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Background. Improved diagnostic testing (DT) of infections may optimize outcomes for solid organ transplant recipients 
(SOTR), but a comprehensive analysis is lacking.

Methods. We conducted a systematic literature review across multiple databases, including EMBASE and MEDLINE(R), of 
studies published between 1 January 2012–11 June 2022, to examine the evidence behind DT in SOTR. Eligibility criteria 
included the use of conventional diagnostic methods (culture, biomarkers, directed-polymerase chain reaction [PCR]) or 
advanced molecular diagnostics (broad-range PCR, metagenomics) to diagnose infections in hospitalized SOTR. Bias was 
assessed using tools such as the Cochrane Handbook and PRISMA 2020.

Results. Of 2362 studies, 72 were eligible and evaluated heterogeneous SOT populations, infections, biospecimens, DT, and 
outcomes. All studies exhibited bias, mainly in reporting quality. Median study sample size was 102 (range, 11–1307). Culture 
was the most common DT studied (N = 45 studies, 62.5%), with positive results in a median of 27.7% (range, 0%–88.3%). 
Biomarkers, PCR, and metagenomics were evaluated in 7, 19, and 3 studies, respectively; only 6 reported sensitivity, specificity, 
and positive/negative predictive values. Directed-PCR performed well for targeted pathogens, but only 1 study evaluated broad- 
range PCR. Metagenomics approaches detected numerous organisms but required clinical adjudication, with too few studies 
(N = 3) to draw conclusions. Turnaround time was shorter for PCR/metagenomics than conventional diagnostic methods 
(N = 4 studies, 5.6%). Only 6 studies reported the impact of DT on outcomes like antimicrobial use and length of stay.

Conclusions. We identified considerable evidence gaps in infection-related DT among SOT, particularly molecular DT, 
highlighting the need for further research.
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Infection is a major cause of morbidity and mortality in solid or
gan transplant recipients (SOTR) [1, 2]. However, challenges in 
determining the underlying etiology contribute to increased 
empiric antimicrobial use, multidrug-resistant organism ac
quisition, prolonged hospitalization, allograft failure, and 
mortality [3–5]. Diagnosing infections in SOTR is challenging 
because of the broad spectrum of potential infections, atypical 
presentations, and overlap with other conditions. Rejection, 

posttransplant lymphoproliferative disease, and serum sickness 
from antithymocyte globulin may present as nonspecific febrile 
syndromes, often necessitating extensive workups and unwar
ranted antimicrobials [6]. Radiographic findings cannot reliably 
distinguish infectious from noninfectious lesions. For example, 
central nervous system (CNS) imaging in JC virus infection and 
posttransplant lymphoproliferative disease can appear identical 
[7], and chest computed tomography scans cannot identify 
whether lung nodules are caused by fungi, Nocardia, 
Mycobacteria, or malignancies [8]. Donor-derived infections 
(DDI) represent a diagnostic challenge that is unique to 
SOTR; DDI often present atypically or are diagnosed late, 
resulting in poor outcomes [9–13]. Invasive procedures (eg, 
biopsies, lumbar punctures, bronchoscopies) are often pursued 
in an attempt to determine the diagnosis but can carry substan
tial risks [14, 15]. As a result, transplant clinicians commonly 
perform multiple tests simultaneously or sequentially [2] to 
optimize diagnostic yield.

Diagnostic testing (DT) for infections in SOTR, as in other 
populations, can be categorized as culture-based or non–culture 
-based. Cultures are inexpensive and enable susceptibility 
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testing but may have poor sensitivity or slow turnaround times 
(TAT) depending on the pathogen or specimen [16, 17] and can 
yield false-negative results if antimicrobials have been pre
scribed [18–20]. Lifelong immunosuppression in SOTR blunts 
immune responses, reducing the yield of antibody-based testing 
[21]. In SOTR, serum fungal diagnostic assays detecting 
[1,3]-beta-D-glucan (BDG) or the Aspergillus galactomannan 
(GM) are limited by non-specificity or low sensitivity, respec
tively [16, 17, 22–24], although GM sensitivity improves with 
bronchoalveolar lavage fluid (BALF) testing following bron
choscopies [25]. Cryptococcus [26] and Histoplasma [27] anti
gen tests are accurate but have variable institutional TATs (eg, 
send-out testing) [28–31] and are also underutilized because 
of underrecognition of these syndromes [32, 33]. 
Additionally, antibody/antigen-based tests are “hypothesis- 
driven” [34] and generally require clinicians to consider and 
test for specific pathogens in their differential diagnoses.

Although there has been widespread adoption of molecular 
diagnostic testing (MDT) platforms, including some that use 
non-invasive specimens like blood, MDT technologies have im
portant limitations. Polymerase chain reaction (PCR) testing, 
whether targeting a single pathogen or multiple pathogens 
(eg, multiplex panels for respiratory, CNS, or gastrointestinal 
syndromes), is now part of conventional DT in SOT [35]. 
However, these tests are hypothesis-driven and limited to a pre
defined array of pathogens [36], with performance varying by 
assay and pathogen [37, 38]. Broad-range PCR (BRPCR), which 
amplifies conserved regions in bacterial (eg, 16S rRNA) or fun
gal (eg, 28S rRNA) genomes, is hypothesis-free and can theoret
ically identify any bacteria or fungi in the sequencing database 
but cannot detect viruses or parasites and may be less sensitive 
than conventional PCR depending on the platform, specimen, 
and pathogen [39]. Recent years have seen a proliferation of 
novel MDT technologies, such as metagenomic sequencing 
[39–42]. Unlike other MDT, metagenomic sequencing leverages 
large sequencing databases to detect prokaryotes, eukaryotes, 
and viruses through a pathogen-agnostic or “hypothesis-free” 
approach [42] and from a variety of specimens [41–45].

Despite the pressing need to optimize infection DT in SOTR, 
a comprehensive review of existing methods lacking. Thus, we 
conducted this systematic literature review (SLR) to compre
hensively characterize the current infection DT landscape in 
SOTR and identify evidence gaps to guide future research.

MATERIALS AND METHODS

Systematic Literature Review

We used a comprehensive search strategy (Supplementary 
Methods) across multiple bibliographic databases and other 
public sources from 1 January 2012 through 11 June 2022 to 
identify contemporary data on diagnosing infections in 
SOTR. Eligible studies included those evaluating hospitalized 

adult or pediatric SOTR with suspected infections using 
conventional diagnostic methods (CDM; ie, culture, serology, 
antigen testing, nonmolecular biomarkers, and pathogen- 
directed or multiplex PCR) or advanced molecular diagnostics 
(ie, BRPCR, metagenomic testing) regardless of the platform 
manufacturer (academic, commercial, other). Because our ob
jective was to evaluate the broader infectious disease diagnostic 
landscape, we excluded studies that only discussed a single 
pathogen. Details of study selection and data extraction meth
ods are provided in Supplementary Tables 1–7.

Synthesis of Results

Our methodology adhered to established guidelines (Cochrane 
Handbook for Systematic Reviews of Interventions [46] and the 
Preferred Reporting Items for Systematic reviews and 
Meta-Analyses [PRISMA] 2020 statement [47]). Bias risk as
sessment is described in the Supplementary Methods. We eval
uated the performance characteristics of DTs, including 
pathogen yield or detection rates, accuracy metrics (sensitivity, 
specificity, positive predictive values [PPV]/negative predictive 
values [NPV]), and turnaround time. We also assessed whether 
studies reported the following measures: clinical course (includ
ing antimicrobial management), clinical outcomes (including 
morbidity, graft loss, and mortality), healthcare resource utiliza
tion (HCRU), and cost. Finally, we examined whether studies 
evaluated the impact of infection DT on these metrics.

RESULTS

Study Selection

The database searches identified 2362 unique records. After 
classification using the original Population, Intervention, 
Comparators, Outcomes, Timing, and Study design 
(Supplementary Table 3), applying additional exclusion criteria 
(Supplementary Tables 4–6), and conducting a full-text review, 
70 records were deemed eligible (Figure 1, PRISMA flow 
diagram). We identified 2 additional studies through supple
mentary searches (Supplementary Table 2). Thus, 72 unique 
studies were included.

Study Characteristics

Study characteristics are shown in Figure 2 (Supplementary 
Table 8). Median patient sample size was 102 (range, 11–1307; 
Q1/Q3, 57.5/200; Figure 2A). Studies were stratified by SOT 
type as follows: lung (pediatric [48, 49], n = 2; adult [45, 50–60], 
n = 12), liver (pediatric [61–64], n = 4; adult [65–86], n = 22), kid
ney (pediatric [87], n = 1; adult [88–106], n = 19), heart 
(pediatric, n = 0; adult [107], n = 1), pancreas (pediatric, 
n = 0; adult [108], n = 1), and >1 organ (pediatric [109], 
n = 1; adult [110–118], n = 9; Figure 2B). Studies originated 
from diverse regions (North America, n = 16; Europe, n = 23; 
and Asia, n = 22; Supplementary Figure S1). Most studies 
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(n = 45, 62.5%) evaluated standard cultures (Table 1); 
11 (15.3%) evaluated blood biomarkers (Aspergillus GM, 
BDG, or C-reactive protein [CRP], n = 5; serology, n = 6). 
Overall, 21 studies (29.2%) examined MDT: PCR (n = 17, 
23.6%), bacterial BRPCR (n = 1), and metagenomics (n = 3, 
4.2%). The 3 metagenomic studies utilized the Illumina plat
form and internal, center-specific pipelines for pathogen iden
tification; no other commercial platforms were reported [45, 
76, 81]. Biospecimens tested varied widely and included blood, 
BALF, nasopharyngeal swabs, intra-abdominal samples, surgi
cal site samples, and stool. BALF testing was performed in all 
lung transplant studies.

Although all studies (n = 72, 100%) reported percent 
pathogen detected, only 6 (8%) provided sensitivity, specificity, 
PPV, or NPV. Furthermore, while clinical course (n = 59, 82%), 
clinical outcomes (n = 44, 61%), and HCRU and cost 
(n = 19, 26%) were frequently reported (Figure 2C), only 6 stud
ies (8%) directly assessed the impact of infection DT on clinical 
course (antimicrobials) or HCRU [56–58, 87, 95, 118].

Test Performance
Percent Pathogen Detected. Among the 45 studies using stan
dard cultures, 39 reported culture yield, which was positive in 
a median of 27.7% (range, 0%–88.3%; Q1/Q3, 17.0%/49.6%) 
(Figure 3). Eleven studies evaluated blood cultures (median 
positive yield, 21.7%; range, 2.2%–55%) [61, 72, 73, 76, 77, 

79, 82, 86, 92, 98, 110], and 5 evaluated BALF cultures (median 
positive yield, 36%; 5.3%–67%) [52, 53, 56, 57, 117].

Only 5 studies assessed pathogen yield for nonculture diag
nostics (fungal biomarkers, n = 1; multiplex PCR, n = 3; meta
genomic sequencing, n = 1), and primarily used culture as a 
comparator. In a study of lung transplant recipients, obtaining 
both standard culture and GM increased the diagnosis of 
invasive aspergillosis to 36%, compared with 23.3% and 
16.1% for each test alone, respectively [52]. In a study of kidney 
transplant recipients with diarrhea, stool multiplex PCR out
performed microscopy and culture combined (yield 85% vs 
32.3%, respectively) in detecting Norovirus, Giardia lamblia, 
Cryptosporidium, and enteropathogenic Escherichia coli, and 
others [103]. A multiplex PCR for bloodstream infections in 
heart or lung transplant recipients demonstrated 90.8% con
cordance with blood culture, with combined testing detecting 
pathogens in more specimens than blood culture alone 
(13.1% vs 6.1% of specimens tested, respectively) [116]. 
However, another multiplex PCR for suspected airway infec
tions in lung transplant recipients failed to detect infections 
caused by pathogens not included in the platform, such as 
Haemophilus parainfluenzae and molds [57].

Of the 3 metagenomic testing studies, only one reported diag
nostic yield: metagenomic sequencing of BALF from lung trans
plant recipients detected pathogens in 83.4% of cases versus 
55.8% using CDM, which included culture (bacterial, mycobac
terial, fungal), staining (fungal smear and Grocott’s 

Figure 1. Study selection—PRISMA flow diagram for the systematic literature review, 1 January 2012–11 June 2022. Overall, 72 unique studies were included in the 
review. Abbreviation: PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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methenamine staining [GMS]), PCR, serologies, and GM/BDG 
[45]. This approach led to antimicrobial changes in 21% 
(23/107) of cases, including infections with Pneumocystis 
jirovecii (not detected by GMS staining and not targeted by 
the PCR platform), Mycobacteria spp. (nontuberculous myco
bacteria and Mycobacterium tuberculosis), Legionella spp., 
Strongyloidiasis stercoralis, and Aspergillus spp [45]. PCR 
later verified the 7 metagenomic tests that were positive for 
P jirovecii; GeneXpert MTB/RIF confirmed the 2 metagenomic 
tests showing M tuberculosis. However, cases with positive 

metagenomic sequencing results required adjudication by 2 
expert clinicians to distinguish colonization from infection 
and to determine which pathogens were clinically relevant 
when results of metagenomic sequencing and CDM were dis
cordant. Another study suggested that plasma metagenomic 
sequencing may complement culture for early detection of 
invasive fungal infection (IFI) following liver transplant, 
although diagnostic yield was not reported [76].

Figure 2. Characteristics of studies (pediatric N = 8; adult N = 64) included in the systematic literature review (SLR), 1 January 2012–11 June 2022. (A) Patient sample 
sizes for the studies included in the SLR. (B) Number of studies (pediatric and adult populations, respectively) for each solid organ transplant (SOT) type. (C) Number of studies 
by population and outcomes of interest identified in the SLR. Study references are listed in Supplementary Table 8.
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Test Accuracy. Sensitivity, specificity, PPV, and NPV were re
ported in 6 studies (Supplementary Table 9) [56–58, 87, 95, 
118], evaluating biomarkers (BDG or CRP, n = 2) or PCR 
(n = 4). In a study primarily involving lung transplant recipi
ents, BDG demonstrated low to moderate PPV for early IFI di
agnosis (BALF, 26.2%; serum, 69.2%) [118]. Another study 
assessed CRP thresholds to predict bacterial infections follow
ing pediatric kidney transplant [87].

Four studies compared multiplex PCR assays with stan
dard diagnostics in lung or kidney transplant recipients 
(Supplementary Table 9) [56–58, 95]. One study examined 7 
commercial multiplex PCR assays in kidney transplant recipi
ents with severe diarrhea [95]. Viral detection correlated well 
with reference methods, but detection of bacteria was potential
ly limited by poor specificity. For instance, molecular methods 
resulted in a 50% increase in detecting enteropathogenic E coli 
compared with stool culture, but the validity of these results 
could not be confirmed using reference methods [95]. Three 
studies assessed expanded multiplex PCR of BAL samples to di
agnose lower respiratory infections in lung transplant recipi
ents. Two were conducted in patients with suspected 
infection [56, 58], whereas 1 described patients undergoing 
routine surveillance [57]. Sensitivity varied depending on assay 
and pathogen, but PPV was generally high (Supplementary 
Table 9).

Turnaround Time. Five studies reported TAT, which was stat
istically significantly shorter for molecular compared with non
molecular tests but also varied by test type. In lung transplant 

recipients, median TAT for multiplex bacterial PCR was 
21.2 hours, compared with 23 hours for bacterial culture [56]. 
Similarly, multiplex PCR and directed RNA-viral PCR had 
TATs of 3.8 and 13 hours, respectively, versus 48 hours for bac
terial culture [57]. Another study reported a median TAT of 2.3 
hours for multiplex PCR versus 21.4–47.6 hours for usual care 
diagnostics, which included immunofluorescence and standard 
PCR [58]. In thoracic transplant recipients with suspected 
bloodstream infections, PCR results were available 1.5 days ear
lier than blood cultures [116]. Metagenomic sequencing also 
had a significantly shorter TAT than CDM in lung transplant 
recipients with various infections (2.7 vs 5.5 days, respectively) 
[45]. No studies reported TAT for other DTs.

Clinical Course

Clinical course (primarily antimicrobial use) was reported in 59 
studies, although only 4 specifically evaluated the impact of infec
tion DT on antimicrobial-related decisions. In 1 study of 50 pedi
atric liver transplant recipients undergoing 157 percutaneous 
cholangiography procedures, prophylactic antimicrobials were 
administered universally and continued in 73.2% (115/157) of 
procedures due to cholangitis, sepsis, or colonization with 
drug-resistant pathogens [61]. However, in 12% (14/115) of these 
cases, antimicrobials were optimized based on positive blood or 
biliary cultures [61]. In 3 studies of lung transplant recipients, an
timicrobial modification or discontinuation followed multiplex 
PCR [57], GM [52], and/or culture [50, 57] of respiratory samples.

Figure 2. Continued
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Clinical Outcome, HCRU, and Cost

Mortality was reported in all 44 studies that described clinical 
outcomes. However, none evaluated the direct impact of infec
tion DT results on mortality, and reporting methods varied 
(eg, different follow-up durations posttransplant). Median 
all-cause mortality (ie, including but not limited to infections) 
posttransplant was 15.2% (range, 0%–80%; Q1/Q3, 6.8%/27.2%). 
Eighteen studies reported all-cause mortality rates >20% [51, 53, 
54, 56, 65, 66, 71, 74, 76, 79, 80, 86, 96, 102, 107, 109, 112, 117]. 
Graft loss was reported in 4 studies, [89, 97, 102, 106] but 
none explored potential relationships between graft loss, DT re
sults, and antimicrobials.

Eighteen studies reported HCRU outcomes (Figure 2C), in
cluding hospital length of stay (LOS; n = 16) [53, 55, 62, 63, 70, 
75–77, 81, 89–91, 95, 96, 111, 112], intensive care unit admis
sion (n = 2), [59, 95] and intensive care unit LOS (n = 9) 
[53,   63, 65, 70, 74, 76, 77, 80, 86]. However, none directly as
sessed the influence of positive DT results on HCRU because 
positive results served as a proxy for infection. No studies 
reported cost.

DISCUSSION

This SLR of 72 studies evaluating infection DT in SOTR iden
tified several key findings. First, significant heterogeneity exist
ed across studies, which varied in design, SOTR populations, 
infections, DT methods, and specimens tested. Second, while 
most studies evaluated cultures, and some included PCR assays, 
novel MDT like BRPCR and metagenomics were rarely exam
ined. Third, despite faster TATs, PCR tests were limited by 
their fixed array of detectable organisms. Although BRPCR 
and metagenomics could overcome this limitation, data on 
these MDT were scarce. Fourth, only 6 studies reported sensi
tivity, specificity, PPV, and NPV. Finally, few studies reported 
the impact of infection DT on clinically relevant outcomes like 
antimicrobial use, mortality, LOS, HCRU, and cost. These find
ings highlight significant knowledge gaps in infection DT for 
SOTR, underscoring the need for prospective studies to evalu
ate the performance and clinical impact of advanced MDT 
compared with conventional DT methods in SOTR.

Diagnosing infections in SOTR typically involves a stepwise 
approach [22], starting with basic microbiological assessment 
and consideration of empiric antimicrobials, followed by 
more extensive testing and changes in antimicrobial therapy 
if the patient deteriorates or opportunistic infection is suspect
ed. The diagnostic journey often includes a combination of 
modalities such as imaging, cultures, antigen tests, serology, 
and PCR, with advanced pathogen-agnostic diagnostics like 
BRPCR and metagenomics reserved as last resort measures. 
A paradigm shift toward earlier use of pathogen-agnostic diag
nostics in SOTR is appealing because such approaches could 
potentially help overcome cognitive biases and facilitate timely Ta

bl
e 

1.
 

D
ia

gn
os

tic
 T

oo
ls

 U
til

iz
ed

 in
 S

tu
di

es
 b

y 
SO

T 
Ty

pe

Te
st

 t
yp

e

S
O

T 
Ty

pe

Li
ve

r
Lu

ng
K

id
ne

y
M

ix
ed

H
ea

rt
P

an
cr

ea
s

C
ul

tu
re

n
21

4
16

8
1

1

re
fe

re
nc

e
[5

7,
 6

5–
70

, 7
2–

80
, 8

2–
84

] a
nd

 [6
1–

64
]a

[4
5,

 5
1,

 5
3,

 5
4,

 6
0]

[8
8–

94
, 9

6–
10

3,
 1

05
, 1

06
] a

nd
 [8

7]
a

[1
10

–1
12

, 1
14

–1
18

] a
nd

 [1
09

]a
[1

07
]

[1
08

]

B
io

m
ar

ke
rs

, a
nt

ig
en

s 
 

(t
yp

e,
 if

 s
pe

ci
fie

d)
n

1
2

2
1

N
S

N
S

re
fe

re
nc

e
[7

6]
 (B

D
G

, G
M

, c
yt

ok
in

es
)

[5
2,

 5
5]

 (G
M

)
[9

6]
 (G

M
, B

D
G

) 
[8

7]
a 

(C
R

P
, W

B
C

, A
N

C
)

[1
09

]a 
(v

ira
l a

nt
ig

en
)

S
er

ol
og

y
n

1
N

S
4

3
1

N
S

re
fe

re
nc

e
[6

2]
a

[8
8,

 9
0,

 9
6]

 a
nd

 [8
7]

a
[1

13
, 1

15
, 1

16
]

[1
07

]

P
C

R
 (e

g,
 m

ul
tip

le
x)

n
3

6
6

3
1

N
S

re
fe

re
nc

e
[5

7,
 7

1,
 8

6]
 a

nd
 [6

2]
a

[5
0,

 5
6,

 5
8,

 5
9]

 a
nd

 [4
8,

 4
9]

a
[9

0,
 9

5,
 9

6,
 1

03
, 1

04
] a

nd
 [8

7]
a

[1
13

, 1
15

, 1
16

]
[1

07
]

16
S

 r
R

N
A

 s
eq

ue
nc

in
g

n
1

N
S

N
S

N
S

N
S

N
S

re
fe

re
nc

e
[8

5]

M
et

ag
en

om
ic

 s
eq

ue
nc

in
g

n
2

1
N

S
N

S
N

S
N

S

re
fe

re
nc

e
[7

6,
 8

1]
[4

5]

D
at

a 
yi

el
de

d 
fr

om
 s

ys
te

m
at

ic
 li

te
ra

tu
re

 re
vi

ew
, 1

 J
an

ua
ry

 2
01

2–
11

 J
un

e 
20

22
. T

es
ts

 re
po

rt
ed

 u
til

iz
ed

 in
 a

 s
tu

dy
 a

re
 n

ot
ed

, a
lth

ou
gh

 s
tu

di
es

 m
ay

 h
av

e 
pr

ov
id

ed
 li

m
ite

d 
da

ta
 re

ga
rd

in
g 

sp
ec

ifi
c 

te
st

 re
su

lts
 o

r p
er

fo
rm

an
ce

 o
r c

om
m

en
te

d 
on

 fi
nd

in
gs

 b
as

ed
 o

n 
a 

co
m

pi
la

tio
n 

of
 r

es
ul

ts
 f

ro
m

 m
ul

tip
le

 t
es

t 
ty

pe
s.

A
bb

re
vi

at
io

ns
: A

N
C

, a
bs

ol
ut

e 
ne

ut
ro

ph
il c

ou
nt

s;
 B

A
L,

 b
ro

nc
ho

al
ve

ol
ar

 la
va

ge
; B

D
G

, (
1→

3)
-β

-D
-g

lu
ca

n;
 C

R
P

, C
-r

ea
ct

iv
e 

pr
ot

ei
n;

 G
M

, G
al

ac
to

m
an

na
n;

 N
S

, n
o 

st
ud

ie
s 

re
po

rt
ed

; P
C

R
, p

ol
ym

er
as

e 
ch

ai
n 

re
ac

tio
n;

 S
O

T,
 s

ol
id

 o
rg

an
 tr

an
sp

la
nt

; W
B

C
, w

hi
te

 b
lo

od
 c

el
ls

.
a P

ed
ia

tr
ic

 (≤
18

 y
) s

tu
di

es
.

6 • OFID • Park et al



treatment of fastidious organisms. However, our data indicate 
that advanced pathogen-agnostic diagnostics require additional 
validation. Indeed, despite growing interest, research on these 

novel DT modalities in SOTR remains limited [119, 120]. This 
paradox—frequent clinical use despite limited supporting 
evidence—was highlighted by the American Society of 

Figure 3. Reported pathogen positivity from culture in studies of patients by transplant type. Data yielded from systematic literature review, 1 January 2012–11 June 2022. 
Percent pathogen detected from culture based on specimen type is indicated on the X-axis for each study reporting these data. Study sample or population size, as relevant, 
range from 23 to 1307. Marker sizes correspond to the study sample or population size: small, 1–100; medium, 101–1000; large, >1000. Data from pediatric (defined as aged 
less than 18 y) studies are denoted by an asterisk (*) next to the study author. “Multiple” in specimen types represents an aggregate of 2 or more specimens used for testing, 
and “Other” indicates a sample other than blood, respiratory, urine, or organ preservation fluid (eg, stool, rectal swab, intra-abdominal fluid, bile, surgical site). Abbreviations: 
BAL, bronchoalveolar lavage; pop, population; tx, therapy.
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Transplantation [121]. Furthermore, we identified no cost- 
effectiveness analyses to determine whether the increased cost 
of pathogen-agnostic MDTs can be offset by other cost savings, 
for instance from a reduction in the total number of tests 
ordered; we also identified no studies evaluating the cost of com
bining multifaceted diagnostic approaches (eg, culture, antigens, 
histology, PCR, either sequentially or simultaneously).

While BDG and GM assays were designed to rapidly diag
nose IFI, few studies have examined their performance in 
SOTR. BDG has poor specificity, cannot identify specific fungi, 
and can yield false positives [14, 22, 122]. Although serum GM 
is accurate in neutropenic cancer patients (70–82% sensitivity, 
86–92% specificity), it is less sensitive in SOTR (22% sensitivity, 
84% specificity) [24]. Thus, a negative serum GM result cannot 
exclude invasive aspergillosis in SOTR with lung nodules [24]. 
Conversely, BAL GM has >80–90% sensitivity and specificity 
in both neutropenia and SOTR [24]. No studies evaluated 
antigen-based biomarkers for endemic mycoses or Cryptococcus 
in SOTR. Fungal antigen tests also exhibit cross-reactivity, and 
no commercial antigen tests exist for resistant mycoses like 
Mucorales and Scedosporium [24]. While PCR assays for these 
molds exist [123, 124], we identified no studies focused solely 
on SOTR. One study with ∼25% SOTR found that serum 
Mucorales PCR identified mucormycosis earlier than CDM 
(primarily histopathology), leading to earlier treatment with am
photericin B and improved survival [125]. However, pathogen- 
directed PCR requires clinicians to suspect the specific pathogen. 
Whether pathogen-agnostic MDT will outperform conventional 
methods and PCR for diagnosing IFI remains unknown, high
lighting the need for further study and for proper diagnostic 
stewardship.

Ju et al evaluated the utility of pathogen-agnostic MDT for 
diagnosing P jirovecii pneumonia (PJP) in lung transplant 
recipients [45] and highlight important considerations for ra
tional use of metagenomics-based DT. GMS staining, a conven
tional and commonly used test for PJP despite its poor 
sensitivity in persons without HIV [126], missed all 7 PJP cases, 
and the PCR assay used was not designed to detect P jirovecii. 
The diagnosis of PJP was made through metagenomic 
sequencing and subsequently verified by a P jirovecii–specific 
PCR. Importantly, clinical adjudication confirmed that all 
7 of these cases were consistent with PJP, underscoring the crit
ical role of clinical judgment, which should never be replaced 
by DT results. This is particularly true for pathogens such as 
P jirovecii, where DNA detection may indicate colonization 
not disease [127]. Rational interpretation of metagenomic tests 
requires nuanced clinical expertise to avoid reflexive interpre
tation of results. However, such expertise may not be readily 
available. Whether genome copies or cycle threshold values 
can further refine medical decision-making in patients with 
positive metagenomic testing results remains to be determined 
[127].

Although PCR can accurately diagnose CMV and EBV infec
tion after SOT [128, 129], diagnosing other DNA viruses re
mains challenging. We identified no studies focused on this 
issue. For example, diagnosing HHV-8 after SOT is difficult be
cause of low clinical suspicion and limited commercial assays 
with variable turnaround times, despite the increasing inci
dence of donor-derived HHV-8 [9, 130]. A recent study using 
plasma microbial cell-free DNA (mcfDNA) sequencing to 
monitor for infections after lung transplant identified one 
case where HHV-8 was detected in posttransplant plasma sam
ples. This individual, whose pretransplant sample was negative 
for HHV-8, subsequently developed disseminated Kaposi sar
coma with allograft involvement, which was diagnosed on au
topsy and strongly suggested DDI [131]. Such data remain 
anecdotal, and whether pathogen-agnostic testing will have a 
role in DDI surveillance remains unknown but should be stud
ied. Diagnosing rare CNS viruses like HHV-6 and JC after SOT 
is also challenging [132] and relies on a high index of suspicion. 
We identified no studies evaluating novel DT for these viruses 
in SOT.

Metagenomic sequencing holds promise for diagnosing in
fections in immunocompromised patients but requires further 
validation. Bergin et al [44] showed that in patients with hema
tologic malignancies and suspected infectious pneumonia, 
combining mcfDNA sequencing with usual care testing im
proved the infectious diagnostic yield to 42% (from 30% and 
28%, respectively). Plasma mcfDNA sequencing alone provid
ed an additive diagnostic value of 12%, detecting P jirovecii, 
rare molds, Nocardi, and others. mcfDNA sequencing also de
tected organisms often dismissed as commensals but which can 
cause disease in hematological cancer. Importantly, an expert 
committee adjudicated the significance of all microbes detect
ed. However, this study also revealed limitations of plasma 
mcfDNA sequencing. The proportion of plasma mcfDNA tests 
yielding the same pathogen as usual care was highest for DNA 
viruses and bacteria but lowest for Aspergillus. Most cases of 
pulmonary aspergillosis were diagnosed exclusively because 
of compatible imaging and a positive serum GM result, but 
plasma mcfDNA results were negative in nearly all these cases. 
Potential causes of false-negative metagenomics testing results 
include low pathogen DNA concentrations or thick fungal cell 
walls [133]. Another study in hematopoietic cell transplant re
cipients showed that mcfDNA sequencing had variable sensi
tivity for detecting different mold species, with improved 
performance for non-Aspergillus molds and in early samples 
[134].

Importantly, in the study by Bergin et al [44] ∼58% of partic
ipants lacked a microbiologically confirmed cause of their pul
monary process. Whether these cases are “false negatives” or 
“true negatives” is currently difficult to determine definitively 
but is an important research question. Because individuals 
with a confirmed diagnosis (infectious or otherwise) were 
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excluded, the study may have included many participants with 
(1) difficult-to-diagnose infections (in whom the negative DT 
results are false negatives) or (2) a noninfectious etiology of 
their pulmonary process (in whom the negative DT results 
are true negatives); this premise should be explored in future 
studies. Finally, current tests may miss some pathogens, partic
ularly RNA viruses, which may not be included in certain test
ing platforms [135]. Ultimately, further refinement of diagnostic 
technologies is needed. Clinicians using pathogen-agnostic 
MDT must interpret results (both positive and negative) cau
tiously and in the context of the patient’s clinical presentation. 
Transplant centers adopting such technologies should develop 
algorithms for rational use and employ diagnostic stewardship 
with infectious disease expertise.

Study Limitations

This SLR, although conducted using established guidelines, has 
limitations. Search criteria may have been too restrictive or did 
not match selected MeSH terms, despite a supplemental man
ual search. The included studies (N = 72) were of varied qual
ity, including retrospective and noncomparative designs. While 
our exclusion criteria encompassed studies evaluating only a 
single pathogen or exclusively RNA viruses, all such studies 
(N = 13 and N = 3, respectively) were also excluded for other 
reasons, including not addressing the research question 
(Supplementary Tables 5 and 6). Notably, studies evaluating 
RNA viruses alongside other pathogens were still included 
[48–50, 57–59, 95, 96, 103, 104, 113]. Variability in diagnostic 
approaches reflects the diverse clinical practices and DT access 
across different regions and institutions. Heterogeneity in the 
“gold” standard complicates interpreting test performance 
across studies. This review focused on hospitalized patients 
and did not evaluate diagnostics for unrecognized donor- 
derived infection. Thus, findings cannot be generalized to all 
SOTR or diagnostic approaches.

CONCLUSION

This SLR reveals a critical gap: although noninvasive monitor
ing for allograft rejection has progressed [136–138], the devel
opment of advanced molecular diagnostics for infection in 
SOTR lags behind. However, transplant clinicians frequently 
use novel infectious DT [121], despite limited supporting evi
dence. Thus, future prospective studies must prioritize evaluat
ing the performance and clinical impact of novel tests like 
metagenomic sequencing and broad-range PCR following 
transplantation. Study endpoints should include diagnostic ac
curacy, antimicrobial use, mortality, healthcare resource utili
zation, and cost. Novel molecular diagnostic tests should be 
studied in the context of donor-derived infections. Finally, cli
nicians and medical centers should recognize the critical role of 

diagnostic stewardship and clinical expertise in interpreting the 
results of novel molecular diagnostics.
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