
 International Journal of 

Molecular Sciences

Review

Aberrant NLRP3 Inflammasome Activation Ignites the Fire of
Inflammation in Neuromuscular Diseases

Christine Péladeau 1 and Jagdeep K. Sandhu 1,2,*

����������
�������

Citation: Péladeau, C.; Sandhu, J.K.

Aberrant NLRP3 Inflammasome

Activation Ignites the Fire of

Inflammation in Neuromuscular

Diseases. Int. J. Mol. Sci. 2021, 22,

6068. https://doi.org/10.3390/

ijms22116068

Academic Editor: Young-Su Yi

Received: 17 May 2021

Accepted: 1 June 2021

Published: 4 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road,
Ottawa, ON K1A 0R6, Canada; christine.peladeauladouceur@nrc-cnrc.gc.ca

2 Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road,
Ottawa, ON K1H 8M5, Canada

* Correspondence: jagdeep.sandhu@nrc-cnrc.gc.ca; Tel.: +1-613-993-5304

Abstract: Inflammasomes are molecular hubs that are assembled and activated by a host in response
to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue home-
ostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety
of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via
caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β
and interleukin-18. These cytokines further amplify inflammatory responses by activating various
signaling cascades, leading to the recruitment of immune cells and overproduction of proinflam-
matory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue
damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury
or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of
evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads
to the initiation and exacerbation of pathological processes associated with neuromuscular diseases.
In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuro-
muscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which
affects the central nervous system. In addition, we also examine whether therapeutic targeting of the
NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of
neuromuscular diseases and improving clinical outcomes.

Keywords: muscular dystrophy; amyotrophic lateral sclerosis; neuroinflammation; innate immune
system; immune cells; astrocytes; microglia; macrophages; cytokines; therapy

1. Introduction

Neuromuscular disorders comprise of a wide range of diseases that are often classified
according to the affected regions of the neuromuscular system. For instance, myopathies
are diseases in which the muscle is primarily affected (e.g., muscular dystrophies and con-
genital myopathies), and neurogenic atrophies are diseases in which the motor neurons are
affected (e.g., spinal muscular atrophy and amyotrophic lateral sclerosis). Neuromuscular
disorders vary in their etiology, age of onset and disease progression; however, all neuro-
muscular diseases elicit progressive muscle weakness [1]. Skeletal muscle is a secretory
organ that releases cytokines (also called myokines) which act as signaling messengers
between the muscle and other organs in the endocrine system; thus, it plays an important
role both in physiological and pathological processes [2]. Healthy muscles are subjected
to consistent mechanical injury, followed by muscle degeneration and activation of acute
inflammatory responses. In fact, at the early stage of muscle regeneration, following muscle
damage, infiltrating immune cells (i.e., mast cells and neutrophils) clear the damaged my-
ofibers and secrete cytokines to recruit macrophages, to regulate the inflammatory response.
This cascade of events stimulates satellite cell activation, proliferation and differentiation
to myotubes, resulting in mature muscle fibers [3]. The initial inflammatory response is
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thought to play an important role in the timely repair of the injured muscle; however,
dysregulation of inflammatory signaling is harmful to the muscle and has emerged as a
crucial link in the onset of muscle wasting. The activation of the transcription factor nuclear
factor-kappa B (NF-
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-     κ     B) has been found to be a critical factor involved in the secretion of
proinflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α).
These cytokines are known to induce muscle wasting by stimulating proteolysis, thereby
tipping the fulcrum towards protein degradation, leading in turn to impairment of muscle
regeneration [4]. Interestingly, therapies that inhibit IL-6 or TNF-α and aim to reduce
inflammation in patients with cachexia (weight loss and muscle wasting that occurs in
chronic diseases) showed limited benefits in clinical trials [5–7]. This suggests that other
inflammatory players may be involved in muscle wasting. Thus, recently the focus has
been switched to understanding the role of the nucleotide-binding oligomerization domain
(NOD)-like receptors (NLRs) with pyrin domain 3 (NLRP3) inflammasome in muscles and
their connection to muscle degeneration and disease.

NLRs are a family of conserved cytoplasmic pattern recognition receptors that act as
immune sensors of the innate immune system. NLRs are multiprotein oligomers capable
of activating an inflammatory response; amongst them, NLRP1, NLRP3, NLRP6, NLRP7,
NLRP12, NLRC4 (NLR family CARD domain-containing protein 4) and NAIP (neuronal
apoptosis inhibitory protein) accomplish this via the formation of inflammasomes [8]. The
stimulation and assembly of inflammasomes induces a chain-reaction of caspase 1-dependent
proteolytic cleavage, along with the maturation and secretion of proinflammatory cytokines,
namely, IL-1β and IL-18, resulting in a highly inflammatory form of programmed cell death,
distinct from apoptosis, called pyroptosis (further described below). This process leads
to plasma membrane rupture and the release of proinflammatory intracellular contents,
including inflammasome components, into the extracellular milieu to promote chemotaxis
and infiltration of innate immune cells at the sites of tissue damage [9].

2. NLRP3 Inflammasome

The NLRP3 inflammasome is one of the most studied and characterized inflamma-
somes due to its unique and wide diversity of stimuli, and its suggested involvement in a
variety of disorders [10–12]. Although the NLRP3 inflammasome is important for detecting
microbial and host-derived danger signals and promoting tissue repair, its over-activation
may lead to severe impairments (i.e., swelling, tissue damage, internal bleeding and res-
piratory disablement) [12]. In this review we focus primarily on the involvement of the
NLRP3 inflammasome in neuromuscular diseases.

2.1. Components of the NLRP3 Inflammasome

The NLRP3 inflammasome is crucial for initiating innate immune responses [13]. The
stimulation, assembly, and proper functioning of the inflammasome are dependent on a
variety of key players. Many excellent reviews describe in detail the fundamental steps of
NLRP3 inflammasome formation and activation [9,14–16]. Therefore, only a brief summary
is provided below.

The NLRP3 inflammasome is composed of a pyrin domain (PYD) at its N-terminus,
a central NACHT domain (consisting of seven motifs which include a nucleotide adeno-
sine triphosphate/guanosine triphosphate (ATP/GTPase) P-loop, and Walker A and B
binding sites) and nine C-terminal leucine rich repeats (LRR) [17,18]. While the NLRP3
protein is maintained in an inactive monomer state endogenously, its activation promotes
NLRP3 inflammasome assembly via interaction with the apoptosis-associated speck-like
protein containing a caspase recruitment domain (CARD) (ASC), an adaptor protein which
contains a PYD domain complementary to NLRP3 [18]. It is also well established that the
NACHT domain is critical for NLRP3 function and self-association [19]. Oligomerization
of NLRP3 by ASC recruits procaspase-1, which binds the CARD domain of ASC [20].
The inflammasome is thus formed of NLRP3-ASC-procaspase-1 complexes interacting
together to form a ring-like structure (Figure 1). It has been suggested that the NLRP3
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inflammasome may be formed of 11-subunits similar to the NLRC4 disk structure [18,21].
The assembly of inflammasome is initiated by recruitment of procaspase-1 and proximity-
induced oligomerization and autoactivation, resulting in caspase-1 cleavage and release
of active caspase-1. Consequently, caspase-1 cleaves pro-interleukin 1-beta (pro-IL-1β)
and pro-interleukin 18 (pro-IL-18) into biologically active mature forms of IL-1β and IL-18.
In addition, inflammasome-mediated programmed cell death, known as pyroptosis, is
provoked following cleavage of gasdermin-D (GSDMD) by caspase-1 [22]. Activated GS-
DMD binds to the cell membrane and forms pores, followed by cellular swelling, plasma
membrane rupture and release of cellular contents into the extracellular milieu [22,23]. This
cascade of events stimulates an immune response, activates lymphocytes, and promotes a
chemotaxis reaction.
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Figure 1. Assembly of the NLRP3 inflammasome. When activated, the adaptor protein (ASC) binds
to NLRP3 via its pyrin (PYD) domain and creates a link to pro-caspase-1 via its CARD domain. The
NLRP3 inflammasome is formed of NLRP3–ASC–pro-caspase-1 complexes interacting together to
form a ring-like structure.

Although ASC has been identified as a key adaptor that links the PYD-domain-
containing NLR receptors, such as NLRP3, to the pro-caspase-1 via its PYD and CARD do-
mains [20], it is also responsible for the formation of ASC specks (called pyroptosomes) [24].
The PYD–PYD self-association drives dimerization of ASC and permits further assembly of
supramolecular insoluble aggregates independently of caspase-1 [24]. On the other hand,
the CARD domain of ASC plays an important role in linking individual ASC filaments
to create dense specks [25]. In addition, these specks have been shown to amplify and
perpetuate inflammasome signaling by creating many caspase-1 activation sites [25].

2.2. Assembly and Activation of the NLRP3 Inflammasome

The NLRP3 inflammasome can be activated in response to a variety of pathogenic
and environmental stimuli. In fact, members of the NLR family, including NLRP3,
PYRIN and PYHIN family proteins (recognition receptors such as absent in melanoma 2
(AIM2), recently reported to play roles in cell cycle, tumor suppression and transcriptional
regulation), have all been shown to assemble inflammasomes in response to cytosolic
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular pat-
terns (DAMPs) [9,26,27]. These harmful stimuli include lipopolysaccharides (LPS), flagellin,
viral DNA and RNA, ion fluxes, changes in pH, extracellular ATP, reactive oxygen species
(ROS) and uric acid crystals [28]. The exact mechanism by which NLRP3 is activated by a
vast array of pathogenic stimuli is unknown, and future research is needed to uncover the
mechanisms involved.

Generally, the activation of NLRP3 inflammasome requires two types of signals: an
initial priming signal, followed by an activating signal. During the priming step, production
of components of the NLRP3 inflammasome is triggered by PAMPs and DAMPs. In fact,
transcriptional regulation of NLRP3, pro-IL-1β and pro-IL-18 is mediated by NF-
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-     κ     B via, toll-
like receptors (TLR) and nucleotide-binding oligomerization-domain-containing protein
2 (NOD2), or via cytokine activation (using, e.g., TNF-α) [29,30]. The other priming step
involves post-translational modifications of the NLRP3 inflammasome [31]. Among these,
phosphorylation, sumoylation, ubiquitination, alkylation, acetylation and nitration have
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been linked to NLRP3 activation in most cell types [15]. The second signal, being the
activation signal, varies significantly and is stimulated by PAMPs and DAMPs such as
extracellular ATP via the ligand-gated ion channel belonging to the purinergic type 2
(P2X7) receptor [32,33]. Many signals are triggered by potassium efflux (K+) and other
ionic fluxes (i.e., Ca2+ and Cl−), uric acid crystals or particles (asbestos) causing lysosomal
disruption; these are signals causing mitochondrial damage resulting in the release of ROS
and mitochondrial (mt) DNA, and changes in the trans-Golgi network [14]. The two-step
activation of NLRP3 is referred to as the “canonical” signaling pathway and depends on
caspase-1. Although it is well established that these two steps are required to activate
the NLRP3 inflammasome, it has been reported that human monocytes can promote the
release of IL-1β in a NLRP3-dependent manner, in response to the priming signal alone
by LPS released from gram-negative bacteria, such as Escherichia coli [34]. This single
step activation of NLRP3 is referred to as the “non-canonical” signaling pathway and is
dependent on caspase-11 in mice and caspase-4 and caspase-5 in humans [35].

2.3. Regulation of the NLRP3 Inflammasome

Emerging evidence indicates that protein–protein interactions are vital to NLRP3
function. Schmid-Burgk et al. have recently identified the serine-threonine kinase NIMA-
related kinase 7 (NEK7), using a genome-wide CRISPR screen, as a central player in
NLRP3 inflammasome regulation [36]. Interestingly, priming signaling by LPS increases
NLRP3–NEK7 interactions. This distinct link between NLRP3 and NEK7 is an electrostatic
complementarity interaction caused by NLRP3 being overall negatively charged while
NEK-7 is positively charged [18]. NLRP3 and NEK7 can form a large oligomeric complex
that leads to inflammasome assembly, as NEK7 forms interactions between adjacent NLRP3
subunits. NEK7 and NLRP3 interaction proves to be essential for: ASC speck formation,
caspase-1 activation, IL-1β release and pyroptosis in vivo and in vitro [18]. Studies also
show that K+ efflux may act as an essential trigger for NLRP3–NEK7 interaction. On the
other hand, others have shown that ROS is also required [37].

The NLRP3 inflammasome has also been shown to bind other PYD containing proteins
such as pyrin-only proteins (POPs), a family of proteins consisting of single PYD domains.
These proteins are small cytoplasmic decoy proteins that regulate the inflammasome by
either activating or inhibiting key players of the inflammasome [38–40]. Of the four POP
isoforms (POP1, POP2, POP3 and POP4), POP1 (similar to ASC PYD) and POP2 (which is
similar to NLRP3 PYD) can prevent NLRP3 inflammasome formation by either inhibiting
ASC self-polymerization or inhibiting NLRP3’s interaction with ASC [38,41]. However, POPs
have been shown to regulate NF-
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-     κ     B and may induce priming of the inflammasome [42].
Thus, POPs acts as part of a negative feedback mechanism permitting host defense and
early inflammation, but also resolves inflammasome events in the long-term [41]. Card-only
proteins (COPs) have also been identified in humans as regulators of the inflammasome [39].
Like POPs, COPs can both inhibit and activate the inflammasome. The three COPs iso-
forms, CARD16, CARD17 and CARD18, can bind to pro-caspase-1 to prevent inflammasome
formation. CARD16 may also play a role in priming by activating NF-
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-     κ     B through receptor-
interacting-serine/threonine-protein kinase 2 (RIP2), and further experiments are needed to
confirm this [43]. Thus, similarly to POPs, when inflammasome assembly is initiated, COPs
induce a negative feedback mechanism to regulate IL-Iβ release [39].

3. NLRP3 Inflammasome in Muscles

The NLRP3 inflammasome is expressed in the muscles of humans and mice. In fact, it
is present in the myofibers of wild-type (WT) control mice in the tibialis anterior (TA) and
is untraceable in NLRP3-knockout (KO) mice. Additionally, following a 24-h treatment
with LPS, NLRP3 was increased and detected in clusters in the sarcoplasm of muscle
fibers from WT mice [13]. In addition, primary skeletal muscle cells contain TLR receptors
(TLR-2, TLR-4) and the P2X7 receptor, two vital players for priming and activating the
inflammasome signaling pathway. Skeletal muscle cells also have the ability to secrete
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IL-1β in response to treatments with LPS and benzylated ATP, suggesting that muscle
cells, such as immune cells, can participate in inflammasome formation [44]. NLRP3
inflammasomes have also been shown to be active in myocytes and are upregulated in
degenerating muscles, muscle atrophy, muscle loss and myopathies [13,44,45]. Therefore,
the potential role and mechanism of NLRP3 inflammasome in muscle wasting warrant
further investigation.

A recent study from Liu et al. described the role of NLRP3 in muscle wasting and
atrophy via angiotensin II (ang II) mechanistic signaling. Ang II normally plays a role in the
regulation of the kidneys via retaining sodium and losing potassium, and affects blood flow
by stimulating the adrenal cortex [46]. Ang II expression levels are increased in patients
suffering from chronic kidney disease or heart failure who display symptoms of muscle
loss and muscle wasting [47,48]. Ang II treatment of C2C12 skeletal muscle myotubes
induced a dose-dependent effect on the activation of the NLRP3 inflammasome through
activation of its downstream components, i.e., ASC, caspase-1, IL-1β and IL-18 [47]. In
parallel, this treatment inhibited the PI3K/AKT/mTOR signaling pathway and increased
the levels of major atrogene markers, atrogin-1, muscle RING-finger protein-1 (MuRF-1)
and myostatin. WT mice treated with Ang II presented a muscle wasting and weight
loss phenotype along with decreased muscle performance, which was reverted in the
NLRP3-KO mice [47]. The Ang II-induced NLRP3 inflammasome activation was also
described to be mediated through mitochondrial ROS and mitochondrial dysfunction.
In fact, treatment with antioxidant MitoTEMPO, a mitochondrion-targeted superoxide
dismutase mimetic that scavenges superoxide anions, inhibited the detrimental effects
of Ang II in skeletal muscle [47]. Another study has demonstrated that IL-1β increases
in muscle can also stimulate the expression of atrophy markers, MuRF1 and atrogin-1,
supporting the involvement of inflammasomes in muscle atrophy [49–51]. In contrast,
endogenous ASC is not expressed in zebrafish muscle; however, transgenic expression of
ASC induces ASC speck assembly in these cells [52].

More importantly, mutations in the NLRP3 gene (coding for cryopyrin) are associ-
ated with a group of clinically distinct disorders known as cryopyrin-associated periodic
syndromes (CAPS) and encompass a spectrum of phenotypes described as familial cold
autoinflammatory syndrome, Muckle–Wells syndrome and neonatal-onset multisystem
inflammatory disease. These diseases are characterized by systemic inflammation with
elevated levels of proinflammatory mediators; fever; blood neutrophilia; and increased
neutrophil infiltration in the skin, joints, muscles, and cerebrospinal fluid. Many CAPS
patients display musculoskeletal and neurological manifestations, including arthralgia,
arthritis, myalgia and amyloidosis [53]. CAPS is caused by gain-of-function missense
mutations in the NLRP3 gene leading to aberrant NLRP3 inflammasome activation and
overproduction of IL-1β [54]. As described above, activation of the NLRP3 inflammasome
typically requires two signals; however, in CAPS patients, the gain-of-function decreases
the activation threshold to only one signal [55]. Increased serum levels of extracellular
oligomeric ASC have been found in patients with active CAPS, but not in patients with
other inherited autoinflammatory diseases [56]. Hence, it is clear that the NLRP3 inflam-
masome is a critical innate immune sensor and that the dysregulation of this pathway has
implications for the functioning of the neuromuscular system in CAPS patients.

Due to this convincing evidence connecting the NLRP3 inflammasome to muscle
wasting, investigators have spent considerable efforts on determining whether NLRP3
inflammasome signaling is also involved in neuromuscular and neurodegenerative diseases
associated with muscular dysfunction. The involvement of NLRP3 in these disorders is
discussed below.

3.1. Dystrophies
3.1.1. Duchenne Muscular Dystrophy and Inflammation

Duchenne muscular dystrophy (DMD) is a disorder caused by deletions or mutations
in the dystrophin gene, preventing the production of functional dystrophin protein in skele-
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tal muscle fibers, the diaphragm and the heart [57–59]. DMD affects males exclusively, and
the birth prevalence of this fatal disease has been shown to range from approximately 16 to
19 per 100,000 live male births [60]. These patients suffer from severe muscle degeneration
which results in muscle weakness, respiratory impairment, and cardiomyopathy. Loss
of ambulation arises at 12 years of age and progresses until the age of 16–18 years, after
which ambulation is lost [61,62]. With multidisciplinary care, including ventilatory support
and cardioprotective management, many patients with DMD can live into their fourth
decade of life [63]. For most DMD patients, death occurs due to respiratory or cardiac
complications [64,65].

In muscles, dystrophin binds the dystrophin-associated protein complex (DAPC)
at the muscle membrane and the actin cytoskeleton, which provides muscle membrane
stability [66]. The absence of dystrophin causes a devastating domino effect of secondary
symptoms which strongly increase the severity of DMD. These pathologies cause a chain-
reaction of detrimental symptoms in DMD patients. Due to the membrane instability
and defective regeneration of myofibers, extracellular calcium (Ca2+) influx is permitted
into the cytoplasm, which can activate the NF-
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-     κ     B-mediated inflammatory pathway [2,67].
Activation of NF-

 
 

 

 
Int. J. Mol. Sci. 2021, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/ijms 

-     κ     B is known to increase the expression of cell adhesion molecules such as
intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule (VCAM-1)
and E-selection, leading to leukocyte adhesion and transmigration to the sites of inflamma-
tion [68]. Accordingly, atypical increases of immune cells (e.g., neutrophils, T lymphocytes)
and inflammatory macrophages arise in the muscle, provoking chronic inflammation,
necrosis and replacement of the muscle by connective tissue [2,69,70] (Figure 2). Con-
sequently, research efforts focused on reducing inflammation, calcium influx, oxidative
stress and fibrosis are promising approaches to improving the dystrophic phenotype [2,71].
In fact, a clinical trial is presently recruiting DMD patients to study endomysial fibrosis,
deregulated inflammatory responses and Ca2+ influx dysfunction in order to better under-
stand the relationship between each secondary pathology in dystrophin-deficient humans
(ClinicalTrials.gov, trial NCT01823783). Other possible therapeutic strategies aimed at
targeting signaling pathways to improve functional outcome of dystrophic muscles can be
designed to target endogenous genes to restructure the DAPC, and tackle inflammation,
calcium imbalance, fibrosis and oxidative stress [2,72,73].
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Glucocorticoid therapy is the main intervention used for the treatment of DMD.
Prednisone (0.75 mg/kg/day) and deflazacort (0.9 mg/kg/day) are the most commonly
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prescribed glucocorticoids for DMD [61]. Glucocorticoids have anti-inflammatory effects,
in part, by suppressing NF-
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-     κ     B and activator protein-1 (AP-1), which inhibits coactivator
molecules responsible for acetylating histones involved in switching on transcription of
inflammatory genes [74]. Glucocorticoids also improve muscle strength in DMD patients;
however, the molecular pathways controlling the beneficial and detrimental effects are not
yet understood [75–77]. A double-blinded clinical trial comparing the benefits and risks of
both deflazacort and prednisone is presently ongoing [78]. This indicates that alternate anti-
inflammatory drugs should be further investigated for DMD. Such drugs explored for this
disease include vamorolone (VBP15) and nonsteroidal anti-inflammatory drugs (NSAIDs).
A preclinical study demonstrated the beneficial effects of the anti-inflammatory drug
VBP15 on the dystrophic phenotype of mdx mice independently of undesired hormonal,
growth or immunosuppressive effects often seen in glucocorticoid treatment [79]. As an
alternative, NSAIDs were studied in DMD models. NSAIDs are nonselective inhibitors of
the enzymes known as cyclo-oxygenase (COX) and inhibit both COX-1 and COX-2. These
enzymes induce production of prostaglandins and lipid autacoids from arachidonic acid,
leading to an inflammatory response [80]. Mdx mice were treated for 8–11 weeks with three
types of NSAIDs—namely, aspirin and ibuprofen, which are non-selective COX inhibitors,
and parecoxib, a selective COX-2 inhibitor—and scored for markers of muscle fitness and
inflammation. The results from this study showed that the NSAIDs improved inflammation,
fiber necrosis and muscle morphology, and aspirin in particular ameliorated resistance to
muscle fatigue [81]. Another NSAID, celecoxib (Celebrex), markedly ameliorated muscle
fiber integrity, improved muscle function and decreased immune cell infiltration in mdx
mice [82]. These studies highlight that targeting inflammation in DMD patients is a
promising approach to improving deleterious symptoms of this disease.

3.1.2. NLRP3 Inflammasome Activation in Duchenne Muscular Dystrophy

As described above, inflammation contributes significantly to the pathogenesis of
DMD. Although inflammation is a key component of muscle repair, chronic inflammation
results in progressive muscle degeneration and weakness. Similarly to other myopathies,
the NLRP3 inflammasome is upregulated in dystrophic mdx muscles and human DMD
muscle cells [13,83] (Figure 3). In parallel, expression levels of the components of the
NLRP3 inflammasome cascade, such as adaptor protein ASC, pro-caspase-1, pro-IL-1β and
mature IL-1β protein, are also elevated in mdx mice myocytes compared to WT mice [83].
Upstream receptors of inflammasomes, TLRs, including TLR-1, 2, 3, 4, 7, 8 and 9, are also
expressed in a variety of skeletal muscles at different levels in mdx mice [84]. Recent work
has shown that ablation of TLR or the TLR adaptor protein called myeloid differentiation
primary response gene 88 (myd88) in mdx mice offers benefits to their muscle [84,85].
In addition, NLRP3-KO in mdx mice induced significant improvements in grip strength,
fatigue resistance and endurance compared to a control mdx mouse [13]. In line with this,
knockdown of NLRP3 using lentiviral shRNA technology elicited similar performance
benefits and morphological changes in mdx mice [83]. Histopathological studies have
shown that abnormal fiber size distribution is a hallmark of dystrophic muscles [86,87].
Accordingly, mdx mice display abnormal proportions of small and large muscle fibers [87].
NLRP3 knockdown in mdx mice restores a more equal distribution in muscle fiber size
and significantly reduces centrally nucleated myofibers (indicative of fewer regenerating
fibers). Based on these findings, NLRP3 has emerged as an intriguing target for DMD
research and is under investigation to alleviate skeletal muscle inflammation. Interestingly,
a recent study has demonstrated that the glucocorticoid prednisone, the main treatment
for DMD patients [61], inhibited NLRP3 expression, reduced inflammasome signaling and
reduced related proinflammatory cytokines [88]. These findings suggest that glucocorticoid
treatment in DMD patients may, in part, induce its beneficial effects through the reduction
of inflammation via the NLRP3 inflammasome.
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A new and promising approach to target NLRP3 involves the hormone adiponectin.
In fact, this hormone is abundantly secreted by adipocytes in normal physiological condi-
tions [89] and has recently emerged as a master regulator of inflammation in several tissues,
including the skeletal muscle [13,90,91]. Furthermore, it has been demonstrated that the pro-
tective effects, in part, were mediated through the upregulation of the microRNA miR-711,
and possibly by induction of anti-inflammatory pathways [92]. In contrast to control mice,
transgenic mdx mice overexpressing adiponectin showed decreased inflammation and
oxidative stress markers involved in dystrophic muscle damage [93]. A lack of adiponectin
expression worsens the mdx pathology [94]. Along these lines, a recent publication from
Boursereau et al. explored the effects of NLRP3 and adiponectin in muscle, in a DMD
context [13]. Firstly, they demonstrated that NLRP3 is upregulated in dystrophic mdx TA
muscle and in human DMD primary cells, which was abolished with a 24-h adiponectin
treatment. This study also demonstrated that similarly to what was seen in the transgenic
mdx/NLRP3-KO mice, the adiponectin-mediated decrease in NLRP3 promoted beneficial
effects on the dystrophic phenotype of mdx mice. A decrease in the serum levels of the
enzyme creatine kinase (CK), a marker of muscle damage, and an improvement of physical
performance, were observed [13,93,94]. These findings reveal the potential involvement
of NLRP3 in DMD pathogenesis and adiponectin as a potential therapeutic approach to
target inflammation in DMD.

Another potential NLRP3 target characterized in dystrophic mice is ghrelin. This hor-
mone, typically involved in regulating appetite, has been shown to induce anti-inflammatory
activity in many inflammatory diseases [95–97]. Accordingly, a 4-week treatment with
ghrelin in 4-week-old mdx mice reduced the levels of NLRP3, ASC, pro-caspase-1, cleaved
caspase-1, pro-IL-1β and IL-1β, indicative of an overall decrease of the inflammasome
signaling molecules. This treatment also improved motor performance as determined by
in vivo behavioral testing and morphological assessment of pathology in the mdx muscles.
Furthermore, the inhibition of NLRP3 inflammasome by ghrelin was partly mediated
by the suppression of janus kinase 2/signal transducer and activator of transcription 3
(JAK2-STAT3) and the p38 mitogen-activated protein kinase signaling pathway [83], typ-
ically involved in modulation of inflammation, hematopoiesis, immunity, cell growth,
differentiation and proliferation [98].
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Although the studies discussed above highlight the importance of NLRP3 in DMD and
other dystrophies (described below), contradicting results from a recent study demonstrate
that genetic disruption of the inflammasome central adaptor ASC has minimal effects on
the phenotype of mdx mice [99]. Therefore, further experimentation is warranted to resolve
these discrepancies and delineate the mechanisms involved.

3.1.3. NLRP3 Inflammasome Activation in Limb Girdle Muscular Dystrophy

Limb–girdle muscular dystrophy (LGMD) is a genetically and clinically heterogeneous
family of rare progressive muscle disorders [100,101]. LGMD disorders are caused by
genetic variants resulting in aberrant synthesis of proteins involved in different parts of
the muscle fiber, such as the sarcolemma (muscle fiber membrane), sarcoplasm, sarcomere,
nucleus and the extracellular matrix [102,103]. LGMD onset initiates at different ages;
however, they are non-congenital. Patients suffering from LGMD primarily show weakness
and wasting of the proximal limb’s musculature (limb-girdle area), and some cases show
cardiac impairments [104]. Mutations in dysferlin (DYSF), which encodes for the dysferlin
protein, is known to cause limb-girdle muscular dystrophy type 2B (LGMD2B). Dysferlin
is localized at the sarcolemma of muscle fibers, but unlike dystrophin, it is not part of
the DAPC [105]. Dysferlin is responsible for fusion of repair vesicles with the plasma
membrane to repair the damaged muscle membrane, and has been suggested to be involved
in the control of muscle inflammation [105–107]. Dysferlin expression has also been directly
correlated with the ability of mitochondria to improve the repair of the muscle fiber
membrane [108].

Mild myofiber damage in dysferlin-deficient muscle is sufficient to activate inflam-
matory signaling, which may contribute to the progression of the disorder. Membrane
instability has been shown to increase ATP release from myofibers [109,110], and extra-
cellular ATP activates caspase-1 and promote proinflammatory cytokine secretion [32,33].
Pro-IL-1β and pro-caspase-1 are contained in secretory lysosomes where they are released
in the presence of an exocytosis-inducing stimulus, such as extracellular ATP [111]. The
expression of the purinergic receptor P2X7 that binds ATP is also elevated in dysferlin-
deficient mice compared to control mice. Since extracellular ATP binding to P2X7 receptor
is a potent activator of NLRP3 inflammasomes, researchers further explored the role of
NLRP3 in dysferlin-deficient models. Indeed, biopsies from LGMD2B patient muscle
contained higher levels of protein components of the inflammasome, including NLRP3,
ASC and pro-caspase 1, compared to healthy subjects. Similar outcomes were seen in the
dysferlin-deficient SJL/J mice, a mouse model that develops a spontaneous myopathy
phenotype resulting from a splice-site mutation in the DYSF gene [44,112]. Treatment of
primary skeletal muscle cells from dysferlin-deficient mice with inflammasome activators
such as LPS and benzylated ATP led to more secretion of IL-1β into the culture supernatant
compared to untreated muscle cells [44]. Thus, with membrane fragility and decreased mus-
cle fiber integrity, as in LGMD2B, the damaged muscle cells are more susceptible to NLRP3
inflammasome activation and the inflammatory response. Taken together, these findings
suggest that there are potential therapy avenues for targeting the NLRP3 inflammasome in
LGMD2B patients.

The entry of Ca2+ ions due to sarcolemmal tears or the activation of leaky calcium
channels by sarcolemmal stretching creates calcium excesses in the muscle fibers and in the
mitochondria, causing swelling [113,114]. Interestingly, it has been shown that an increase
in cytosolic Ca2+ promotes NLRP3 inflammasome activation. In fact, one study suggested
that Ca2+ directly regulates NLRP3 inflammasome activation by inducing interaction
between NLRP3 and ASC in macrophages [115]. It is also suggested that the increase of
cytosolic Ca2+ may provoke Ca2+ overloading of mitochondria, resulting in mitochondrial
dysfunction that leads to NLRP3 inflammasome activation [116]. Thus, it does not come as
a surprise that dystrophic muscles of LGMD2B and DMD patients that have membrane
instability and increased Ca2+ influx could have excessive NLRP3 inflammasome activation.
However, this has not been yet fully explored.
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It is unclear whether inflammasome activation seen in dysferlinopathies is only due
to sarcolemmal wounding of the muscle fibers or whether it is also caused by lysosomal
dysfunction. Dysferlin-containing vesicles move along microtubules via kinesin motor
proteins, and have been shown to fuse with lysosomes in response to membrane dam-
age, to create large wound sealing vesicles [117]. Dysferlinopathy patient cells harbor a
greater number of lysosomes and vesicles than healthy subjects [118]. In addition, lyso-
somal destabilization and rupture increases the production of mitochondrial ROS and
NLRP3 activation, and promotes the release of IL-1β and IL-18 in both HUVEC and THP-1
monocytes [119,120]. Hence, dysferlin deficiency may result in increased stimulation of
NLRP3 inflammasome via lysosomal dysfunction. The precise mechanisms involved in the
activation of the NLRP3 inflammasome in dysferlinopathies warrant further investigation.

4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS, also known as motor neuron disease and Lou
Gehrig’s disease) is an adult-onset, progressive neurodegenerative disease affecting ap-
proximately 2 per 100,000 individuals world-wide, with a higher incidence among men
than women. It is characterized by the selective degeneration of motor neurons in the
brain, spinal cord and skeletal muscles, leading to severe muscle atrophy and eventually
paralysis [121]. The disorder initiates with focal weaknesses but spreads and affects most
muscles, leading to paralysis of the whole body. Due to the large number of causative
factors that are suggested to increase in risk of developing ALS, disease pathology and
clinical presentation of ALS are markedly heterogeneous. The rate of disease progression is
very aggressive, and death typically occurs within 2–5 years post-diagnosis, generally due
to respiratory failure [122]. The vast majority of ALS cases (>90%) are sporadic, but ~5–10%
of the cases are familial [123]. The pathological hallmarks of ALS include the presence of
intraneuronal inclusions composed of insoluble aggregated proteins [124].

The molecular mechanisms involved in the initiation and progression of ALS remain
unclear; however, mutations in the genes that are important for neuronal survival and
function have been identified in patients with the familial and sporadic forms of the disease.
A hexanucleotide repeat expansion (GGGGCC) mutation in the non-coding region of the
non-coding chromosome 9 open reading frame 72 (C9ORF72) gene is the most common
genetic cause of ALS patients and is present in nearly 50% of patients with familial ALS,
and 5–10% of patients with sporadic ALS [125]. Although the molecular mechanisms by
which the C9ORF72 protein causes neurodegeneration has not been fully elucidated, both
loss-of-function through haploinsufficiency and gain-of-function through accumulation
of toxic peptides have been implicated. Knockdown of C9ORF72 protein using silencing
RNA dysregulated autophagy and inhibited endocytosis, supporting its role in endosomal
trafficking and protein degradation [126]. Mutations in the Cu/Zn superoxide dismutase
(SOD1) gene are another set of causes of the familial form of the disease; both gain-of-
function and loss-of-function mutations have been reported [127,128]. Since the discovery
of the first missense mutation in 1993 in the SOD1 gene, advances in human genetics have
identified more than 185 SOD1 variants [129]. SOD1 is a ubiquitously expressed enzyme
that is found in the cytoplasm and intermembrane space of mitochondria. It is known
to bind Cu2+ and Zn2+ ions and convert highly reactive and toxic superoxide radicals
to oxygen and hydrogen peroxide, considered to be the less toxic species. Hydrogen
peroxide is subsequently converted to water and oxygen in the presence of catalase, thereby
promoting an antioxidant defense mechanism in the cell [126]. It has been suggested
that mutations in SOD1 result in conformational and functional changes, leading to the
inability of the enzyme to scavenge superoxide radicals, leading to oxidative stress. Recent
progress in ALS research has shown that an SOD1 mutation contributes to ALS pathology
by causing toxic gain-of-function of the mutated protein, in turn leading to misfolding
and oligomerization.

Familial ALS has also been linked to mutations in more than 50 separate genes that
are known as disease-modifying or causative of ALS, of which TAR DNA-binding protein
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43 kDa (TDP-43, encoded by TARDBP) fused in sarcoma (FUS) and C9ORF72, as described
above, have been most extensively characterized. A growing body of evidence suggests
that aberrant post-translational modifications, including ubiquitination, acetylation and
phosphorylation, can lead to aggregation and mislocalization of these proteins, thereby
resulting in cellular dysfunction [130]. For instance, TDP-43 is an RNA-binding protein
that localizes in the nucleus and regulates a multitude of RNA processing steps, such as
transcriptional repression, microRNA biogenesis, pre-mRNA splicing, mRNA stability,
mRNA transport and translation. It has been suggested that aggregated TDP-43 shuttles
from the nucleus to the cytoplasm, and its accumulation and redistribution to the neurites
lead to the loss-of-function of normal TDP-43, thereby affecting cellular metabolism. Alter-
natively, the presence of cleaved TDP-43 C-terminal fragment(s) (25 and 35 kDa) may result
in a toxic gain of function [131]. More recently, it has been shown that neuroinflammation
in ALS is driven, in part, by cytoplasmic DNA sensor cyclic guanosine monophosphate
(GMP)-AMP synthase (cGAS) resulting from TDP-43-induced mtDNA release. In fact,
inhibition of cGAS averts upregulation of NF-
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-     κ     B and type I IFN responses in iPSC-derived
motor neurons and in TDP-43 mutant mice [132]. Similarly, FUS is also an RNA-binding
protein. It is localized in the nucleus where it regulates RNA processing pathways. In
neurons, FUS is present in RNA-transporting granules, axons, dendrites, and excitatory
synapses. While the loss of FUS does not trigger motor neuron degeneration and is not
sufficient to cause ALS, overexpression of mutant or wild-type FUS triggers motor neuronal
cell death, supporting toxic gain of function [126].

In both sporadic and familial ALS, motor neuron cell death occurs by complex mecha-
nisms that involve dysfunction in several cellular processes, including endoplasmic retic-
ulum and mitochondrial stress, autophagy, proteasome, oxidative stress (ROS and nitric
oxide), glutamate excitotoxicity, calcium overload, aberrant RNA/DNA regulation, axonal
transport system impairments and the “prion-like” propagation of misfolded protein,
where the aggregated/abnormal proteins act as seeds of neuropathology [133]. Neuroin-
flammation is increasingly being recognized as a prominent pathological feature of ALS.
Here we briefly review the role of the immune system, especially focusing on the role of
the central nervous system (CNS) innate immunity in neurodegeneration, and further dis-
cuss potential therapeutic approaches to precisely dampening chronic neuroinflammatory
responses in ALS by targeting the NLRP3 inflammasome.

4.1. Neuroinflammation and Motor Neuron Cell Death

Although the etiology and pathogenesis of ALS continues to be debated, accumu-
lating evidence suggests that neuroinflammation is an active contributor to the initiation
and progression of ALS [134]. The neuroinflammatory responses are mediated, at least
in part, by the activation of resident innate immune cells, i.e., microglia, astrocytes and
mast cells, in response to sterile triggers (e.g., protein aggregates). These responses are
initially beneficial and protect the host. However, failure to regulate these processes leads
to a state of sustained/chronic activation of the immune system, which constitutively
secretes pathogenic levels of proinflammatory mediators and can contribute to motor
neuron death and disease progression [135–137]. Indeed, reactive astrocytes and microglia
are generally found to accumulate at sites of motor neuron degeneration and have been
shown to release proinflammatory cytokines, including TNF-α, CD11b, IL-17A, interferon
gamma (IFNγ), CD40L and IL-6; and NLRP3 inflammasome-induced cytokines IL-1β and
IL-18, in post-mortem human tissues and animal models of ALS, respectively [138]. In
addition, ALS patients display a detrimental neuroinflammatory phenotype, not only due
to increased production of proinflammatory cytokines by activated resident immune cells
but also because of increased peripheral immune cell migration into the brain, which can
further aggravate inflammatory responses [139]. Increasing evidence points to an exten-
sive and complex interaction occurring between the innate immune cells, i.e., mast cells,
astrocytes and microglia, which orchestrate immune responses during neuroinflammation,
and neurodegeneration. Several studies have also demonstrated increased infiltration of
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immune cells from the circulation into the brain; however, it is still unknown whether they
are protective or detrimental [140]. Notably, blood–CNS barrier impairments and changes
in endothelial cells have been documented in both human pathological samples and animal
models of ALS [141].

Current evidence also points to the roles of the peripheral immune system in the initia-
tion and progression of ALS, which have recently been reviewed [142]. A histopathological,
post-mortem assessment of human spinal cord and brain tissues revealed T-lymphocyte
infiltration at the sites of motor neuron cell death, suggesting engagement of the adaptive
immune system [143]. Flow cytometry analysis demonstrated alterations in T-lymphocyte
populations in the blood of ALS patients as compared to healthy subjects. Decreases in
the regulatory T-lymphocyte (Tregs) cell counts and mRNA levels of FoxP3 (transcrip-
tion factor forkhead box P3) were associated with accelerated disease progression in ALS
patients [144]. In addition, Tregs obtained from ALS patients were less effective at suppress-
ing responder T-lymphocytes as compared to Tregs from healthy subjects, and circulating
monocytes of ALS patients expressed a distinct proinflammatory signature [145]. In a hu-
man clinical study involving 33 patients with sporadic ALS and 38 healthy control subjects,
Sheean et al. recently showed that a systemic reduction in peripheral Tregs (including ef-
fector CD45RO+/FoxP3+ population) correlated with an enhanced rate of ALS progression.
They also tested the therapeutic potential of enhancing effector Tregs in transgenic mice
harboring a G93A mutation in SOD1 (SOD1G43A) [146]. Expansion of effector Tregs popu-
lation was associated with slower disease progression and improvement in the lifespan
for ALS mice. At the histological level, marked reductions in astrogliosis and microgliosis
were accompanied by increased motor neuron survival [146]. Tregs are known to suppress
inflammation by inhibiting proinflammatory effector T-lymphocytes, and proinflammatory
innate immune myeloid cells, such as monocytes and macrophages; and by promoting
neuroprotective microglia [144]. Taken together, these studies demonstrate a clear link
between patient Tregs populations, monocyte profiles and ALS progression, and support
that there is active crosstalk between the innate and adaptive immune systems. Strategies
aimed at enhancing Tregs might be immunomodulatory and provide neuroprotection
leading to improved clinical outcomes in ALS patients.

A vast number of studies highlight the complexity of the immune responses in ALS
patients and provide compelling evidence for immune dysregulation in the pathogenesis
of ALS (comprehensively reviewed in [147,148]). There exists a conundrum between
hyperinflammation and inefficient immune responses to pathogenic stimuli in ALS patients,
possibly due to patient-specific mutations in ALS-associated genes or polymorphisms
in cytokine/chemokine genes that might further affect the patient’s ability to mount
appropriate immune responses.

4.2. Astrocytes: Stars in the Darkness

Astrocytes represent the most abundant cell type in the CNS that regulate and main-
tain homeostasis [149]. Such astrocytes are described as “homeostatic astrocytes” which are
involved in critical CNS functions, including but not limited to the maintenance and regu-
lation of the extracellular microenvironment, blood–brain barrier (BBB) integrity, cerebral
blood flow, antioxidant and trophic factor support, uptake and recycling of neurotransmit-
ters and detoxification of extracellular glutamate and ROS [150–152]. Astrocytes respond
to all forms of CNS damage, including misfolded aggregated proteins composed of SOD1,
FUS and TDP-43; dying neurons; and elevated ROS and cytokines, by a process known
as “reactive astrocytosis” which is accompanied by increased expression of intermediate
filaments such as vimentin and glial fibrillary acidic protein (GFAP) [153]. Reactive as-
trocytes also undergo a dramatic morphological transformation and exhibit ramifications
of GFAP-positive hypertrophic processes which are associated with a broad spectrum of
molecular and functional changes [154]. Liddelow et al. separated reactive astrocytes into
A1 and A2 subtypes: A1 astrocytes were shown to be neurotoxic and exacerbate disease
pathology, whereas A2 astrocytes secreted neurotrophic factors and promoted neuronal
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survival [155]. It has now been established that reactive astrocytosis is a highly dynamic
process whereby some astrocytes can lose their normal functions and gain neurotoxic
functions, which in turn, can negatively impact the surrounding neural tissue whereas
others can revert back to their normal homeostatic states and promote neuronal survival.
However, identification of the exact molecular subtypes of reactive astrocytes that are
beneficial or detrimental to neuronal health has been technically challenging, and their
roles in the neurodegenerative process remain elusive.

4.2.1. Astrocyte Dysfunction in ALS

Although mutant SOD1 causes intrinsic damage to motor neurons, it may not be
enough for the initiation and propagation of ALS pathogenesis. Reactive astrocytes have
emerged as important mediators of mutant SOD1 toxicity and motor neuron death. In ALS
patients, reactive astrocytes become dysfunctional and lose their beneficial functions and
interactions with motor neurons [156], thereby evoking detrimental effects on the muscles.
In two hallmark studies, it has been demonstrated for the first time that astrocytes carrying
mutant SOD1 and cocultured with motor neurons derived either from mouse embryonic
spinal cord or embryonic stem cells caused neurotoxicity [157,158]. This gain of function
by astrocytes resulted in toxicity that was highly specific to motor neurons, and astrocytes
expressing mutant SOD1 did not cause the death of other neuronal subtypes. Furthermore,
other CNS cell types, for example, microglia, cortical neurons, and fibroblasts, carrying
mutant SOD1, did not cause motor neuron cell death. Knockdown of SOD1 in astrocytes
reversed the neurotoxic effect demonstrating that astrocytes carrying a SOD1 mutation can
induce toxicity in neighboring motor neurons [159]. These studies revealed that astrocytes
and astrocyte-specific neurotoxic factor(s) play active roles in motor neuron death in ALS.

Numerous studies have shown that the loss of function of astrocytes can also result in
motor neuron death and ALS disease progression. Both sporadic and familial ALS cases have
~90% lower levels of astrocytic glutamate transporter-1 (GLT-1), which result in decreases
in removal of extracellular glutamate by astrocytes and motor neuron death [160]. Similarly,
we have also shown that exposure of mixed neuron-astrocyte cocultures to toxic levels of
glutamate resulted in increased H2O2 production and decreased mitochondrial function,
which was accompanied with neuronal loss [161]. The uptake of the excitatory neurotrans-
mitter glutamate by astrocytes is a particularly critical astrocytic function, which regulates
glutamatergic neurotransmission and is necessary to avoid excitotoxic injury and neuronal
death. Synaptic homeostasis of glutamate involves its removal from the synaptic cleft via high-
affinity glutamate transporters GLT-1, GLAST and EAAC1, and the glutamate-catabolizing
enzyme glutamine synthase [162]. ALS spinal cord astrocytes have high levels of monoamine
oxidase B (MAO-B), an enzyme located on the outer mitochondrial membrane, which is
known to metabolize dopamine [163]. This increased expression of MAO-B in ALS supports
the hypothesis that motor neuron death in ALS is triggered by astrocytic reaction. However,
treatment with selegiline (Eldepryl), a MAO-B inhibitor, had no significant effect on the rate
of clinical progression or outcome of ALS [164]. These studies point to a complex intricate
interplay between motor neurons and astrocytes and suggest that astrocytes play active roles
in neurodegeneration and ALS disease progression.

Activated astrocytes also secrete an array of neurotoxic factors, including ROS, ni-
tric oxide, superoxide anions and proinflammatory cytokines (IL-1β, IL-6 and TNF-α),
which might contribute to neuroinflammation and motor neuron death [165]. Nitric ox-
ide can diffuse through cellular membranes and react with superoxide anions to form
peroxynitrite, a potent oxidizing and nitrating agent. Peroxynitrite is known to cause
post-translational modification of tyrosine residues in proteins to form nitrotyrosine, an in-
dicator of peroxynitrite-mediated protein damage that can result in protein dysfunction. To
this end, nitrated proteins have been detected in both human ALS patients and transgenic
animal models of ALS [166]. However, caution should be exercised in the interpretation
of post-mortem brain tissue data, as they only provide a snapshot of the pathology at the
terminal stage of the disease.
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4.2.2. Astrocyte Dysfunction and the NLRP3 Inflammasome

Evermore studies are supporting the involvement of inflammasomes, including the
NLRP3 inflammasome, in ALS pathogenesis. Indeed, the inflammasome has been shown
to be activated by neurodegeneration-associated molecular patterns (NAMPs), such as
misfolded protein aggregates, which are constitutively expressed in post-mortem human
ALS tissue and the neural tissue of mice expressing mutant SOD1G93A [167–169]. Upstream
signaling molecules NF-
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-     κ     B and TRL-4 are also increased in SOD1G93A mice [169,170].
NLRP3 inflammasome components’ (i.e., NLRP3, ASC, caspase-1 and IL-18) expression
levels have been found to be increased in the spinal cord tissue, where spinal cord astrocytes
were identified to be the focal NLRP3 inflammasome expressing cell type [171]. Moreover,
caspase-1 is also increased in the sera of ALS patients [172].

NAMPs can also lead to inhibition of autophagy in astrocytes, in turn accelerating
neurodegeneration. Autophagy is the primary cellular lysosomal degradative pathway
that is involved in the degradation of damaged proteins and dysfunctional organelles. This
pathway has now received recognition as limiting detrimental and uncontrolled activation
of inflammasomes [173]. An accumulating body of research has demonstrated that impair-
ments in the autophagy machinery induce abnormal activation of inflammasomes that can
contribute to the development of ALS [174]. Other important factors that may mediate
ALS progression are mitochondrial dysfunction and autophagy regulation. Mitochondrial
dysfunction results in excessive ROS release, which is seen in sporadic ALS patients [175].
Additionally, transgenic SOD1 mice show symptoms of mitochondrial swelling and dys-
function in early stages of ALS [176]. Although the direct involvement of mitochondrial
defects and NLRP3 activation has yet to be characterized in ALS, it is well established that
mitochondrial DNA and phospholipid cardiolipin from damaged mitochondria activate
NLRP3 [177,178]. Thus, there is a possibility that mitochondrial protectants shown to im-
prove ALS pathology (such as GNX-4728) may promote their beneficial effects, in part, via
inhibition of NLRP3 inflammasome. Interestingly, an autophagic inducer, trehalose, was
also shown to have protective effects towards mitochondria in SOD1G93A. In addition, it
improved the loss of motor neurons, SOD1 aggregation, autophagic flux and lifespan [179].
Thus, these findings support the notion that regulating autophagy may be a potential ap-
proach to treating ALS. Meissner et al. has shown that the aggregation and proinflammatory
response by mutant SOD1 in the SOD1G93A transgenic mice are improved by autophagy.
Indeed, pharmacological inhibition of autophagy increased SOD1 in the cytosol and induced
IL-1β release following SOD1G93A stimulation in vitro [180]. In summary, these studies
suggest that autophagy plays a key role in counteracting the cytoplasmic accumulation of
mutant SOD1 and may be an important player in inflammatory signaling of inflammasomes.
Although autophagy inhibition reverses disease pathology and extends the lifespan in
mouse ALS models, it is noteworthy that chronic autophagy inhibition has been linked to
increased cancer risk, suggesting a biphasic role of autophagy in cancer [181].

4.3. Microglia: The Defense System of the CNS

Microglia represent the resident innate immune cells of the CNS that are important
for the maintenance of homeostasis and neuronal survival. Like other tissue macrophages,
microglia are the professional phagocytes of the CNS that defend against microbial and
non-microbial threats and clear debris from damaged/dead cells. As a first line of de-
fense, following detection of NAMPs, microglia activate a defense program that arms
them with a toolkit to transition from the “homeostatic” state into an “activated” or a
“disease-associated” state [182]. During the transition to the activated state, microglia un-
dergo numerous morphofunctional changes, release inflammatory mediators (TNF-α, IL-6,
nitric oxide, ROS and superoxide anions) and trigger activation of the NLRP3 inflamma-
some [183]. Following damage resolution, microglia shift back to the homeostatic state and
secrete neuronal survival molecules, such as anti-inflammatory cytokines (IL-10 and IL-4),
and neurotrophic growth factors, to ensure neuronal fitness. However, chronic stimulation
switches microglia to a hyperinflammatory state, resulting in continuous production of
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proinflammatory mediators, and leading to motor neuron death. Using high-throughput
RNA sequencing, a recent study has shown that microgliosis in ALS is driven by a subpop-
ulation of microglia with transcriptional signatures similar to those of disease-associated
microglia [184]. This unique population of microglial cells might play an important role in
driving neuroinflammatory responses and synaptic loss seen in ALS disease progression.

Microglial Dysfunction and the NLRP3 Inflammasome

A characteristic hallmark of sporadic ALS is the presence of intracellular inclusions
composed of SOD1, FUS, TDP-43 and C9ORF72 protein aggregates in motor neurons and as-
trocytes, which can also be found in brain parenchyma. Microglia respond to these pathogenic
stimuli by releasing proinflammatory mediators and activating the NLRP3 inflammasome,
which is emerging as a key player in driving neuroinflammation and neurodegeneration in
ALS. In this context, exposure of cultured murine and human macrophages to monomeric
TDP-43—but not its fibrillary form—was shown to activate the NLRP3 inflammasome and
release IL-1β. In addition, C9ORF72-derived glycine–arginine (GR) dipeptide repeats were
also phagocytosed by macrophages, stimulated NLRP3 and released IL-1β [185]. This study
suggests that ALS-associated proteins can drive inflammatory processes.

Accumulating evidence suggests that microglial activation precedes astrocyte reaction,
and microglial factor(s) trigger astrocytes to acquire a reactive and neurotoxic phenotype.
Activated microglia are observed at the early phases of disease, especially prior to the signs
of disease onset, and transgenic ALS mice showed increased expression levels of inducible
nitric oxide synthase, NADPH oxidase, IL-10, IL-6, TNF-α and CCL2. Although there is
clear evidence of an early immune response, it is still not clear whether these responses are
protective or injurious. The role of microglia in ALS disease pathogenesis has been recently
reviewed [186]. Similarly to astrocytes, microglia have also been shown to contribute to
glutamate excitotoxicity in the mutant SOD1 mouse model [187]. In addition, activated
microglia play a predominant role in neuroinflammation in ALS through the release of
TNF-α, IL-1β and oxidative stressors via NF-
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-     κ     B, and through inflammasome activation, as
seen in SOD1G93A transgenic mice [135,180,188]. Crossing the SOD1G93A transgenic mice
with caspase-1 or IL-1β-deficient mice prolonged the lifespan of the SOD1G93A mice and
ameliorated the inflammatory pathology [180]. Treatment of SOD1G93A mice with a recom-
binant human IL-1 receptor antagonist (Anakinra) showed similar beneficial effects [180];
however, no benefit was seen for ALS patients in a clinical trial [189]. In addition, results
from SOD1G93A mice suggested that caspase-1 and IL-1β in microglia are produced in an
NLRP3-independent manner [180]. Conversely, using NLRP3-GFP knock-in mice, a recent
study by Deora et al. demonstrated microglial expression of NLRP3 [135]. Furthermore,
IL-1β secretion was inhibited using MCC950, a selective NLRP3 inhibitor, confirming that
indeed microglial IL-1β production arose via the NLRP3-dependent inflammasome path-
way stimulated by ROS and ATP. Treatment of microglial cells obtained from SOD1G93A

mice with the antioxidant cyclo (His-Pro) inhibited NLRP3 inflammasome activation by
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-     κ     B-regulated NLRP3 inflammasome formation has also been shown to be activated in
the microglia of TDP-43Q331K transgenic mouse model of ALS [191]. Altogether, com-
pelling evidence suggests that motor neuron degeneration in ALS arises from the toxic and
proinflammatory effects of surrounding glial cells. Hence, there is an urgent need for the
development of novel therapeutics targeting key pathways in microglial cells to inhibit
NLRP3 inflammasome activity, neuroinflammation and ALS disease progression.

4.4. Mast Cells: Guardians of the CNS

Mast cells are present in small numbers in the healthy human brain and dura of the
spinal cord, but not in the cord parenchyma. They contain numerous granules that store
pre-formed or newly synthesized arsenal of proteases, histamine, proteoglycans, growth
factors, immunomodulators and cytokines such as TNF-α. As opposed to microglia, mast
cells are recognized as the first responders to pathogenic stimuli and respond rapidly by
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releasing these mediators into the microenvironments of their respective tissues. These
mediators can elicit profound effects on neighboring neural cells and also recruit peripheral
immune cells into the CNS, further exacerbating inflammatory responses. We highlighted
the intimate and intricate molecular communication between mast cells and microglia in
the context of neurodegeneration in a recent review [192].

Mast Cells and the NLRP3 Inflammasome

As discussed, both astrocytes and microglia have received much recognition for their
role of promoting neuroinflammatory responses, especially before the onset of symptoms,
and for correlating with disease progression in rodent models of ALS. However, mast
cells, granulocytes derived from myeloid stem cells, have been underappreciated and
understudied in ALS, and have only recently been the focus of research. In fact, autopsied
quadriceps muscles from ALS patients showed a large number of infiltrating degranulated
mast cells, which was not seen in healthy subjects. Mast cells and neutrophils were also
found infiltrating the motor axons of SOD1G93A rats [137]. In addition, mast cells have
previously been identified as the main cell population responsible for IL-1β production via
NLRP3 activation [193]. These findings indicate that many immune cells may be involved
in the NLRP3 inflammasome-induced inflammatory pathology of ALS, and targeting
NLRP3 may provide therapeutic benefits against this devastating disease.

Encouraged by the promising results obtained using cromolyn sodium in cellular and
preclinical animal models of AD [194], Granucci et al. recently tested the effects of cromolyn
in the SOD1G93A mouse model of ALS [195]. Cromolyn sodium is a mast cell stabilizer
approved by the FDA for the treatment of asthma. Interestingly, cromolyn treatment led to
a decrease in the denervation of the neuromuscular junction of the tibialis anterior muscle
and an increase in motor neuron survival in the lumbar spinal cord. The protective effects
were mediated by reductions in proinflammatory cytokine and chemokine levels in the
spinal cord and plasma, and mast cell counts; and degranulation in the tibialis anterior
muscle. This study provides compelling evidence for the involvement of mast cells in the
early phase of ALS disease progression.

4.5. CNS Innate Immune Cell Senescence

Aging is recognized as the most prevalent risk factor for neurodegenerative diseases,
including ALS [196]. Age-related decline in immune system function, referred to as “im-
munosenescence”, has been observed in both astrocytes and microglia, rendering them
more vulnerable to neurodegeneration. Typically, senescent astrocytes exhibit irreversible
cell-cycle arrest; high levels of expression of cell-cycle inhibitors p16 and p21; high levels
of expression of tumor suppressors such as p53, and/or pRb rendering cells resistant to
apoptosis; increased expression of GFAP and vimentin; downregulation of neurotrophic
growth factors; increased lysosomal activity; and most importantly, increased secretion of
proinflammatory senescence-associated secretory phenotype (SASP) factors [197]. Aged
astrocytes upregulate inflammatory gene expression networks, such as proinflammatory
cytokines, chemokines, growth factors and proteases, characteristic of A1 reactive pheno-
type, suggesting perturbations in immune regulation pathways [198]. In addition, aged
astrocytes also display senescence-associated markers of oxidative stress and upregulated
antioxidant responses (SOD, catalase and the glutathione antioxidant system) and possess
a deficiency in glutamate homeostasis. Furthermore, aged astrocytes were less able to sup-
port motor neurons which were augmented in ALS astrocytes, thereby promoting motor
neuron loss [199]. In line with this, neurons cultured in the presence of senescent astrocytes
showed increased vulnerability to glutamate toxicity, possibly due to decreased efficiency
of the glutamate transport machinery [200]. The impacts of ALS-associated mutations
in SOD1, FUS, TARDBP and C9ORF72 on astrocyte senescence are not yet known. Simi-
larly to astrocytes, more activation of inflammatory pathways has also been documented
in microglia during normal aging [198]. Using rats expressing the SOD1G93A mutation,
microglial cells were shown to express senescence-associated markers, namely, p16, and
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the loss of nuclear laminin B1 in the spinal cord [201]. Senescent microglia from these
animals grown in vitro exhibited typical characteristics of SASP which might play key
roles in facilitating neuroinflammation. Overall, these studies suggest that any senescence-
associated impairments in the innate immune cells alter glia-neuron communication, in
turn promoting neuronal dysfunction and degeneration.

The direct evidence for the role of glial cell senescence in regulating the NLRP3 inflam-
masome, and its contribution to ALS, remains to be determined. It is important to note that
normal physiological aging is associated with the appearance of systemic low-grade chronic
inflammation, termed “inflammaging” [202]. Thus, during inflammaging, lifelong expo-
sure to stressors is associated with chronic activation of the NLRP3 inflammasome [203],
and it is plausible that this process is accelerated in ALS.

4.6. The Current Landscape of ALS Therapeutics

There are no effective treatments to slow or halt the progression of this devastating
disease. Currently, ALS patients receive palliative treatment with riluzole, a glutamate
antagonist, approved for use by the FDA in 1995, and edaravone, an ROS scavenger
and an inhibitor of lipid peroxidation, was recently approved by the FDA in 2017 [204].
Nevertheless, these treatments provide only modest effects and only in a subset of patients;
ALS patients are managed largely by providing supportive care [205].

Over the years, a large number of experimental therapeutics targeting inflammation
have been tested in cellular and animal models of ALS through means of gene therapy,
exon skipping; and pharmacological interventions such as mitochondrial protectants;
antioxidants and anti-inflammatory compounds [206]. For instance, thalidomide, an
inhibitor of TNF-α, reduced serum proinflammatory cytokine concentrations, lowered
motor neuron death and improved motor function in an ALS mouse model; however, it did
not meet clinical endpoints in a phase 2 clinical trial in a small cohort of ALS patients [207].
In fact, the results of more than 50 randomized controlled trials carried out in the past
half-century for several disease-modifying treatments have been disappointing and failed
to meet clinical endpoints [208].

The main barrier to drug development is the lack of understanding of the precise
mechanisms involved in motor neuron degeneration. Dysregulation of a large number
of cellular pathways has been implicated in ALS disease progression, and identifying
the exact causative pathway remains a challenge. Most of the current knowledge on the
mechanisms of ALS disease initiation and progression is derived from human genetics,
post-mortem pathological tissues and animal models. These models have numerous
limitations, as they do not recapitulate human ALS pathogenesis. An important factor
is age, which is missing from the animal models of neurodegenerative diseases. The
roughly 2-year lifespan of a rodent is unable to recapitulate the complex cellular and
molecular processes of a human lifespan. Hence, there is a need for the development of
better models that incorporate the element of age and improve our understanding of the
neurodegenerative processes. Another obvious reason for the failed clinical trials is the
lack of an objective biomarker to monitor whether the drug has actually engaged its target
to have a pharmacodynamics effect. Hence, the present clinical trials conducted without an
ALS biomarker are unable to distinguish between responders and non-responders, which
may be attributed to ambiguous evaluation of the tested therapeutics. Therefore, there
is a critical need for a more detailed and systematic study of the disease pathogenesis to
advance our understanding of ALS and incorporate biomarkers in future clinical trials.

Human induced pluripotent stem cell (iPSC)-based disease modeling has presented
itself as an efficient tool with which to model neuromuscular disease in vitro [209], and has
become especially important for neurological investigations, as access to the affected cells
is challenging [210]. Recently, an iPSC-based drug screening platform was used to identify
novel ALS therapeutics [211]. Indeed, using iPSC-based technologies, three drugs (ropini-
role, a dopamine D2 and D3 receptor agonist; retigabine, a neuronal Kv7 channel activator;
and bosutinib, a tyrosine kinase inhibitor) were identified as potential ALS treatments and
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are under investigation in clinical trials [212–214]. Thus, iPSC technologies could provide
efficient models for investigating the NLRP3 inflammasome in neuromuscular diseases as
well as developing novel therapeutics targeting its assembly in these disorders.

5. Other Rare Neuromuscular Diseases

The NLRP3 inflammasome has also been shown to be involved in other rare neuromus-
cular diseases, such as Charcot–Marie-tooth (CMT) neuropathy and Myasthenia Gravis,
which elicit symptoms of muscle weakness and muscle atrophy. The hereditary motor
and sensory neuropathy CMT diseases are a heterogeneous group of genetic disorders
characterized by damaged peripheral nerves and weak atrophied muscles, usually affecting
the legs, feet, arms and hands [215]. Scientists have generated a variety of animal models
expressing monogenic mutations that closely resemble the CMT phenotype [216]. Many
CMT patients suffer from conduction velocity decay and hypertrophic demyelination. In
addition, these patients also suffer from acute, subacute or chronic inflammation along
with oxidative stress (i.e., ROS) that is involved with progression of the disease [217–221].
Interestingly, melatonin treatment in CMT neuropathy patients reduces oxidative damage
and normalizes plasma proinflammatory cytokines such as IL-1β [217]. This reduction in
inflammasome activation may correlate with reduction of the degenerative process.

Myasthenia Gravis (MG) is an autoimmune disorder that affects the postsynaptic
region of the neuromuscular junction. More specifically, this disease is caused by specific
autoantibodies, produced by B-lymphocytes, against the acetylcholine receptor (AChR),
which is responsible for the transmission of signals between neurons and muscles [222,223].
Thus, mice models induced with an immune response to AChR represent excellent models
with which to investigate the pathogenic mechanisms underlying the human disease [224].
Similarly to MG patients, experimental autoimmune MG (EAMG) mouse models show
weakness in the skeletal muscles over time potentially, partly caused by the translocation
of the neuronal NO synthase from the muscle membrane to the cytoplasm, due to blocked
neuromuscular transmission [225]. Due to the suspected involvement of the NLRP3
inflammasome in autoimmune diseases [226], researchers were interested in investigating
its role in MG. Overall, a caspase-1 inhibitor significantly ameliorated the symptoms of the
disease in a EAMG rat model [227]. In addition, IL-1β expression levels were significantly
increased in the serum of a EAMG mouse model [228]. However, the specific mechanism by
which inflammasomes are activated has yet to be investigated. Since it has been shown that
NO can induce IL-1β [229], it would be significant to determine whether the accumulation
of NOS (responsible for the production of NO) in the cytoplasm of muscle cells would
induce NLRP3 inflammasome activation. Thus, these rare neuromuscular diseases could
indeed benefit from NLRP3 inflammasome-targeted treatments [217,227,228].

Other rare skeletal muscle disorders that are characterized by chronic muscle inflam-
mation are termed inflammatory myopathies. Patients affected by these disorders suffer
from inflammation and chronic or subacute progressive weakness of muscles and fatigue,
which are often accompanied by muscle pain. These rare myopathies, often considered
as autoimmune disorders, can be classified into five groups: polymyositis (PM), dermato-
myositis (DM), necrotizing myopathy (NM), overlap myositis (OM) and inclusion body
myositis [230]. Although glucocorticoid treatment is the basic therapy used to reduce
symptoms for DM, PM, NM and OM, its beneficial effects vary from patient to patient,
and it is associated with many long-term side effects such as osteoporosis, cataracts, hy-
pertension, weight gain and increased risk of infections [230,231]. The development of
therapeutics for inflammatory myopathies has been difficult since the immunopathogenic
mechanisms underlying these disorders still remain poorly understood [232]. Previous
studies supported the notion that inflammasomes might be involved in the pathogenesis
of inflammatory myopathies. For instance, it has been shown that IL-1β and IL-18 promote
the initiation and progression of PM and DM [233–235]. More recently, Yin et al. showed
increased expression of the NLRP3 inflammasome in the muscles of DM and PM patients.
In addition, increased expression of the NLRP3 inflammasome was associated with the
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activation of caspase-1 and enhanced secretion of IL-1β and IL-18 [232]. Another study
has demonstrated that a metabolic switch to glycolysis in the lesioned DM and PM pa-
tients’ muscle tissues activates the NLRP3 inflammasome, causing pyroptosis of muscle
cells [236]. Increased plasma IL-1β levels were also seen in these patients, suggesting that
IL-1β may be a potential biomarker for these myopathies. Altogether, these studies support
the role of the NLRP3 inflammasome in inflammatory myopathies and the potential for the
development of NLRP3 inflammasome-targeted therapies.

6. Concluding Remarks and Perspectives

Although inflammation has emerged as a main culprit in the initiation and progres-
sion of neuromuscular diseases, the precise mechanisms involved are far from being fully
elucidated. However, evermore studies support the notion that failure to control the acute
inflammatory responses to nerve or muscle injury or dysfunction may be a primary trigger
leading to a cascade of cellular events that culminate in muscle degeneration and nerve
cell loss. The hallmarks of chronic inflammation are an increased number of circulating
immune cells and their infiltration at the sites of injured peripheral nerves, neuromuscular
junctions and muscles, which contribute to the progression of tissue damage. The presence
of activated NLRP3 inflammasomes and their components has been demonstrated in innate
immune cells, including neutrophils, macrophages, mast cells and microglia; adaptive
immune cells, such as T-lymphocytes; and non-immune cells, such as myocytes and as-
trocytes. Neuroinflammation is also recognized as a contributing factor in the initiation
and disease progression in ALS, a multifactorial neurodegenerative disease. Accumulation
of misfolded and aggregated TDP-43 protein within neural cells (motor neurons and sur-
rounding glial cells) has emerged as a common link between sporadic and familial ALS. The
TDP-43 and other ALS-linked proteins might damage several cellular processes, resulting
in dysregulated cellular homeostasis, which can, in turn, trigger inflammation. Increased
production of ROS, nitric oxide and proinflammatory mediators is a cellular response to
misfolded aggregated proteins, which can lead to oxidative stress, redox dysregulation and
amplification of inflammatory responses [147]. Figure 4 depicts the possible crosstalk be-
tween the innate immune cells and activation of the NLRP3 inflammasome, leading to the
motor neuron cell death and muscle degeneration. Despite a large number of mechanisms
that have been identified in muscle degeneration and nerve cell loss, none have proven
to be the primary cause of the disease. There is much need for a deeper understanding of
the biology of the pathogeneses and the molecular mechanisms that are activated early in
the diseases in order to identify “druggable” targets and disease-modifying treatments for
these devastating diseases.

Human iPSC technologies are emerging as useful platforms for disease modeling
to study pathogenic mechanisms and discover novel therapeutics for neuromuscular
diseases [211,237]. Indeed, patient-derived iPSCs are being used to create a “patient-in-a-
dish” disease model to derive relevant cell types for testing potential therapeutics, paving
the way towards personalized medicine. This approach allows drug screening in a dish
prior to administration to patients and “bench-to-bedside” translation of potential therapies.
Additionally, iPSCs may also be used to stratify patients with various phenotypes and
guide future clinical trials for bringing improved therapies to patients. Since multiple cell
types are involved in disease pathogenesis, future research efforts need to be focused on
deciphering “disease-specific signatures” at single-cell resolution, and not only in neuronal
cells but also in non-neuronal cells. The application of modern technologies, including
single-cell RNA sequencing and spatial transcriptomics, to neuromuscular diseases, will
allow to ascertain cellular vulnerability and cell-specific mechanisms during various stages
of disease progression.

The vital roles of the NLRP3 inflammasome in neuromuscular diseases such as DMD,
LGMD and ALS, reveal that targeting this pathway is indeed a promising therapeutic
strategy. Dysregulation of the NLRP3 inflammasome in muscle tissues by muscle damage,
membrane instability, extracellular ATP and Ca2+ ions or signals from infiltrating immune
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cells, clearly impacts the progression of neuromuscular and neurodegenerative disorders.
Thus, modulation of these pathways involved with activation and assembly of NLRP3
inflammasome could be truly beneficial. In addition, other neuromuscular disease patients
(i.e., Charcot–Marie-tooth neuropathy and Myasthenia gravis) which elicit symptoms of
muscle weakness and muscle atrophy also could benefit from NLRP3 inflammasome-
targeted therapies [217,227,228]. Many approved therapies (i.e., canakinumab, anakinra
and rilonacept) targeting the inflammasome in autoinflammatory diseases neutralize down-
stream IL-1β or compete with its receptor [238]. However, more directed therapies against
upstream components of the inflammasome are being explored and tested, such as in-
hibitors, in neuromuscular and neurodegenerative models, as summarized in Table 1.
These small molecules are also being optimized to cross the blood–brain barrier, which
could be crucial for the treatment of neurodegenerative diseases. Thus, continued devel-
opment of these small molecules may represent an important therapeutic approach to
treating NLRP3-driven neuromuscular and neurodegenerative diseases. Specific targeting
of the NLRP3 inflammasome components using antibody-based therapeutics is also on the
horizon. In summary, based on the mounting body of evidence presented above, NLRP3
inflammasome inhibition has the potential to curtail aberrant inflammatory signaling and
extinguish the fire of inflammation.
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Figure 4. Proposed mechanisms of the pathogenesis of amyotrophic lateral sclerosis (ALS). The
mechanisms underlying neurodegeneration in ALS are multifactorial and mediated through a
complex interplay of molecular and genetic pathways. Specific pathways involved are increased
generation of reactive oxygen species, glutamate excitotoxicity, mitochondrial dysfunction, axonal
transport dysfunction and accumulation of cytoplasmic protein aggregates consisting of SOD1, TDP-
43 and FUS. Activation of astrocytes and microglia results in secretion of proinflammatory cytokines,
leading to neuroinflammation and motor neuron degeneration.
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Table 1. Therapeutic targeting of the NLRP3 inflammasome in neuromuscular diseases.

Drug Type Molecules/Drugs Mechanism of Action Disease Model Beneficial Effects References

Small
molecule

Prednisolone NF-
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mdx
DMD patients
C57BL/6 mouse

- improves muscle strength and fiber integrity
- prolongs ambulation and improves muscle strength
- inhibits NLRP3 expression
- reduces cleaved-caspase-1 and cleaved-IL-1β

[61,74–77,88]
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-     κ     B inhibitor DMD mdx/GRMD dog **
- improves sarcolemmal integrity potentially via dysferlin and fibrosis
- improves ex vivo function of the EDL and diaphragm
- improves cardiac hypertrophy and cardiac fibrosis, diaphragm fibrosis and ventilatory
- induces larger muscle volume

[239]

VBP15 * TNFα, NF-
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-     κ     B inhibitors DMD mdx - improves muscle strength
- promotes sarcolemmal repair of skeletal muscle cells

[79,240]

MCC950 NLRP3 inhibitor ALS Primary mouse microglia
TDP43 cell models - attenuates IL-1β secretion via NLRP3 inflammasome [135]

Anakinra recombinant human IL-1RA ALS SOD1G93A mice
ALS patients

- prolongs lifespan
- improves motor performance (hanging wire test)
- No significant effect

[180,189]

GNX-4728 * mitochondrial permeability
transition pore (mPTP) ALS (hSOD1)G37R tg mice

- protects mitochondrial degeneration
- reduces inflammation,
- extends lifespan

[241]

Trehalose Autophagy ALS SOD1G93A mice

- protects mitochondria
- reduces skeletal muscle denervation and motor neuron loss
- decreases SOD1 aggregation
- Increases autophagy
- extends lifespan

[179]

MitoTEMPO angiotensin II Muscle
atrophy C2C12 myotubes

- decreases mtROS and mitochondrial damage
- inhibits NLRP3 inflammasome activation
- increases expressions of p-PI3K, p-Akt, and p-mTOR
- restores skeletal muscle atrophy

[47]

Ibrutinib
(PCI-32765) NLRP3 inhibitor Stroke

THP-1-differentiated
macrophages
C57BL/6J mice

- inhibits maturation of IL-1β
- suppresses caspase-1 in macrophages and in the infarcted area of ischaemic brain.
- Reduces ischaemic brain damage effects after stroke onset

[242]

Biologics
Adiponectin miR-711 DMD C2C12 myotubes/mdx

- decreases inflammation and oxidative stress involved in dystrophic muscle damage
- decreases NLRP3 expression
- reduces CK serum levels
- improves physical performance

[13,93]

Ghrelin Suppression of JAK2/STAT3 DMD Mdx - reduces levels of NLRP3, ASC, pro-caspase-1, cleaved caspase-1, pro-IL-1β and IL-1β
- improves behavioral performance and muscle fiber morphology

[83]

cyclo (His-Pro) NF-

 
 

 

 
Int. J. Mol. Sci. 2021, 22, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/ijms 

-     κ     B ALS (hSOD1)G93A

microglial cells
- reduces inflammation via NLRP3 inflammasome
- decreases ROS

[190]

* Not yet tested for modulation of the NLRP3 inflammasome. ** Golden Retriever muscular dystrophy (GRMD).
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AChR acetylcholine receptor
AIM2 absent in melanoma 2
AKT Protein kinase B
ALS Amyotrophic lateral sclerosis
Ang II angiotensin II
AP-1 activator protein-1
ASC apoptosis-associated speck-like protein containing a CARD
ATP Adenosine triphosphate
BBB blood-brain barrier
Ca2+ calcium ions
CARD caspase recruitment domain
CAPS cryopyrin-associated periodic syndromes
cGAS cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-AMP synthase
CK creatine kinase
CMT Charcot-Marie-tooth
CNS central nervous system
COP Card-only protein
COX cyclo-oxygenase
CRISPR clustered regularly interspaced short palindromic repeats
DAMP damage-associated molecular pattern
DAPC dystrophin-associated protein complex
DM dermatomyositis
DMD Duchenne Muscular Dystrophy
EAMG experimental autoimmune MG
EDL extensor digitorum longus
FUS fused in sarcoma
GFAP glial fibrillary acidic protein
GLT-1 glutamate transporter-1
GRMD golden retriever model of DMD
GSDMD gasdermin-D
GT1 glutamate transporter 1
GTP guanosine triphosphate
ICAM-1 intercellular adhesion molecule-1
IFNγ Interferon gamma
IL Interleukin
iPSC induced pluripotent stem cell
JAK2 janus kinase 2
K+ potassium ions
KO Knockout
LGMD Limb–girdle muscular dystrophy
LGMD2B Limb-girdle muscular dystrophy type 2B
LPS Lipopolysaccharides
LRR leucine rich repeats
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MAO-B monoamine oxidase B
Mdx X-linked muscular dystrophy
Mt Mitochondrial
mTOR mechanistic target of rapamycin
Myd88 myeloid differentiation primary response gene 88
NAIP Neuronal apoptosis inhibitory protein
NEK7 NIMA-related kinase 7
NF-
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-     κ     B nuclear factor kappa B
NLRC4 NOD-like receptor family CARD domain-containing protein 4
NLRP NOD-like receptors with pyrin domain
NM necrotizing myopathy
NO nitric oxide
NOD nucleotide-binding oligomerization domain
NOD2 nucleotide-binding oligomerization domain-containing protein 2
NAMP neurodegeneration-associated molecular pattern
NSAID nonsteroidal anti-inflammatory drug
OM overlap myositis
P2X7 purinergic type 2 receptor family
PAMP pathogen-associated molecular pattern
PI3K Phosphoinositide 3-kinase
PM polymyositis
POP Pyrin-only protein
Pro-IL pro-interleukin
PYD pyrin domain
RIP2 receptor-interacting-serine/threonine-protein kinase 2
ROS reactive oxygen species
SASP senescence-associated secretory phenotype
SOD1 superoxide dismutase 1
STAT3 signal transducer and activator of transcription 3
TA tibialis anterior
TDP-43 TAR DNA-binding protein 43 kDa
TLR toll-like receptor
TNF-α tumor necrosis factor-α
Tregs regulatory T-lymphocyte
VBP15 Vamorolone
VCAM-1 vascular cell adhesion molecule
WT wild-type
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