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Wine is a worldwide alcoholic beverage with antioxidant active substances and complex
flavors. Moderate drinking of wine has been proven to be beneficial to health. However,
wine has some negative components, such as residual pesticides, heavy metals, and
biotoxins. Of these, biotoxins from microorganisms were characterized as the most
important toxins in wine. Wine fermentation mainly involves alcoholic fermentation,
malolactic fermentation, and aging, which endue wine with complex flavors and even
produce some undesirable metabolites. These metabolites cause potential safety risks
that are not thoroughly understood. This review aimed to investigate the origin, evolution,
and control technology of undesirable metabolites (e.g., ochratoxin A, ethyl carbamate,
and biogenic amines) in wine. It also highlighted current wine industry practices of
minimizing the number of biotoxins in wine.
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INTRODUCTION

Wine is an alcoholic beverage made from fresh grapes or grape juice that undergoes complex
biochemical changes in the presence of microorganisms. The wine originated in ancient Egypt or
ancient Greece or the Greek island of Crete (Alebaki and Koutsouris, 2019). The wine industry
has progressed globally since its development to date (Thorpe, 2009). Based on the geography,
winemaking history, and winemaking tradition, some winemaking countries with a long history of
production (mostly Europe and the Mediterranean region) are classified as "Old World," while the
rising stars in the international market are classified as "New World" (emerging wine-producing
countries outside of Europe, such as the United States, China, etc.) (Banks and Overton, 2010; Li
et al., 2018). The three leading wine-producing countries worldwide are France, Italy, and Spain,
which produce almost half of the world’s wine (Schamel, 2006). According to the latest data from
the International Organization of Vine and Wine (OIV), global wine production is estimated at 26
billion liters, and the wine trade continues to trend toward internationalization (OIV, 2020).

Nowadays, wine is attracting an increasing amount of attention due to its taste, aroma, and
health benefits (Ditano-Vázquez et al., 2019; Rivera et al., 2019). While exploiting the various
benefits of wine, its quality is often easily overlooked. Similar to other fermented foods, the
fermentation process of wine creates a complex system of grape flavors and may also present some
quality risks, such as heavy metals, pesticide residues, and biotoxins (Weng and Neethirajan, 2017).
Among these, ethyl carbamate (EC) from yeast and lactic acid bacteria (LAB) (Uthurry et al., 2006;
Du et al., 2018), biogenic amines (BAs) from LAB (García-Ruiz et al., 2011), and ochratoxin A
(OTA) from mold (Iacumin et al., 2009) have gradually received attention in recent years. EC was
shown to be a carcinogen as early as 1943 (Nettleship et al., 1943), and alcohol contributes to the
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carcinogenic effects of EC (Beland et al., 2005). BAs are also
precursors to carcinogens (Guo et al., 2015), and hence their
excessive intake can pose a threat to human health.

The production of high-quality wine has stringent
requirements for grape raw materials (Morata et al., 2019),
ferments, and grape processes, but their potential safety risks
cannot be ignored. The risk factors of OTA, EC, and BAs have
been identified in wine one after another; however, the sources
of these risk factors and their evolution patterns are still unclear.
This review focused on the dynamic changes in risk factors
in wine fermentation, traced the risk factors, and proposed
corresponding prevention and control to provide a theoretical
basis for wine risk control.

SAFETY RISKS AND
COUNTERMEASURES IN WINE

Moderate drinking of wine has been proven to be beneficial
to health because wine comprises antioxidant active substances,
minerals, and vitamins (Guilford and Pezzuto, 2011). However,
wine can also have some negative components, such as residual
pesticides (Guo T. et al., 2016), heavy metals (Bora et al., 2015),
and some biotoxins. Of these, biotoxins from microorganisms
were the most important toxins in wine (Vitali Čepo et al.,
2018). These biotoxins can affect the drinking quality and food
safety of wine and lead to a range of diseases if consumed
in excess over a long period (Figure 1; Welke, 2019). The
biotoxins of microbial origin in wine mainly comprise OTA,
EC, and BAs. The process from grapes to wines is long and
complex, including transportation, pretreatment, maceration,
and alcoholic fermentation (Ruiz et al., 2019). During wine
fermentation, OTA, EC, and BAs undergo continuous evolution
(Christaki and Tzia, 2002; Fernández-Segovia et al., 2014).
Grape harvesting, maceration, alcoholic fermentation, and
malolactic fermentation (MLF) involve the production of OTA.
EC is always produced in alcoholic fermentation, MLF, and
aging. Furthermore, various BAs are formed during MLF and
aging (Figure 2).

Ochratoxin A
Ochratoxin is a mycotoxin composed of seven structurally similar
compounds, including OTA, OTB, and OTC (Supplementary
Figure 1). Among these, OTA is an IIB carcinogen, which
has teratogenicity, nephrotoxicity, hepatotoxicity, neurotoxicity,
and immunotoxicity to several kinds of animals (Silva et al.,
2019). The OTA biosynthesis and the two possible key pathways
involved are shown in Supplementary Figure 2 (Karlovsky, 1999;
Gallo et al., 2017). OTA has attracted much attention because
of its strong biological toxicity and potential pathogenicity in
various cereal crops and fermented foods (Agriopoulou et al.,
2020). As far as 1996, OTA was first identified in wine and then
classified as the key mycotoxin in wine (Zimmerli and Dick,
1996). The European Commission set the maximum limit for
OTA content in wine at 2 µg/kg (European Food Safety Authority
(EFSA), 2006).

OTA is produced by various mycetes, including Aspergillus
ochraceus, Penicillium verrucosum, Aspergillus niger, and
Aspergillus carbonarius. However, the main fungal sources of
OTA in grapes are A. carbonarius and A. niger (Oliveri et al.,
2017). A. carbonarius has been considered as the most important
ochratoxin-producing species in grapes because it is widespread
on grapes and produces a high concentration of OTA (Varga
and Kozakiewicz, 2006). Like other mycetes, Aspergillus spp.
can produce spores, which are blown to the surrounding grape
racks by wind and flying animals (Jiang et al., 2013). During the
ripening of grapes, humid weather and high relative humidity
can easily cause the rotting of grapes by providing favorable
conditions for the growth of Aspergillus spp. (Cañas et al.,
2008). Obviously, the environmental conditions of a vineyard
play a key role in the contamination of ochratoxin-producing
species in wine grapes, further leading to the accumulation
of OTA in wine (Gil-Serna et al., 2018; Abarca et al., 2019).
Before wine fermentation, the grape skin and pulp are crushed
and macerated together, which is conducive to the release of
OTA into the grape juice (Visconti et al., 2008). The OTA
content changes greatly in the whole winemaking process (Anli
and Bayram, 2009; Freire et al., 2020). Due to the different
winemaking processes, red wines generally have higher OTA
levels compared with white wines (Lasram et al., 2008; Dachery
et al., 2017).

Some methods, such as avoiding mycete infection, degrading
OTA, and adsorbing OTA, have been developed to decrease the
contamination of OTA (Chen et al., 2018). Applying biological
control methods to avoid mold infection during the storage
of grapes after harvest and removing moldy grape clusters
before fermentation can greatly reduce the possibility of toxin-
producing fungal growth and production of OTA (Hocking
et al., 2007; Gil-Serna et al., 2018). Inorganic adsorbents (such as
zeolite and activated carbon) (Piotrowska et al., 2013; Abrunhosa
et al., 2014) and microbial adsorbents (such as Saccharomyces
spp., Rhodotorula spp., Lactobacillus spp., and Cryptococcus
spp.) (Abrunhosa et al., 2010; Russo et al., 2016) reduce
the OTA content through adsorbing or converting OTA into
less toxic phenylalanine (Phe) and ochratoxin alpha (OTα).
However, the application of these adsorbents in OTA control in
wine is limited because they can adsorb phenolic compounds
and pigments of wine to varying degrees, resulting in wine
discoloration, besides adsorbing the risky OTA (Caridi, 2013;
Petruzzi et al., 2015). Moreover, microbial-derived enzymes with
carboxypeptidase A activity also affect the degradation of OTA
(Amézqueta et al., 2009).

Ethyl Carbamate
As early as 1943, EC was classified as a Class 2A carcinogen
by the International Agency for Research on Cancer of the
World Health Organization (2007) (Conacher and Page, 1986;
Zimmerli and Schlatter, 1991). EC is a carcinogenic compound
involved, among others, in lung cancer, lymphoma, liver cancer,
and skin cancer (Gowd et al., 2018). However, it is believed
that EC widely occurs in traditional fermented foods (Li and
Bardají, 2017). EC has been recognized as one of the biggest
challenges facing the alcoholic beverage industry since EC was

Frontiers in Microbiology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 703391

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-703391 July 17, 2021 Time: 18:45 # 3

Xu et al. Wine Safety

FIGURE 1 | Hazard process of biologically harmful products (ethyl carbamate, biogenic amines and ochratoxin A) in wine.

detected in alcoholic beverages in 1976 (Ough, 1976; Zhao
et al., 2013a). Supplementary Figure 3 shows the possible
pathways of the formation of EC and the mechanism of
carcinogenesis (Zhao et al., 2013a). Different countries and
organizations around the world have different standards for
the concentration of EC in alcoholic beverages (Supplementary
Table 1). Also, no unified maximum EC limit exists in the EU.
However, the concentration of EC in 30.6% of wines exceeds
20 µg/L (standard of the Food and Agriculture Organization
of the United Nations), which is a threat to the health of
consumers and the sustainable development of the wine industry
(Gowd et al., 2018).

EC is generally produced by the spontaneous reaction of
ethanol and compounds containing carbamoyl groups (such as
urea, citrulline, carbamoyl phosphate, and so on) (Jiao et al.,
2014). Among these reactions, the urea formation pathway is

believed to be the main formation pathway of EC (Zimmerli
and Schlatter, 1991; Cerreti et al., 2016). Wine environments
(such as temperature and acidity) and microorganisms can
affect the production of EC during fermentation (Zhao et al.,
2013a). During grape plantation, the application of nitrogen
fertilizer increased the urea content, providing EC precursors
in grapes (Garde-Cerdán et al., 2015). Furthermore, yeast and
LAB produced a large amount of citrulline through the urea
cycle pathway and the arginine deiminase metabolism pathway,
respectively (Azevedo et al., 2002; Vrancken et al., 2009). During
wine fermentation, some EC precursors have been released,
increasing the urea content in wine (Mira de Orduña et al.,
2000). The EC content in wine varied with grape varieties (Ubeda
et al., 2020), grape maturity (Lago et al., 2017), pH value (Araque
et al., 2013), EC precursor concentration (Zhao et al., 2013b), the
volume fraction of ethanol (Araque et al., 2013), and ecological
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FIGURE 2 | Winemaking process and possible safety hazards.

conditions (such as temperature, precipitation, and extreme
climate) (Diamantidou et al., 2018).

Controlling the EC content in wine mainly focuses on yeast
strains (Araque et al., 2013; Guo T. et al., 2016), grapes (Bell
and Henschke, 2005), excipients (Bell and Henschke, 2005),
and fermentation conditions (Stevens and Ough, 1993; Xue
et al., 2015). The enhancement of genes encoding for enzymes
involved in urea degradation and transport or the knockout
of genes encoding for arginase allowed the selection of yeast
strains with low urea production capacity and arginase activity
(Araque et al., 2013; Guo X. W. et al., 2016). Properly adjusted
vineyard management practices, such as fertilization, pruning,
irrigation, and ground cover, can also control the EC content in
wine to some extent (Soufleros et al., 2003). Without affecting
the flavor of the wine, an appropriate reduction in temperature
also helps reduce the EC content in the wine, which is a key
adjustment point for EC control from a process perspective
(Hasnip et al., 2004). Some studies showed that acid urease
catalyzed the decomposition of urea to ammonia and carbon
dioxide, decreasing the content of an important precursor of
EC in wine (Cerreti et al., 2016; Liu et al., 2018; Yang et al.,
2021). Since 1999, Europe has approved the use of acid urease
extracted from fermented LAB in wine (Cerreti et al., 2016).
However, urease is a metalloenzyme with nickel as a prosthetic
group, which can lead to nickel residues in wine (Follmer et al.,
2004). Furthermore, urea adsorbents, EC degrading enzymes, EC

adsorbents, and so forth have been used as effective and potential
agents to controlling the EC content in wine under the premise of
ensuring the flavor characteristics of the original wine (Wu et al.,
2014; Zhou et al., 2017).

Biogenic Amines
BAs are a class of low-molecular-weight nitrogen-containing
organic compounds (Manetta et al., 2016). A physiological
concentration of BAs is involved in important biological
reactions in the human body (Cinquina et al., 2004). However,
the excessive intake of exogenous BAs can lead to allergic
reactions, such as headache, nausea, blood pressure changes,
and respiratory disorders, and is even life-threatening (Spano
et al., 2010). BAs include mainly tryptamine, cadaverine,
tyramine, histamine, putrescine, spermidine, and spermine
(Supplementary Table 2), which are usually produced after
decarboxylation of the corresponding amino acids by different
decarboxylases (Supplementary Figure 4; Wolken et al., 2006).
As the most toxic BAs, histamine is regarded as a key
indicator of the hygienic value during wine fermentation (Cunha
et al., 2017). It can be broken down by two different oxidase
enzymes (monoamine oxidase and diamine oxidase) (Seiler,
2004). However, ethanol is an inhibitor of diamine oxidase
(histamine-degrading) at the gut level (García-Ruiz et al., 2011).
Putrescine has been found to be one of the most abundant
BAs in wine (Henríquez-Aedo et al., 2012; Cunha et al., 2017).
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Therefore, the BA content is more stringent in alcoholic foods
compared with other fermented foods (Rollan et al., 1995;
García-Ruiz et al., 2011). The European countries have set limits
for histamine below 10 mg/L in wine, with Germany being the
strictest (not higher than 2 mg/L) (Smit et al., 2008; Costantini
et al., 2019).

BAs are produced by microorganisms with amino acid
decarboxylase activity in the presence of sufficient free
amino acids at any stage of winemaking (Santos, 1996).
The presence of precursors (amino acids) and microorganisms
with decarboxylase activity are the main factors affecting the
BA content (Landete et al., 2011; Russo et al., 2016). During
winemaking, yeast strains weakly contribute to BA accumulation
(Smit et al., 2013), but LAB responsible for MLF has been
identified as the main producer of BAs in wine (Spano et al.,
2010). For example, Oenococcus oeni, Lactobacillus hilgardii, and
Pediococcus parvulus increased the BA content in wine through
histamine accumulation (Özogul and Hamed, 2018). As one of
the main catabolites from arginine degradation, putrescine has
been identified as one of the most abundant BAs in wine, because
arginine is the main amino acids in grapes (Henríquez-Aedo
et al., 2012; Ortega-Heras et al., 2014; Cunha et al., 2017). O. oeni
also contributes to putrescine accumulation after sequential
degradation of arginine and ornithine (Pessione and Cirrincione,
2016). On the other hand, increasing pH can increase the number
and variety of microorganisms, further enhancing the risk (Guo
et al., 2015). The BA content in white wines is less than that in
red wines because of a lower pH and the different winemaking
processes (García-Marino et al., 2010).

The production of BAs is a strategy to obtain metabolic
advantages to face certain stress conditions. Therefore, conditions
encouraging the expression of decarboxylase genes should be
avoided and controlled (Mohedano et al., 2015). Moreover,
commercial starters with negative decarboxylase activity are
also recommended (Gardini et al., 2016). Several authors have
proposed that yeast can convert amino acids into fused alcohols
through the well-known Ehrlich pathway during alcoholic
fermentation, plausibly leading to a decrease in the BA content
(Mas et al., 2014). In a sense, the presence of putrescine in
wine seems inevitable, because the ornithine decarboxylation
occurs simultaneously with MLF at a high speed (Martínez-
Pinilla et al., 2013; Battistelli et al., 2020). Due to the presence of
the indigenous strains capable of degrading arginine to ornithine,
the use of the malolactic starters that are unable to degrade
ornithine or arginine cannot completely avoid accumulation of
putrescine (Pramateftaki et al., 2012). It is plausible that removing
or inhibiting the activity of LAB immediately after MLF to
avoid arginine degradation may be an effective method to reduce
potential risk from putrescine in wine (Wunderlichová et al.,
2014). Therefore, controlling microbiota is a good strategy to
reduce BA production. García-Ruiz et al. (2011) found that nine
strains belonging to the Lactobacillus and Pediococcus groups
showed the greatest BA degradation capacity, the best being for
L. casei IFI-CA52. Capozzi et al. (2012) have investigated that
Lactobacillus plantarum NDT 09 and NDT 16 could enhance
the overall aroma of wine and degrade putrescine and tyramine.
Some yeasts were also capable of degrading BAs. Bäumlisberger

et al. (2015) observed that some strains of Debaryomyces hansenii
and Yarrowia lipolytica could degrade BAs. The degradation
of BAs by the most efficient strain, D. hanseniii H525, could
be attributed to a peroxisomal amine oxidase activity. Callejón
et al. (2016) reported the employment of laccase to degrade BAs,
which provides a new perspective on the use of microorganisms
or purified microbial enzymes. Further research should be
conducted to find new strains capable of degrading BAs. Also,
histamine, putrescine, cadaverine, spermine, and spermidine in
wine can be adsorbed and removed by phosphonic acid and
sulfonic acid bifunctional mesoporous silica materials, which
may also be an effective way to reduce the BA content in wine
in the future (Rodríguez-Bencomo et al., 2020).

CONCLUSION AND FUTURE
PERSPECTIVES

The quality and safety risks of wine involve many links. To
ensure food safety and improve the quality of wine, we need
to control the contamination of raw materials, strictly select
winemaking microorganisms, and control the fermentation and
post-management processes. The study of the origin, evolution,
and control techniques of undesirable metabolites in wine (OTA,
EC, and BAs) can reduce not only the quality hazards of wine
but also the economic losses due to microbial spoilage. In the
future, we should pay attention to various potentially harmful
substances that have pathogenic effects on human beings during
the grape growth and winemaking process, and implement
effective prevention and control through testing. In summary,
only by clarifying the factors that affect the quality of winemaking
can we ensure a clear direction for quality management and
ultimately a quality wine production.
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