely high dimensional, and samples are 
limited. This study introduces a radiogenomic 

feature selection method that mitigates model 
overfitting, allows for the accurate prediction 
of survival-associated glioblastoma molecular 
profiles from MRI data, and indicates that fea-
tures describing contours in the peritumoral 
edema and the infiltrating portions of glio-
blastoma visible on the T2-weighted FLAIR 
MRI sequence may differentiate these profiles. 
Because it is common for radiogenomic fea-
tures to significantly outnumber the number 
of subjects in medical imaging studies, this 
method may be widely applicable.
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were obtained from the University of California Santa 
Cruz cancer browser (https://genome-cancer.ucsc.
edu/) as previously described.3,4 From the whole-exome 
sequencing data, we incorporated nonsynonymous nu-
cleotide point mutations into our analysis as previously 
described.3–5 For copy number alterations, single nucleo-
tide polymorphism (SNP)-array derived GISTIC 2.0 scores 

were used for analysis.3–5 Dimensionality reduction and 
visualization of the exome-wide point mutations com-
bined with copy number alterations were performed for 
each patient using multidimensional scaling (MDS) as 
previously described.3–5 Diffuse gliomas were binned into 
three broad categories: IDH-wildtype, IDH-mutant, and 
1p/19q retained, and IDH-mutant and 1p/19q-codeleted. 
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Figure 1. Characteristics of genomically defined prognostic diffuse glioma subtypes. (A) Multidimensional scaling plot of IDH-wildtype and IDH-
mutant diffuse gliomas from the TCGA. Each point represents a single patient and is determined by dimensionality reduction from the combination 
of whole-exome sequencing and somatic copy number alterations. The more similar the genetic profile is between two patients, the closer their 
individual points are on the plot. The IDH-wildtype gliomas are divided into two previously determined prognostic subtypes (Groups 1 and 2). (B) 
Kaplan–Meier curves for IDH-wildtype (Groups 1 and 2) and IDH-mutant gliomas. (C) Copy number frequency plots of diffuse glioma subtypes 
showing the percentage of copy number alterations per molecular subtype (y-axis) over chromosome number and gene position (x-axis; for each 
chromosome moving from the distal end of the short p arm [left] to the distal end of the long q arm [right]).
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IDH-wildtype diffuse astrocytic gliomas were further di-
vided into two prognostic groups, which we label Groups 
1 and 2 (Supplementary Table 1), based upon previously 
published MDS and mapping of an independent cohort of 
paired initial and recurrent glioblastomas.3 Of these IDH-
wildtype gliomas, we considered only the subset of World 
Health Organization (WHO) grade IV glioblastomas.

The Cancer Imaging Archive Magnetic 
Resonance Imaging

Multisequence MRI volumes for patients with IDH-wildtype 
glioblastoma were downloaded from TCIA data portal 
(https://public.cancerimagingarchive.net/nbia-search/).25 
Of these patients, 46 met the inclusion criteria requiring 
available SCNA and whole-exome sequencing (WES) 
data from the TCGA and usable pre-operative pre- (T1) 
and postcontrast (T1ce) T1-weighted sequences along 
with T2-weighted (T2) and T2 Fluid-Attenuated Inversion 
Recovery (FLAIR) sequences (scanner details listed in 
Supplementary Table 2).26 Group 1 consisted of 25 patients 
(median age 59 years; 10 female, and 15 male); Group 2 con-
sisted of 21 patients (median age 63 years; 9 female, and 12 
male). The Brain Extraction Tool (BET) and FMRIB’s Linear 
Image Registration Tool (FLIRT) from the FMRIB Software 
Library (FSL) were used to skull-strip and co-register 
same-subject MRI sequences.27,28 All MRI volumes were 
resampled to 1 mm3 isotropic space. Each tumor was au-
tomatically segmented into subcompartments using a 
publicly available segmentation model29 pretrained on 
the 2018 Multimodal Brain Tumor Segmentation Challenge 
(BraTS) MRI dataset.21,26,30 This model placed each tumor 
voxel into one of three tumor regions used in the BraTS 
challenges’ segmentation scheme: the contrast-enhancing 
tumor compartment, the nonenhancing tumor and ne-
crotic tissue, and the peritumoral edema tumor region. 
We modified our predicted segmentation maps to con-
form to a different segmentation scheme we regard 
as more intuitive (Supplementary Figure 1). We main-
tained the same contrast-enhancing tumor compart-
ment definition as the BraTS challenges, but we split the 
nonenhancing tumor and necrotic tissue regions. We 
considered necrotic tissue as a tumor region on its own, 
and we merged the nonenhancing tumor region with the 
BraTS challenges’ peritumoral edema tumor region to 
form a tumor region referred to as the T2 abnormality. In 
our view, nonenhancing tumor tissue is challenging to dis-
tinguish from peritumoral edema, which must be done in 
the BraTS segmentation scheme. In our scheme, however, 
bright contrast-enhancing tumor and dark necrotic tissue 
are easily identifiable on the T1ce sequence; all other tissue 
appearing abnormal on the T2 or FLAIR sequence is, by 
definition, the T2 abnormality tumor region. In addition 
to the enhancing tumor region, necrotic tissue, and the T2 
abnormality, we also considered the tumor core, formed 
by merging the enhancing and necrotic regions, and the 
entire tumor as additional tumor regions. All segmenta-
tion masks were examined and manually corrected using 
Insight Segmentation and Registration Toolkit (ITK-SNAP) 

to the satisfaction of at least one experienced neuro-
radiologist at The University of Washington Medical Center 
(JF and DH).31 Finally, N4 bias field correction and min-max 
normalization were applied to the MRI data.32

Statistical Methods

We trained and evaluated six classes of machine learning 
models including LASSO models, linear support vector 
machines (SVM), multilayer perceptrons (MLP), XGBoost 
models, random forest models (RF), and ridge logistic re-
gression (LR) classifiers on features selected by our pro-
posed feature selection method (Python, Version 3.7, www.
python.org). Model performance was measured by the 
area under the receiver operating characteristic curve 
(AUC). All reported numbers are the average AUC of 100 
trials of 10-fold cross-validation run on randomly chosen 
partitions. Receiver operating characteristic (ROC) curves 
were also used to compare model performances. Feature 
selection, principle component analysis (PCA) dimension-
ality reduction, and model evaluation were conducted in-
side of the cross-validation loop. To avoid overfitting, we 
used the default model hyperparameters from Python’s 
scikit-learn and xgboost packages.33,34 All reported selected 
features were identified by conducting feature selection on 
the entire dataset after all parameters had been chosen.

Results

MRI Feature Extraction

To build a prediction model based upon radiographic sig-
natures, we first represented each patient by a set of quan-
titative MRI features. To do this, we extracted semantically 
interpretable histogram and texture features from aug-
mented volumes of interest (VOIs) formed by the applica-
tion of an image transformation to a tumor region on each 
MRI sequence. We formed 380 VOIs by independently trans-
forming the 5 tumor regions in each of the 4 MRI sequences 
with 19 stationary image filters (Supplementary Tables 3–5). 
A  total of 35  340 radiographic histogram/texture features 
(Supplementary Table 6) were extracted per patient using 
93 histogram and texture features (Supplementary Table 
7). Our feature extraction pipeline is illustrated in Figure 2. 
Texture features consist of formulas that describe the dis-
tribution of values on second-order texture matrices such 
as the grey level co-occurrence matrix (GLCM).35 Examples 
of image transformations include local binary patterns 
(LBP), Laplacian of Gaussian (LoG) filters, and Haar wavelet 
transformations.36,37 Sixty shape features that describe 
the VOIs, such as tumor region volume and surface area, 
and 16 Visually AcceSAble Rembrandt Images (VASARI) 
MRI features,38 which are manually extracted features de-
signed to standardize visual descriptions of gliomas, were 
also extracted to ascertain whether visually perceptible 
tumor characteristics can distinguish Group 1 from Group 2 
(Supplementary Tables 8 and 9).

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab004#supplementary-data
https://public.cancerimagingarchive.net/nbia-search/
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab004#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab004#supplementary-data
http://www.python.org
http://www.python.org
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab004#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab004#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab004#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab004#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab004#supplementary-data
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MRI Feature Selection

Following the feature extraction process, we sought to 
identify the subset of features that are most important 
to the prediction task. We developed a feature selection 
method that prioritized identifying characteristics of ra-
diographic features—including MRI sequence, tumor 
region, image transformation, and histogram/texture 
formulas—rather than specific radiographic features. 
We refer to these characteristics as feature components. 
Because VOIs are each defined by a combination of fea-
ture components, our strategy amounts to selecting a 
set of VOIs and a set of texture/feature formulas that can 
extract numeric radiogenomic features from these VOIs. 
The development of our method was guided by our ex-
pectation that discriminative radiogenomic features 
were contained in only a few feature component-defined 
VOIs and captured by only a few histogram/texture for-
mulas. To select a subset of feature components, we 
trained LASSO models on random subsets of the training 
data and used the features they selected to aggregate 
a bag of repeatedly selected radiographic features. We 
then broke down the radiographic features in this aggre-
gated bag into their feature components and selected 
the MRI sequences, tumor regions, image transform-
ations, and histogram/texture formulas that appeared 
most frequently. Finally, from this set of selected fea-
ture components, we identified the set of radiographic 
features defined by the selected MRI sequences, tumor 
regions, image transformations, and histogram/texture 
formulas we selected. We trained our ultimate classifica-
tion models on a 15-dimensional embedding of this fea-
ture set produced by PCA. Our feature selection process 
is summarized in Figure 3.

Formally, in the first stage of our feature selection 
method, we aggregated a bag B of LASSO-selected fea-
tures, including duplicates, by training 50 LASSO models 
on random subsets of 80% of the training data. The size 
of this bag varied slightly depending on which subsets 
were chosen (n  =  2350  ± 80). In the second stage, we 
used B to determine which feature components were 
most relevant to the classification task. This was done by 
examining the distribution of B over each feature com-
ponent category. From these distributions, we selected 
a set C of the most frequently appearing 3 tumor re-
gions, 3 MRI sequences, 4 image transformations, and 
8 histogram/texture formulas, where thresholds were 
determined empirically (Supplementary Table 10). In the 
third stage, we generated the set of 288 features (Figure 
3; Supplementary Table 11) whose components were de-
termined from the set C by selecting those radiographic 
features whose feature components were all contained 
in C. Finally, we used PCA to further reduce the dimen-
sionality of our feature set to 15.

The most interpretable selected histogram/texture for-
mulas include histogram skewness and kurtosis and 
GLCM cluster shade, contrast, and informational measure 
of correlation. These features describe the symmetry and 
peakiness of an image-transformed VOI’s intensity his-
togram and the uniformity, variation, and row-column 
correlation of the values in its grey-level co-occurrence 
matrix. Histogram symmetry and peakiness, as well as 
texture uniformity, may describe the diffusivity of gliomas 
which is linked to prognosis. The T1ce, FLAIR, and T2 MRI 
sequences were selected in the second stage of our fea-
ture selection method, as were the T2 abnormality, whole 
tumor, and tumor core tumor regions, and two Laplacian 
of the Gaussian (LoG) and two Haar wavelet image 
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transformations. The VOI defined by the FLAIR sequence, 
T2 abnormality region, and LoG image transformation 
with kernel width 1mm is likely the primary source of 
radiographic features that contribute most to the classi-
fication tasks because these feature components were 
disproportionately represented in the bag B of aggre-
gated features produced in the first stage of our feature 
selection method (Figure 3B). Moreover, because the LoG 
image transformation is an edge detector, we posit that 
the best discriminating MRI features describe the con-
tours of hyperintensity within the transformed T2 abnor-
mality region derived from the FLAIR sequence.

Radiogenomic Model Prediction

To evaluate the efficacy of our feature selection method, 
we compared the results of machine learning models 

trained to bin patients into respective IDH-wildtype ge-
nomic groups with our feature selection method to 
the results of similar models trained with the following 
standard feature selection methods: LASSO feature se-
lection, recursive feature elimination, and variance 
thresholding. For fair comparison across models, all fea-
ture selection methods were forced to select exactly 288 
features and were evaluated with the application of 15-di-
mensional PCA reduction. Additionally, to determine the 
utility of our feature selection method beyond reducing 
the dimension of model input, we compared our results 
to those of models trained on the 15-dimensional PCA 
embedding all 35  340 extracted radiographic features 
(Supplementary Figures 2–5). Further, to better under-
stand the extent to which molecular Group 1 and molec-
ular Group  2 can be distinguished visually, we trained 
models on 60 tumor shape features and 16 VASARI MRI 
features for comparison.
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IDH-wildtype glioblastoma molecular groups 1 and 2 
were classified with a cross-validated AUC score of 0.80 
(±0.03) using a ridge logistic regression model trained with 
our PCA-reduced feature selection method (Figure 4). All 
models that were trained with our method significantly 
outperformed the same models trained with LASSO fea-
ture selection, recursive feature elimination, and variance 
thresholding (Table 1). Moreover, models trained with our 
feature selection method outperformed models trained 
on the 15-dimensional PCA embedding of all 35 340 fea-
tures (Table 1). This comparison controls for model input 
dimension and indicates that the improvement in perfor-
mance provided by our feature selection method was due 
to selecting richer features rather than simply reducing 
the number of input features. Unlike models trained with 
our feature selection method, models trained with the 
standard feature selection methods we evaluated under-
performed those trained on the PCA embedding of all ex-
tracted features. This supports the notion that our method 
is able to mitigate the risk of overfitting which is more 
common in other feature selection methods. The fact that 
no model trained on shape or a VASARI features achieved 

an AUC score over 0.6 is a testament to the difficultly of 
distinguishing molecular Group 1 from molecular Group 2 
with straightforward visual features. Examples of MRI vol-
umes that were consistently correctly classified across 
cross-validation folds are shown in Figure 5 to showcase 
this difficulty and point out possible patterns.

We evaluated models and feature selection methods 
across a range of PCA dimension choices and chose the 
lowest round number (n = 15) above which most models’ 
performance plateaued (Supplementary Figures 2–5). 
Importantly, models trained with our feature selection 
method performed best across the range of choices of PCA 
dimension we evaluated (3–40), as well as when PCA was 
not applied (Supplementary Figure 2–6, Supplementary 
Table 12). Interestingly, the results produced by models 
trained on feature selection methods without the applica-
tion of PCA were mostly similar to those trained with PCA 
(Supplementary Table 12). Of note, our method was slightly 
more effective without the use of PCA (AUC  =  0.82  ± 
0.03). Other changes induced by the application of PCA 
were decreased performances of random forest and 
XGBoost models trained on LASSO and recursive feature 
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Figure 4. Comparison of ROC curves for various machine learning models that predict assignment to Group 1 versus Group 2 from MRI.
  

  
Table 1. Cross-Validated AUC Results of 6 Machine Learning Modeled Trained on the Indicated Input Features

Input Features LASSO SVM MLP XGBoost RF LR

Ours 0.78 0.76 0.74 0.72 0.65 0.80

LASSO feature selection 0.59 0.58 0.63 0.56 0.54 0.61

Recursive feature elimination 0.58 0.58 0.61 0.55 0.54 0.59

Variance thresholding 0.63 0.61 0.65 0.63 0.62 0.68

All features (PCA = 15) 0.72 0.67 0.68 0.64 0.71 0.74

All features 0.59 0.69 0.69 0.7 0.66 0.76

VASARI features 0.42 0.46 0.41 0.59 0.48 0.43

Shape features 0.53 0.36 0.53 0.4 0.49 0.51

All numbers are the average AUC of 100 trials of 10-fold cross-validation run on randomly chosen partitions.
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elimination, which was significantly higher when PCA was 
not applied, though their AUC scores did not exceed 0.70. 
These models also performed well when LASSO feature 
selection was permitted to select fewer than 288 features: 
random forest and XGBoost models achieved AUC scores 
of 0.76 (±0.06) and 0.78 (±0.07), respectively, when trained 
on small (n  <  10)  sets of features selected by LASSO 
(Supplementary Figure 3). Though these results were 
promising, the performance was unstable and the features 
LASSO selected varied greatly between cross-validation 
folds, hindering interpretability. In general, models trained 
with LASSO feature selection, recursive feature elimina-
tion, and variance thresholding methods, even when there 
were not constrained to select 288 features, performed 
worse than models trained with our feature selection 
method (Supplementary Figures 3–5).

Discussion

We developed a novel LASSO-based feature selection 
method that improved the ability of machine learning clas-
sification algorithms to delineate prognostic molecular 
subgroups of IDH-wildtype glioblastomas originally de-
fined by combined WES and SCNAs. In particular, a ridge 
logistic regression classifier trained on a 15-dimenisonal 
PCA embedding of 288 selected radiogenomic fea-
tures predicted these two groups with cross-validated 
AUC  =  0.80 (±0.03). We additionally conjectured that the 
T2 abnormality tumor region in the FLAIR MRI sequence 
under a Laplacian of Gaussian (LoG) edge detector image 
transformation may be the primary source of the most dis-
criminative signal in this task. We suspect this for the fol-
lowing two reasons. First, the T2 abnormality is the most 
prominent tumor region on the FLAIR sequence and both 
the T2 abnormality and FLAIR sequence were selected 

in the second stage of our feature selection method 
(Supplementary Table 10). Second, VOIs constructed from 
the FLAIR sequence and T2 abnormality were the most 
common source of features selected in the first stage of 
our method (Figure 3B). If true, fine-grain contours in the 
peritumoral edema and the infiltrating portion of glio-
blastomas on the FLAIR MRI sequence may be the basis 
for a characterization of the difference between molecular 
Groups 1 and 2. However, this difference may be difficult 
for the human eye to parse. Were pronounced differences 
in FLAIR contours and infiltration visible, we would expect 
VASARI features to be better discriminators of Groups 1 
and 2 than we observed. Similarly, while examinations 
of correctly classified MRI samples may suggest that T2 
abnormality region boundaries may be better defined in 
Group  1 and appear more infiltrative in Group  2, these 
observations are neither obvious nor conclusive (Figure 
5). Additionally, the absence of the identity image trans-
formation in the set of selected feature components may 
also attest to the difficulty of distinguishing between 
Group 1 and 2 by eye. We are more confident that tumor 
enhancement does not separate these groups. While our 
method selected the T1ce sequence, it did not select the 
enhancing tumor region, likely because the presence of 
tumor enhancement on the T1ce sequence of IDH-wildtype 
glioblastoma MRI scans is nearly ubiquitous and thus may 
not differ significantly between molecular Groups 1 and 2 
(Supplementary Table 10).

Our cross-validated results showed that models trained 
with our feature selection method outperformed base-
line models trained without feature selection on the same 
35 340-dimensional datasets and its 15-dimensional PCA 
embedding. On the other hand, models trained with 
LASSO feature selection, recursive feature elimination, 
and variance thresholding benchmarked well below these 
baseline results, a clear sign of overfitting. This indicates 
that our method is more robust to overfitting than three 
standard feature selection methods on a small set of high 
dimensional data. The observation that linear models, such 
as logistic regression and LASSO, outperformed more 
complex models, such as random forests and support 
vector machines, shows the benefit of using simple models 
in such settings to avoid overfitting in the postfeature se-
lection modeling phase.

This study’s contribution to radiogenomics is a multi-
stage feature selection method that boosted the perfor-
mance of a set of machine learning classifiers in a situation 
where the number of features significantly outnumbered 
the number of training samples. Such situations are likely 
to remain commonplace in medical imaging as the accrual 
of pre-operative MRI data is constrained by the limited 
cases of glioblastoma.39 Further, with the inception of open 
source radiogenomic feature extraction software, such as 
pyradiomics and the Cancer Imaging Phenomics Toolkit 
(CaPTk), the MRI sequence, tumor region, and imaging 
transformation-based radiogenomic feature structure 
that our method leverages is increasingly becoming the 
standard, thereby ensuring the relevance of our method.

Moving forward, additional cohorts will be necessary to 
rigorously validate our method. However, currently there 
is a lack of available datasets for patients with de novo IDH-
wildtype glioblastomas that contain WES, SCNA data, and 

  

FLAIR T1ce

Group 1 Group 2

FLAIR T1ce

Figure 5. Examples of MRI volumes consistently correctly classi-
fied by ridge logistic regression. The T2 abnormality region boundary 
is outlined in red on the FLAIR and postcontrast T1ce images. Our 
results indicate that the T2 abnormality on the FLAIR sequence best 
discriminates between molecular Group  1 and molecular Group  2; 
however, this is not obvious to visual inspection. Sharply defined T2 
abnormality region boundaries may be more apparent in Group  1, 
and more infiltrative T2 abnormality regions may be more common 
in Group 2.
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multiple MRI sequences. Nonetheless, if our method’s ro-
bustness is further supported outside of our current cross-
validation study, such an MRI-based classifier capable of 
distinguishing poor surviving Group  1 IDH-wildtype gli-
oblastoma patients from longer surviving Group  2 IDH-
wildtype glioblastoma patients could have an immediate 
influence on patient care. Shorter-term Group 1 patients, 
who are also less likely to have surgical intervention for 
tumor recurrence,3 could be recommended for upfront 
clinical trials. Within trials, if Groups 1 and 2 patients are 
not balanced in phase II and phase III arms, incorrect and 
costly conclusions may be drawn. Inferring patient risk 
stratification from available baseline data such as MRI is a 
critical way forward in neuro-oncology.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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