
brain
sciences

Review

Rat Models of Vocal Deficits in Parkinson’s Disease

Maryann N. Krasko 1,2 , Jesse D. Hoffmeister 1,2, Nicole E. Schaen-Heacock 1,2, Jacob M. Welsch 1,
Cynthia A. Kelm-Nelson 1 and Michelle R. Ciucci 1,2,3,*

����������
�������

Citation: Krasko, M.N.; Hoffmeister,

J.D.; Schaen-Heacock, N.E.; Welsch,

J.M.; Kelm-Nelson, C.A.; Ciucci, M.R.

Rat Models of Vocal Deficits in

Parkinson’s Disease. Brain Sci. 2021,

11, 925. https://doi.org/10.3390/

brainsci11070925

Academic Editors: Stefan M.

Brudzynski and Jeffrey Burgdorf

Received: 4 June 2021

Accepted: 9 July 2021

Published: 13 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Surgery, University of Wisconsin-Madison, Madison, WI 53792, USA;
krasko@surgery.wisc.edu (M.N.K.); hoffmeister@surgery.wisc.edu (J.D.H.); nschaen@wisc.edu (N.E.S.-H.);
jmwelsch@wisc.edu (J.M.W.); cakelm@wisc.edu (C.A.K.-N.)

2 Department of Communication Sciences and Disorders, University of Wisconsin-Madison,
Madison, WI 53706, USA

3 Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
* Correspondence: ciucci@surgery.wisc.edu

Abstract: Parkinson’s disease (PD) is a progressive, degenerative disorder that affects 10 million
people worldwide. More than 90% of individuals with PD develop hypokinetic dysarthria, a motor
speech disorder that impairs vocal communication and quality of life. Despite the prevalence of
vocal deficits in this population, very little is known about the pathological mechanisms underlying
this aspect of disease. As such, effective treatment options are limited. Rat models have provided
unique insights into the disease-specific mechanisms of vocal deficits in PD. This review summarizes
recent studies investigating vocal deficits in 6-hydroxydopamine (6-OHDA), alpha-synuclein overex-
pression, DJ1-/-, and Pink1-/- rat models of PD. Model-specific changes to rat ultrasonic vocalization
(USV), and the effects of exercise and pharmacologic interventions on USV production in these
models are discussed.

Keywords: Parkinson’s disease; rat; ultrasonic vocalization; USV; alpha-synuclein; 6-OHDA; Pink1;
DJ1; exercise; pharmacology; pathology

1. Introduction

Parkinson’s disease (PD) is a progressive, degenerative disorder that affects 10 million
people worldwide [1,2]. While the disease is known for hallmark motor signs including a
resting tremor, bradykinesia, and rigidity that arise as a result of nigrostriatal dopamine
depletion, other signs of disease appear years prior to diagnosis, including changes to
voice [3–6]. More than 90% of individuals with PD develop hypokinetic dysarthria, a
motor speech disorder that greatly impairs vocal communication [7,8]. Vocal deficits in-
clude decreased loudness, monotone pitch, imprecise articulation, and overall decreased
intelligibility [9–12]. This negatively impacts vocal quality and overall quality of life [12].
Pharmacological treatments for PD typically target dopamine pathways by increasing
neurotransmitter levels or as dopamine receptor agonists [13,14]. These treatments, how-
ever, are not effective in alleviating voice dysfunction, suggesting pathology for voice
differs in important ways from classical limb motor alterations [13,14]. Similarly, surgical
treatments, like deep brain stimulation, improve limb motor signs, yet do not improve
vocal communication and may in fact worsen deficits [15–21]. Despite the prevalence of hy-
pokinetic dysarthria in PD, pharmacological and surgical treatment options remain limited.
Behavioral therapies continue to be the gold standard in treating voice disorders in this
population [22]. While research investigating the efficacy of speech-language interventions
for PD-related voice dysfunction has grown, a robust understanding of the underlying
biological mechanisms responsible for the onset, progression, and treatment-related im-
provement in vocal dysfunction is limited. Furthermore, while about 10% of PD cases are
familial in nature, a vast majority are deemed idiopathic [23]. There are differences among
patients with regard to phenotypic expression of PD, including but not limited to akinetic
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(freezing), tremor-predominant, young onset, etc. Variability is also noted regarding the
presence and severity of signs and symptoms, age of onset, and rate of progression of
the disease [24]. This extends to vocal deficits, which often present variably. As such,
optimizing treatment remains a universal challenge.

With no yet known etiology and such heterogeneity in the presentation of disease,
animal models, including rodent, non-human primate, and non-mammalian, have been
used to study different aspects of PD on both behavioral and pathophysiological levels.
Rat model systems have allowed for a greater level of experimental control, the ability to
study deficits in the prodromal (preclinical) stage of disease, and the means of correlating
behavior to neurochemical findings. Specifically, when considering PD-related vocal
deficits, neurotoxin, alpha-synuclein, and genetic rodent models have been studied most-
extensively and continue to show promise regarding this aspect of disease. The use
of animal models has contributed to the PD-voice literature over the last few decades,
including characterization of vocal communication in the prodromal stage of disease,
assessment of associated neurobiology, especially in extra-dopaminergic pathways, and
the development of a training paradigm to study exercise effects on vocal rescue.

The study of ultrasonic vocalizations (USVs) in rat models of PD has increased un-
derstanding of vocal communication changes that occur with PD. Similar to humans, rats
are highly social animals, generate sound within the larynx, and produce vocalizations
that are semiotic in nature [25–29]. USVs are typically categorized by two call types—
22-kilohertz (kHz) alarm calls and 50-kHz calls [30–35]. 22-kHz calls occur in response
to aversive conditions or in negative affective states and are initiated via activation of
the ascending cholinergic system [30,34,36–38]. 50-kHz calls occur in response to activity
in the mesolimbic dopaminergic system originating in the ventral tegmental area, and
are produced in social, nonaggressive, positive affective states [30–35]. They represent
purposeful affiliative vocalizations, are highly relevant to human communication, and
as such, are commonly studied and will be the focus of this review. 50-kHz calls are
also more complex, varying by acoustic parameters, such as duration (ms), intensity (dB),
bandwidth (Hz), and peak frequency (Hz), as well as non-acoustic parameters, such as
complexity (%), call rate (calls/s), latency to call (s), and call type (categorical). There are
many different approaches to categorizing call type and categories should correspond to
the research question [39–43]. Generally, 50-kHz calls are defined as simple or complex
and, depending on the research group, can have sub-categories. Simple calls have constant,
non-modulating frequency, and complex calls contain two or more directional changes
in frequency of at least 3 kHz each [39,40]. Commonly described complex calls include
frequency modulated (FM) calls (frequency changes within a call) and harmonic calls (calls
with a fundamental frequency near 30 kHz with a visible harmonic one octave above) [40].
In contrast to human voice, 50-kHz USV production does not involve the vibration of vocal
folds [44,45]. USV production shares characteristics with human vocalization including
the generation of airflow via buildup of lung pressure, the activation of intrinsic laryngeal
muscles, and the modulation of the vocal tract during egressive airflow [28,29]. As such,
USVs are used to study vocal sensorimotor control in models of PD.

The purpose of this focused review is to highlight the changes that occur to 50-kHz
vocal communication in various models of PD. This review also expands on model-specific
findings regarding targeted exercise and pharmacological interventions for the treatment of
vocal deficits in PD, as well as the strengths and weaknesses of these models in studying PD.
See Figure 1 for organization of the manuscript and Figure 2 for a summary of pathologic
changes across models discussed.
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Figure 2. Summary of model-specific USV, intervention, and neural findings in male rats. Ach = acetylcholine, AMB = 
nucleus ambiguus, α-syn = alpha-synuclein, DA = dopamine, ETC = electron transport chain, Glu = glutamate, LB = Lewy 
bodies, LC = locus coeruleus, L-Dopa = levodopa, MFB = medial forebrain bundle, PAG = periaqueductal gray, SNpc = 
substantia nigra pars compacta, Th-ir = tyrosine hydroxylase immunoreactivity, 5-HT = serotonin, ↓ = decrease, ↑ = in-
crease. Underlined text notes category. 

Figure 2. Summary of model-specific USV, intervention, and neural findings in male rats. Ach = acetylcholine,
AMB = nucleus ambiguus, α-syn = alpha-synuclein, DA = dopamine, ETC = electron transport chain, Glu = glutamate,
LB = Lewy bodies, LC = locus coeruleus, L-Dopa = levodopa, MFB = medial forebrain bundle, PAG = periaqueductal gray,
SNpc = substantia nigra pars compacta, Th-ir = tyrosine hydroxylase immunoreactivity, 5-HT = serotonin, ↓ = decrease,
↑ = increase. Underlined text notes category.
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2. Neurotoxin Models of PD
6-Hydroxydopamine

Oxidopamine, or 6-hydroxydopamine (6-OHDA), is a catecholaminergic neurotoxin
classically used to model PD by inducing significant neurodegeneration of the nigrostriatal
dopamine system by unilateral or bilateral infusion to the medical forebrain bundle or
the striatum [46–53]. The well-established 6-OHDA rat model has been used to study
behavioral changes, mechanisms of cell death, and therapies that could potentially improve
PD signs [48,54–58]. Deficits in this model are widespread. In addition to affecting limb
movements [59–63], unilateral lesions to the medial forebrain bundle or the striatum have
been shown to reduce tongue force, lick force, and lick frequency [64–66], as well as chewing
behaviors [67], suggesting that nigrostriatal dopaminergic systems may contribute, at least
in part, to oral sensorimotor dysfunction.

Nigrostriatal dopamine depletion via unilateral 6-OHDA infusion into the medial
forebrain bundle leads to significant changes in USV production. Rat 50-kHz USVs show
decreased call intensity, amplitude, and bandwidth [25,68,69]. Additionally, call complex-
ity degrades as a result of the unilateral 6-OHDA lesion. Specifically, there are fewer FM
calls and more simple/flat calls without change to the total number of USVs produced
(Table 1) [68]. Of all call types (simple, FM, and harmonic), harmonic calls were produced
the least frequently; however, this was observed regardless of dopamine depletion [68].
Subsequent work has largely supported these findings, and further showed decreases in
call rate, call duration, and bandwidth when tested in a novel cage environment, suggesting
that environment can have a significant impact on behavioral outcomes [69]. Observed
decreases in complexity and intensity of calls are analogous to hypophonia noted in indi-
viduals with PD, thereby demonstrating utility of USVs in assessing phonatory deficits [70].
The effect of time post-lesion on USV production was also studied at acute (72 h) and
chronic (4 weeks) timepoints. Results show that after 72 h, call complexity, bandwidth, and
intensity of FM calls correlate with striatal dopamine loss. After 4 weeks, bandwidth, inten-
sity of simple calls, and duration of FM calls were correlated with measures of dopamine
depletion. Call complexity was less affected at 4 weeks and was only significantly corre-
lated with percent of tyrosine hydroxylase loss [71]. The 6-OHDA model itself does not
fully embody the progressive nature of PD. While dopamine loss may play a role in vocal
dysfunction, particularly around the time of diagnosis when dopamine has significantly
depleted in the substantia nigra pars compacta (SNpc), other systems may be implicated
earlier in disease progression that cannot be fully captured with a 6-OHDA model.

Table 1. Summary of main effects of dopamine condition and call type on USV production.

Publication Sex Dopamine Conditions
(Independent Variable)

Call Type
(Independent

Variable)

USV
(Dependent
Variables)

Effect Finding

Ciucci et al.,
2007 [72] M

6-OHDA,
Haloperidol, Control n.a.

bandwidth main effect of
DA condition 6-OHDA bandwidth ↓

number of calls n.s.

Ciucci et al.,
2008 [25] M 6-OHDA,

Haloperidol, Control n.a. peak amplitude significant 6-OHDA peak amplitude ↓
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Table 1. Cont.

Publication Sex Dopamine Conditions
(Independent Variable)

Call Type
(Independent

Variable)

USV
(Dependent
Variables)

Effect Finding

Ciucci et al.,
2009 [68] M

6-OHDA,
Haloperidol, Control Simple, FM

percent
simple calls significant Percent of simple

calls > harmonic

percent FM calls significant Percent FM
calls > harmonic

percent call type significant

Simple was most frequent
in 6-OHDA

FM was most frequent in
haloperidol and controls

total number
of calls n.s.

duration n.s.

bandwidth main effect of
DA condition 6-OHDA bandwidth ↓

maximum
frequency

main effect of
call type

Maximum frequency in
FM > simple

maximum
intensity

main effect of
DA condition 6-OHDA intensity ↓

main effect of
call type

Maximum intensity in
FM > simple

DA = dopamine, FM = frequency modulated, M = male, n.a. = not applicable, n.s. = not significant, USV = ultrasonic vocalization,
↓ = decrease.

Studies have also investigated the potential for exercise and/or pharmacotherapies to
rescue deficits induced by the unilateral 6-OHDA lesion. The capacity for forced motor
exercise to be neuroprotective against behavioral (motor asymmetry) and neurochemical
deficits has yielded mixed results. Forced exercise (casting) implemented prior to induction
of toxin-related PD has been shown to be neuroprotective [73], and exercise pre- and
post-induced 6-OHDA PD resulted in the prevention of motor deficits and reduced striatal
dopamine depletion in adult rats [74–77]. An intensive 4-week vocal exercise paradigm, in
which rats were trained to produce a greater amount of calls with increased complexity
and intensity, also rescued decline in call complexity, intensity, and bandwidth compared
to no-exercise in the unilateral 6-OHDA model [78]. Lack of physical activity following the
6-OHDA infusion showed exacerbation of behavioral and neurochemical deficits, thereby
suggesting dose-dependent relationships between exercise and severity of disease and
associated behavioral deficits [79].

The effects of vocal exercise, pharmacotherapy, and a combination of vocal exercise
and pharmacotherapy (dopamine replacement, e.g., L-Dopa) on USVs produced in familiar
and novel environments have also been studied. Vocal exercise post-infusion of 6-OHDA
increased maximum peak frequency of USVs; however, this was likely influenced by
the testing environment, as the increase was seen in the home cage (compared to novel
cage) [69]. Additionally, a combination of vocal exercise and L-Dopa was found to be the
most effective treatment approach to increasing peak frequency (as opposed to exercise
or L-Dopa alone) and this increase was noted in the novel cage. Findings of this study
highlight the benefits of combined interventions, and also suggest the influence that testing
environment can have on vocal communication [69].

In addition to L-Dopa, other pharmacotherapies have been trialed for their effects on
vocalizations. Drugs that modulate dopamine bioavailability are commonly prescribed
to patients with PD in an effort to combat motor deficits throughout disease progression;
however, their prolonged use can impact affective state and potentially lead to iatrogenic
psychiatric disturbances [80–82]. Furthermore, while drugs that target dopamine systems
improve motor deficits in humans and animal models of PD [69,83], minimal effect has been
observed in rescuing PD-related vocal dysfunction [84]. Simola and colleagues recently



Brain Sci. 2021, 11, 925 7 of 21

observed the effects of three different drugs—apomorphine, L-Dopa, and pramipexole—on
USVs in the 6-OHDA rat model. Each drug resulted in different patterns of USV emissions,
which is not surprising given their different mechanism of action, with L-Dopa converting
into dopamine, pramipexole serving as a dopamine agonist, and apomorphine serving
as dopamine receptor agonist. Apomorphine and L-Dopa significantly increased the
total number of 50-kHz calls after repeated administration, while pramipexole did not.
These findings contrast with previous reports that L-Dopa does not alter the number of
calls produced [69]; however, this may be due to differences in the timing of the studies
employed between drug administration and USV recording. Overall, results of this study
demonstrate that vocal behavior is complex and suggests that the underlying mechanisms
driving vocal production are not solely motor in nature [82].

Glial cell-line derived neurotrophic factor (GDNF) has also been trialed in an attempt
to establish a neuroprotective therapy and rescue deficits post-lesion. Administration of
equine infectious anaemia virus (EIAV) vector coupled with GDNF (EIAV-GDNF) to achieve
GDNF expression in the substantia nigra and striatum has been shown to protect dopamin-
ergic neurons in the presence of neurotoxin administration [85]. Furthermore, EIAV-GDNF
administration rescued 6-OHDA-induced motor deficits, including rotational asymmetry
and spontaneous contralateral motor functions [85,86]. Parkin, the gene product of the
PARK2 gene (mutations in which are a major cause of early-onset familial PD), has demon-
strated to be neuroprotective in the 6-OHDA model, as well [87]. Overexpressing parkin
correlated with improved motor functioning in both cylinder and amphetamine-induced
rotation tests [87]. Pharmacotherapies administered prior to or after 6-OHDA infusion
have demonstrated utility in rescuing motor deficits; however, further research is necessary
to determine the role pharmacotherapies play in rescuing vocalization-related deficits.

Although PD disproportionately affects males, important sex-differences have been
identified using animal models of PD. Unilateral 6-OHDA lesioned males and females
have shown differences in maintenance of posture, coordination, and initiation of move-
ments [88]. Furthermore, female rats are less susceptible to 6-OHDA than males, specifically,
by experiencing significantly less dopaminergic cell loss compared to males after injury [89].
Estrogen has been found to have anti-inflammatory and anti-apoptotic properties on ni-
grostriatal dopaminergic neurons and, as such, has been suggested to be neuroprotective in
females for developing PD [90]. Furthermore, estrogen’s activation of adaptive mechanisms
in the nigrostriatal system has been shown to decrease neuronal loss [91] and decrease
microglial activation and density, further reducing progression of degeneration [90]. De-
spite these findings, however, no studies using 6-OHDA to date have focused on the role
of estrogen or sex in vocal behavior.

While neurotoxin models can be helpful in investigating behavioral deficits and related
neuropathology related to damage in the nigrostriatal pathway, they are not without limi-
tations. Although the 6-OHDA model demonstrates acute neurodegenerative properties, it
lacks the ability to induce age-dependent, progressive deficits of PD [92]. Additionally, this
model lacks the presence of Lewy bodies, a pathological hallmark in human patients with
PD. While unilateral lesions to the medial forebrain bundle are the most common in this
model, a disadvantage of this approach is that both A9 (nigrostriatal) and A10 (mesolimbic)
cell groups comprise the medial forebrain bundle, and therefore lesioning this site impli-
cates the latter axons [93]. Further, different lesion site selections introduce ambiguity into
the model with respect to assessing which site most appropriately approximates clinical
PD [93]. Lesion site and unilateral vs. bilateral selections for the model create variation
amongst the studied animals; however, 6-OHDA-induced lesions can still provide valuable
insight into pathological and related behavioral investigations of PD [93,94].

The control of vocalization is complex, involving multiple sensorimotor, cognitive,
and limbic brain regions [95,96]. The basal ganglia are certainly implicated in the initiation
and modulation of vocalizations. Disrupting nigrostriatal pathways disrupts the quality
of vocalization because of altered input to the striatum and consequently the complex
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circuitry of the basal ganglia and related brain areas. The 6-OHDA lesion to nigrostriatal
pathways models one aspect of this complex disease.

3. Alpha-Synuclein Overexpression Models of PD

PD pathology is characterized by the loss of dopaminergic neuronal cells and the
formation of misfolded proteins, of which fibrillar alpha-synuclein are the most common,
that form Lewy neurites and Lewy bodies in surviving neurons [97]. Mutations include
duplications, triplications, or point mutation of the SNCA gene, where alpha-synuclein is
the product, which causes autosomal dominant forms of PD [98–102]. Several studies have
shown that alpha-synuclein can aggregate and spread, suggesting that it plays a central role
in PD progression [103–105]. Two common model systems of achieving alpha-synuclein
overexpression are genetic modification and viral transduction. Two point mutations of the
alpha-synuclein expressing gene (A53T, A30P) have been linked to autosomal-dominant,
early onset PD [98,106] and have been shown to accelerate alpha-synuclein amyloid fibril
formation [107,108]. Interestingly, transgenic models demonstrate non-motor signs of
disease such as olfactory and digestive deficits [109,110]. Additionally, these models show
progressive sensorimotor deficits in the absence of dopamine depletion in the striatum,
further suggesting alternative mechanisms responsible for these behavioral changes [111].
On the other hand, overexpressing alpha-synuclein using viral vectors models nigrostri-
atal pathology by injecting within or near the SNpc. In contrast to transgenic models,
overexpression via viral vector allows for induction at different timepoints, allows for the
targeting of a defined region of the brain, and results in rapid degeneration of nigrostriatal
neurons [112]. Furthermore, viral-vector mediated models also show the presence of limb
motor deficits [113–116]. Until recently, vocal deficits were not studied in alpha-synuclein
overexpressing models. This is still a largely understudied area, with only two articles
discussing vocal deficits in viral-vector-mediated rat models.

Gombash and colleagues examined USVs of male rats 8 weeks post-administration
of 5.9 × 1013 rAAV2/5-α-syn injections and compared findings to controls. Duration,
bandwidth, intensity, and peak frequency of both simple and FM calls were assessed, as
well as call rate and latency to call. Of all acoustic and non-acoustic parameters, only
intensity and call rate were found to differ between groups. Specifically, rAAV2/5-α-syn
rats produced simple and FM calls with a lower intensity and were found to call at a lower
rate compared to controls [117]. Results of this study demonstrated that targeted unilateral
nigrostriatal alpha-syn overexpression led to some deficits in USV production.

The effects of striatal injection of fibrillized mouse alpha-synuclein on USV production
have also been studied. Paumier and colleagues demonstrated that rats treated with pre-
formed fibrils (PFF) injections produced a lower number of simple calls, had an overall
lower call rate, and a significantly reduced maximum peak frequency compared to controls.
Furthermore, PFF-treated and recombinant alpha-synuclein rats had shorter maximum call
durations compared to their naïve counterparts (Table 2) [118]. However, this study did
not directly correlate USV findings to brain neurochemistry.

Table 2. Summary of effects of alpha-synuclein treatment on USV production.

Publication Sex Treatment Group USV (Dependent
Variables) Effect Finding

Gombash et al.,
2013 [117] M rAAV2/5-α-syn,

controls

call type n.s.

duration n.s.

bandwidth n.s.

intensity significant rAAV2/5-α-syn intensity ↓
peak frequency n.s.

call rate significant rAAV2/5-α-syn call rate ↓
latency to call n.s.
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Table 2. Cont.

Publication Sex Treatment Group USV (Dependent
Variables) Effect Finding

Paumier et al.,
2015 [118] M

recombinant α-syn,
α-syn PFF, controls

number of calls treatment x call type
interaction effect α-syn PFF number of simple calls ↓

call rate main effect of
treatment α-syn PFF call rate ↓

duration main effect of
treatment

recombinant α-syn and α-syn PFF
duration ↓

peak frequency main effect of
treatment α-syn PFF peak frequency ↓

intensity n.s.

latency to call n.s.

α-syn = alpha-synuclein, M = male, n.s. = not significant, USV = ultrasonic vocalization, ↓ = decrease.

Mouse models overexpressing alpha-synuclein [111] have also shown relationships
between nigrostriatal alpha-synuclein overexpression and early and progressive decline
in behavior. Although not widely studied in the context of vocalization, one additional
study characterized vocal deficits in mice overexpressing human wild-type alpha-synuclein
under a broad neuronal promoter (Thy1-aSyn) [119]. Grant (2014) found call profile of
Thy1-aSyn mice to be significantly different compared to wildtype (WT; healthy) controls.
The percent of two-cycle calls and jump down calls was significantly reduced in the Thy1-
aSyn model at 2–3 months and 6–7 months, respectively. Furthermore, at 2–3 months, the
average duration of calls was significantly decreased (for harmonic, jump down, half cycle,
and cycle calls) and at 6–7 months, intensity was significantly reduced in the Thy1-aSyn
group. Immunohistochemical findings also revealed alpha-synuclein aggregates in the
periaqueductal gray at 5 months in the Thy1-aSyn mice [119]. These deficits coincided
with previously reported early sensorimotor deficits, deficits in olfaction, circadian rhythm,
and gastrointestinal functioning, and high extracellular striatal dopamine levels [119,120].
Similar to alpha-synuclein overexpressing rat models, mice show early and progressive
vocal deficits compared to WTs, suggesting similar underlying mechanisms between both
species. Results from these studies indicate that vocal deficits can be induced by alpha-
synuclein overexpression, in the absence of dopamine depletion.

4. Genetic Models of PD
4.1. DJ1-/- Model

PD is also frequently studied using genetic models. In this model, 2–8 months of age is
considered analogous to prodromal to early stage PD in humans. A deletion and missense
mutation in the DJ1 (PARK7, Chromosome 1p36) leads to an inherited, autosomal recessive,
early onset form of PD [121], that presents with dyskinesia, rigidity, tremors, and later
decline in cognitive function. The DJ1 mutation is the second most common identifiable
genetic PD etiology after Parkin mutations [122]. Though its role in the pathogenesis of PD
is not yet fully understood, DJ1 has been shown to neutralize reactive oxygen species, reg-
ulate transcription as well as chaperone, protease, and mitochondrial homeostasis, inhibit
alpha-synuclein aggregation, and prevent excessive oxidative stress in the cell [123–125].
Thus, deletion of this gene results in a number of behavioral dysfunctions similar to those
manifested in human familial PD.

This review concentrates on the only published paper with regard to vocalization in
this rat model. The DJ1 knockout (DJ1-/-) model demonstrates early onset and progres-
sive limb motor, oromotor, and cranial sensorimotor deficits, including decreased limb,
tongue/chewing, and vocalization functions. Yang and colleagues (2018) assessed vocaliza-
tion abilities in the DJ1-/- rat model in prodromal to early timepoints of disease (2–8 months
of age) and correlated findings to noradrenergic cell loss within the locus coeruleus. Com-
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pared to WT controls, DJ1-/- rats were found to develop early and progressive ultrasonic
vocalization deficits. Specifically, DJ1-/- rats produced longer average and maximum calls,
and a greater overall percentage of complex calls (Table 3). At 8 months of age, DJ1-/-
rats showed a lower average intensity of calls, a deficit analogous to the decreased vocal
loudness (i.e., hypophonia) PD patients typically experience. Findings also revealed that at
8 months of age, DJ1-/- rats demonstrated loss of tyrosine hydroxylase-immunoprotective
cells in the locus coeruleus, a brainstem region responsible for the synthesis and regulation
of noradrenaline. With widespread connections to the central nervous system, including
projections into the prefrontal cortex, striatum, hippocampus, and thalamus, the locus
coeruleus has a large impact on PD pathology. Disruptions in the central noradrenergic
system are associated with motor and non-motor signs of PD, including vocalization [126].
Tyrosine hydroxylase-positive cells in the locus coeruleus were also found to be negatively
correlated with tongue force, suggesting that the greater the loss of neurons within the
locus coeruleus, the greater the disruption to oromotor functioning [127]. Whether the loss
of these neurons is progressive, however, is still unknown. Overall, noradrenaline has been
shown to have widespread implications for PD pathology, including vocalization deficits.

Table 3. Summary of interaction effects and main effects of genotype and age on USV production between DJ1-/- rats and
WT controls.

Publication Sex
Genotypes

(Independent
Variable)

Ages (mo)
(Independent

Variable)

USV
(Dependent
Variables)

Effect Finding

Yang et al.,
2018 [127] M DJ1-/-, WT 2, 4, 6, 8

percent
complex calls

main effect of genotype DJ1-/- percent complex calls ↑

main effect of age

Percent complex calls at 6 and 8
mo > 2 mo;

Percent complex calls at 6 and 8
mo > 4 mo

maximum
duration

main effect of genotype DJ1-/- maximum duration
↑ (longer)

main effect of age Maximum duration at
4 mo > 2 mo

maximum
bandwidth main effect of age Maximum bandwidth at

4 mo > 2 mo

maximum
intensity main effect of age Maximum intensity at 4, 6, and

8 mo > 2 mo

maximum peak
frequency n.s.

average
duration main effect of genotype DJ1-/- average duration ↑

average
bandwidth main effect of age Average bandwidth at

4 mo > 2 mo

average
intensity

genotype x age
interaction At 8, DJ1-/- average intensity ↓

average peak
frequency main effect of age Average peak frequency at

8 mo < 2 mo

M = male, mo = months, n.s. = not significant, USV = ultrasonic vocalization, WT = wildtype, ↓ = decrease, ↑ = increase.

Other neurotransmitters are also implicated in the DJ1-/- rat model [128–130]. At
8 months of age, this model shows decreased glutamate release in the striatum and at 4 and
8 months, increased acetylcholine release compared to WTs [130]. Authors of this study,
however, speculate that perhaps the difference in neurotransmitter concentrations may
have more to do with a change in reuptake rather than release [130]. Studies have also
shown that DJ1-/- rats are impacted by progressive dopaminergic degeneration in the SNpc
as early as 6 months of age, with 50% cell death by the age of 8 months. Interestingly, limb
motor deficits including hindlimb grip strength and motor coordination are present before
a significant loss of dopaminergic cells. This suggests that the loss of DJ1 may lead to a
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period of dopamine cell dysfunction that contributes to cognitive impairments in early PD
that proceeds cell death [128]. However, the role these systems play in vocal behavior has
not yet been studied in this model.

In contrast to the neurotoxin model, the DJ1-/- rat is an early and progressive model,
demonstrating unique advantages for the study of vocal deficits in PD. This model also
highlights degeneration that occurs outside the classical nigrostriatal dopaminergic sys-
tem [127], lending to a more robust understanding of the neurobiology underlying voice
dysfunction. Despite work by Yang and colleagues, that has characterized vocal behavior
in this genetic model, no other studies have looked at DJ1-/- vocalizations and little research
has focused on the underlying neuropathology. Furthermore, rats used in the majority of
studies ranged from 4 to 8 months of age, a period associated with early/prodromal PD.
As such, rats in this model may be manifesting their earliest signs of motor and non-motor
disruption [121,131], warranting further work that focuses on later time points in PD
progression. Similarly, the study of vocalization in this model was completed with males
only, underrepresenting sex-specific differences in PD. General exercise has been shown
to improve motor function in the DJ1-/- model [132], but no exercise paradigm has been
evaluated specifically for the improvement of vocalization.

4.2. Pink1-/- Model

Another gene implicated in early-onset recessive PD cases is Pink1 [PTEN (phos-
phatase and tensin homologue)-induced kinase 1; PARK6], mutations of which manifest in
signs of disease clinically identical to sporadic PD [133,134]. The gene encodes PINK1, a
serine/threonine kinase protein that plays a role in autophagic clearance of dysfunctional
mitochondria. Deletion or mutation of Pink1 results in decreased mitochondrial protection
against oxidative stress, nigrostriatal dopamine cell death with consequent motor deficits,
and non-motor dysfunction, potentially due to extra-dopaminergic breakdown [135–138].
It is currently the second-most common known cause of autosomal recessive familial
PD [139,140].

The Pink1-/- rat is a well-established model for the study of PD-related behavioral
deficits. Rats ages 2–8 months of age represent prodromal and early PD. Similar to DJ1-/-
rats, Pink1-/- rats show early and progressive cranial sensorimotor signs, including vocal-
ization deficits, and associated pathology in the central nervous system and periphery [128].
Of all the models discussed in this review, the Pink1-/- rat has been most extensively stud-
ied with regard to vocal deficits. As early as 2 months of age (representing prodromal
stage), male Pink1-/- rats show reductions in vocal intensity [141,142]. This is one of the
most commonly disrupted acoustic outcomes in this model and is highly analogous to the
reduced vocal loudness almost always seen in patients with PD [8,9,143]. Compared to
WTs, Pink1-/- rats also demonstrate significantly decreased bandwidth of calls at 2 months
of age that progressively worsen to 10 months of age. Furthermore, average peak frequency,
which is important for conspecific communication [144], decreases from 2 and 4 months of
age to 6 and 8 months of age [141,142,145]. At 6 months of age, peak frequency, maximum
intensity, and bandwidth of USVs are significantly decreased in Pink1-/- males compared
to WT controls. In a playback study of male vocalizations, female rats preferred WT calls
and even background noise to Pink1-/- calls [146]. By 10 months of age (representing mid-
stage), Pink1-/- rats continue to demonstrate significant vocal differences compared to WTs.
Interestingly, vocal intensity is significantly increased compared to WTs, due to increased
motor variability. Motor variability is a hallmark feature of mid-stage PD. Vocalization was
also shown to be related to respiratory function. Specifically, elevated minute ventilation,
elevated tidal volumes, and lower breathing frequencies were associated with reduced
peak frequencies of USVs in Pink1-/- rats [145].

Until recently, the study of vocal impairments in progressive genetic animal models of
PD has been limited to males. Marquis et al. (2019) were the first to highlight sex-specific
differences in the Pink1-/- rat by assessing limb sensorimotor, affective state, and vocaliza-
tion changes in females while also accounting for estrous cycle. [142]. Pink1-/- females did
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not demonstrate a decline in limb motor functioning with disease progression, indicating
that perhaps Pink1-/- females follow a different time-course for motor dysfunction, com-
pared to males. In terms of affective state, anxiety was heightened in Pink1-/- females by
8 months of age. Similarly, by 8 months, vocal loudness for complex (FM) calls decreased
in Pink1-/- females; however, similar studies in Pink1-/- males demonstrated significantly
worse vocal deficits across multiple acoustic variables at the 8-month and earlier timepoints
(Table 4), suggesting that there may be a sex-specific difference in vocal degradation, with
female vocalization breakdown occurring at a slower rate.

A number of studies have attempted to restore vocalization in Pink1-/- rats through
behavioral and pharmacologic interventions. Similar to the lack of improvement in vocal
communication in humans who are prescribed medications, levodopa has a minimal impact
on rat vocalization, and can even further reduce vocal intensity [147]. This provides support
to the evolving hypothesis that neuropathology associated with vocalization deficits in
PD is at least partially extra-dopaminergic. In contrast, behavioral intervention (vocal
exercise) rescues some acoustic aspects of USVs, however, these changes are most effective
in early stages of disease progression [148], and do not necessarily “normalize” to WT-like
calls [149].

Among the most-important advantages of the Pink1-/- rat model of PD is the abil-
ity to study both neural tissue and peripheral disease pathology (cranial muscles and
nerves) and to correlate findings to vocalization behavior. While findings of nigrostriatal
dopamine depletion are inconsistent in this model [150], deficits in other brain regions and
neurotransmitter systems are common and reproducible [138]. The number of tyrosine
hydroxylase immunoreactive cell bodies in the locus coeruleus is reduced in Pink1-/- rats,
and these cell counts are correlated with vocalization intensity deficits [141]. In Pink1-/- rats,
protein concentration of norepinephrine in the locus coeruleus is reduced and catechol-
o-methyltransferase gene expression in the locus coeruleus is increased. Furthermore,
catechol-o-methyltransferase mRNA expression is associated with a percentage of complex
calls [147]. Increased levels of striatal serotonin (5-HT) have been reported in 8-month-old
Pink1-/- rats compared to age-matched controls [128,151], similar to findings of prior stud-
ies in other models of PD [152,153]. However, other studies have not found significant
differences in striatal [130] or dorsal raphe 5-HT levels between Pink1-/- rats and WTs [145].
Further exploration is warranted.

Pink1-/- rats show significant differences in vocal brain regions and in laryngeal and
tongue muscles. For example, 8-month old Pink1-/- rats have increased alpha-synuclein in
the periaqueductal gray yet show no significant mRNA expression of alpha-synuclein com-
pared to WT controls. Instead, Pink1-/- rats demonstrate decreased expression of Atp13a2, a
lysosomal P-type transport ATPase, in the periaqueductal gray [154], suggesting a possible
mechanism for alpha-synuclein aggregation. Furthermore, Glass and colleagues recently
demonstrated that ex-vivo thyroarytenoid muscles of Pink1-/- rats produce decreased
force levels in response to 1-Hz and 20-Hz stimulations and show significantly different
proportions of myosin heavy chain isoforms relative to WTs, namely an increase in 2L
and a reduction in 2X isoforms [155]; work relating this to progression of vocal deficits
is ongoing.

Finally, Kelm-Nelson and Gammie recently used high-throughput RNA sequencing
to identify differences in gene expression in the periaqueductal gray (a vocal modulatory
region) in male and female Pink1-/- rats compared to WT controls [156]. Subsequent
weighted gene co-expression network analysis identified correlations between relevant
gene modules and vocalization in female Pink1-/- and WT rats. Differentially expressed
genes for both male and female rats mapped to human PD datasets, suggesting that the rat
model closely aligns to human PD. This work highlights the potential for the Pink1-/- rat
to be used to identify targeted pharmacologic interventions for vocal deficits in PD.
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Table 4. Summary of interaction effects and main effects of genotype and age on USV production between Pink1-/- rats and
WT controls.

Publication Sex
Genotypes

(Independent
Variable)

Ages (mo)
(Independent

Variable)

USV (Dependent
Variables) Effect Finding

Grant et al.,
2015 [141] M

Pink1-/-,
Pink1+/-, WT

2, 4, 6, 8

average intensity
of FM calls

main effect
of genotype

Pink1-/- average intensity ↓ vs. WT
and Pink1+/-

main effect of age Average intensity at 4 mo > 2 mo

average
bandwidth of

FM calls

genotype x
age interaction

At 4 and 6 mo, Pink1-/- average
bandwidth ↓ vs. WT;

Pink1-/- average bandwidth at 4, 6,
and 8 mo < 2 mo

average peak
frequency of

FM calls

genotype x
age interaction

At 6 and 8 mo, Pink1-/- average
peak frequency ↓ vs. Pink1+/-;

Pink1-/- average peak frequency at
6 and 8 mo < 2 and 4 mo;

At 6 and 8 mo, Pink1+/- average
peak frequency ↑ vs. WT

average duration
of FM calls main effect of age Average duration at 4, 6, and

8 mo > 2 mo

percent
complex calls

genotype x
age interaction

All rats produced more complex
calls over time;

Pink1-/- complex calls at 4, 6, and
8 mo > 2 mo;

WT complex calls at 8 mo > 4 mo;

Pink1+/- and WT complex calls at
6 and 8 mo > 2 and 4 mo

Johnson et al.,
2020 [145] M Pink1-/-, WT 10

intensity main effect of
genotype Pink1-/- intensity ↑

peak frequency main effect of
genotype Pink1-/- peak frequency ↓

average duration
of FM calls n.s.

average
bandwidth n.s.

Marquis et al.,
2020 [142] F Pink1-/-, WT 2, 4, 6, 8

number of calls
genotype x

age interaction

At 2 mo, Pink1-/- number of calls ↑;

Pink1-/- and WT number of calls at
2 mo > 4, 6, and 8 mo

percent
complex calls main effect of age

All rats produced ↓ percent
complex calls over time;

Significant differences between
2-4, 2-8, 4-6, 4-8, and 6-8 mo

duration of
simple calls main effect of age

Duration of simple calls
significantly different at 4 mo vs. 2,

6, 8 mo

duration of
complex calls main effect of age Duration of FM calls at

8 mo > 2 and 4 mo

bandwidth of
simple calls main effect of age Bandwidth of simple calls at

4 mo < 2, 6, 8 mo

average intensity
of FM calls

main effect
of genotype

Pink1-/- average intensity of FM
calls ↓

F = female, FM = frequency modulated, M = male, mo = months, n.s. = not significant, USV = ultrasonic vocalization, WT = wildtype,
↓ = decrease, ↑ = increase.
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5. Other Models

PD etiology remains largely unknown. With such a high number of cases being
deemed idiopathic, other models have been developed to study how environment con-
tributes to pathogenesis. Pesticides and herbicides play a role in the development of
PD. Paraquat, an herbicide commonly used in agriculture, has been linked to PD via
experimental work in rodents. Exposure leads to alpha-synuclein upregulation, increased
alpha-synuclein aggregation, microglial activation, oxidative stress, dose-dependent loss
of TH-positive striatal fibers and SNpc neurons, and reduced motor activity [157–159]. As
reviewed by Nandipati and Litvan (2016), several studies have also explored the relation-
ship between paraquat and PD in humans; while research is not entirely consistent, most
findings show that exposure to paraquat is linked to PD [160].

Another environmental toxin used to study PD is rotenone—a lipophilic insecticide
and herbicide that crosses the blood–brain barrier and serves as a complex I inhibitor
in cellular respiration. Experimental animals exposed to rotenone show robust signs of
PD, including alpha-synuclein aggregation in the brain and periphery, inflammation and
activation of microglia, mitochondrial dysfunction, oxidative stress, and behavioral deficits,
including motor, postural, and gastrointestinal dysfunction [161–163]. While rotenone
has a rather selective toxicity toward dopaminergic cells [164,165], rotenone also causes
neurodegeneration of striatal serotonergic and cholinergic cells, as well as noradrenergic
cells in the locus coeruleus. Additionally, administration of rotenone results in impairment
of locomotor activity, providing evidence that other neurotransmitters in addition to
dopamine may be implicated in behavioral changes [165].

Although vocalizations have not been assayed in models of environmental toxins,
given the number of parallels observed in these models to idiopathic PD, studying vocal-
ization could provide critical insights into the mechanisms responsible for vocal decline in
idiopathic PD. Findings could also contribute to earlier disease identification, and guide
the development of new behavioral and pharmacological interventions for PD-related
voice disorders.

6. Conclusions

Rat models have contributed to our understanding of PD. While hallmark motor
deficits are relatively well-understood, certain signs of PD, including vocal deficits, remain
poorly understood due to their prodromal onset and complex pathology. As such, mul-
tiple complementary models are necessary to provide insights into the progression and
pathophysiological underpinnings of communication deficits. In this paper, we discussed
neurotoxin, alpha-synuclein mutation, and genetic rat models that have recently been
used to interrogate mechanisms of vocal communication impairment in PD. We reviewed
model-specific changes to USV production and associated neurochemistry, and reviewed
the role of exercise and pharmacological interventions in vocal rescue. Each of the differ-
ent models of PD have unique advantages and limitations. Neurotoxin models such as
6-OHDA are useful for the study of mid- to late-stage PD associated with nigrostriatal
dopamine depletion, and demonstrate widespread deficits; however, this model shows
minimal alpha-synuclein aggregation and does not account for the progressive nature
of the disease. In contrast, genetic models like DJ1-/- and Pink1-/- allow for the study of
disease progression, as well as the study of intervention at early, prodromal, and later
timepoints. However, genetic mutations make up only a small subset of PD cases and
may not capture the subtle differences associated with the pathogenesis of other forms
of PD. Paraquat and rotenone models display many signs of PD; however, the effect of
these environmental toxins on vocalization is still unknown. Although no one model fully
captures the complexity of PD, these models serve as a valuable tool for expanding our
understanding of the disease and translating findings to human populations to advance
identification and treatment.
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