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ABSTRACT

Transcriptional gene silencing (TGS) can be
achieved by small RNAs targeted to upstream pro-
moter regions. Previously we characterized siRNAs
targeted to the HIV-1 long terminal repeat (LTR)
promoter at site 247, and found that a 21-base
antisense strand of siRNA-247 (LTR-247as) sup-
pressed LTR-mediated expression. To characterize
the specificity of LTR-247as, vectors expressing
antisense RNAs targeted to a region spanning 50
bases up- and downstream of the 247 target site
were generated. LTR-247as+7, a ~22 base antisense
RNA that is shifted by only seven bases upstream of
LTR-247as, showed a significant increase in
LTR-driven reporter gene expression that was
independent of cell type and active chromatin
methyl-marks. Promoter-targeting siRNAs have
been recently shown to induce gene activation.
However, here we demonstrate gene activation via a
sequence-specific off-target effect. Microarray ana-
lysis of LTR-247as+7-treated cultures resulted in the
deregulation of ~185 genes. A gene of unknown
function, C100rf76, was responsive to inhibition by
LTR-247as+7 and the loss of C100rf76 resulted in
the upregulation of several genes that were acti-
vated by LTR-247as+7. These data suggest caution
when using short antisense RNAs or siRNAs
designed to target promoter sequences, since
promoter-targeted RNAs may have unintended
inhibitory effects against factors with suppressive
gene activity.

INTRODUCTION

RNA interference (RNAI) is a ubiquitous and conserved
eukaryotic cellular pathway whereby double-stranded (ds)
RNA triggers specific and potent inhibition of gene
expression. RNAI appears to behave via two different
mechanistic pathways: transcriptional gene silencing
(TGS) and post-transcriptional gene silencing (PTGS)
(1,2). Each pathway involves the action of small interfer-
ing RNAs (siRNAs). PTGS involves siRNA-mediated
targeting and degradation of mRNA, which in human
cells occurs predominantly in the cytoplasm (3,4). TGS,
however, occurs exclusively at the promoter region of the
siRINA-targeted gene in the nucleus resulting in transcrip-
tional suppression via the recruitment of silent state
epigenetic marks on DNA and chromatin (5-195).
Recently, synthetic siRNAs or short dsRNAs targeted to
the promoters for E-cadherin, p21 VATV (521), VEGF
(16) and progesterone (PR) (17) demonstrated target-
specific gene activation, or RNA activation (RNAa).
Although RNAa appears to be a robust sequence-specific
phenomenon, at present little is known about its under-
lying endogenous function and biological mechanism.
We have previously shown that siRNAs targeted to the
HIV-1 subtype B LTR promoter mediate TGS via the
action of the antisense strand of the siRNA (18). These
data are supported by the observation that antisense
RNAs (asRNA) are also involved in human genetic
diseases (19) and point to a biological role for short
RNAs in the epigenetic control of gene expression in
human cells (20,21). To further investigate the effects of 21
base asRNAs in transcriptional silencing, and to define
additional asRNAs that target the HIV-1 LTR promoter,
we generated U6 snRNA RNA Pol III asRNA constructs
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that span approximately 50 bases up- and downstream of
the previously defined suppressive asRNA target site, 247
(targeted by LTR-247as) (18). Site 247 specifically spans
the LTR of HIV-1 from bp 247-268 (HIV reference
sequence HXB2, accession K03455), and was previously
shown to be an effective site for both siRNA- and asRNA-
mediated TGS of HIV-1 (18). Although the asRNA screen
did not produce any new suppressive asRNAs, a
significant increase in LTR-mediated transcription of a
luciferase reporter occurred by shifting the target site
seven bases downstream of site 247 (LTR-247as+ 7). This
result at first glance appeared to be similar to that
observed for RNAa (16,17). Microarray results revealed
that several other genes were activated by the presence of
LTR-247as+ 7. Here we show that LTR-247as+7, an
antisense RNA directed to the LTR promoter of HIV-1, is
capable of sequence-specific indiscriminate gene activation
by suppressing C100rf76, a candidate gene of unknown
function which may operate as a generalized transcrip-
tional regulator. Although our data for RNA-dependent
gene activation differs in a number of ways from that
observed recently by Li, Janowski and co-workers (16,17),
we suggest a measure of caution when interpreting RNA
activation data, which may be the result of non-specific
off-target effects.

MATERIALS AND METHODS
Cell culture

The 1GS5 cell line (AIDS Research and Reagent Reference
Program) was used to assess the efficacy of U6 expressed
asRNAs (Figure 1a) to target the HIV-1 LTR/promoter
(18). The 1G5 cell line is a Jurkat-based cell line with the
HIV-1 subtype B LTR driving the expression of firefly
luciferase followed by an SV40 Poly A strong stop signal
(23,24). To determine the ability of the various U6
expressed HIV-1 subtype B LTR-specific asRNAs to
induce off-target enhanced transcription, a CCRS5 pro-
moter expressing GFP construct was used to develop the
reporter cell line 293-CCRS5-GFP. The vector pRS5-
GFPsgl43 contains ~3kb of CCR5 promoter, intron
and exons 1 and 2 (25-27) and drives the expression of
red-shifted GFP (a gift from Dr G.N. Pavlakis) (9,28).
A total of 4.0 x 10° HEK293 cells were transfected with
vector pR5-GFPsgl43 (5pg, Lipofectamine 2000™) and
Neomycin-selected (800 ug/ml) to generate the stable cell
population (293-CCR5-GFP) (9).

Generation of target reporter- and U6 antisense RNA
expression constructs

Plasmids expressing antisense sequences targeted to the
HIV-1 U3 LTR were constructed. PCR fragments were
cloned into pCR2.1-TOPO (Invitrogen) using the U6+ 1
snRNA promoter as PCR template. This method was
described previously by Lee et al. (29) using a universal U6
forward primer: 5 AAG GTC GGG CAG GAA GAG
GGC CT 3. The following reverse primers were used:
LTR-247s+7 oligo 5 AA4 AAA GAG TGG AGG TTT
GAC AGCCCGGTGTTT CGT CCTTTC CAC AA 3/,
LTR-247s+ 13 oligo 5444 AAA GGT TTG ACA GCC

GCC TAG CGG TGT TTC GTC CTT TCC ACA A 3,
LTR-247s+ 19 oligo 5444 AAA GAC AGC CGC CTA
GCA TTT CCG GTG TTT CGT CCT TTC CAC AA 3,
LTR-247s-7 oligo 5 444 AAA GAG AGA AGT GTT
AGA GTG GCG GTG TTT CGT CCT TTC CAC AA
3’, LTR-247s-14 oligo 5 A4A AAA ACC CTG AGA
GAG AAG TGT TCG GTG TTT CGT CCT TTC CAC
AA 3, LTR-247s-21 oligo 5 444 AAA ATG GAT GAC
CCT GAG AGA GCG GTG TTT CGT CCT TTC CAC
AA 3, LTR-247s-21/+19 oligo 5 AAA AAA ATG GAT
GAC CCT GAG AGA GAA GTG TTA GAG TGG
AGG TTT GAC AGC CGC CTA GCA TTT CCG GTG
TTT CGT CCT TTC CAC AA 3 and LTR-247s-12/+ 10
oligo 5 AAA4 AAA CCT GAG AGA GAA GTG TTA
GAG TGG AGG TTT GAC AGC CGC CCG GTG TTT
CGT CCT TTC CAC AA 3'. The construction of pCR2.1-
LTR-247as —50/+ 50 required two separate sequential
PCR reactions as described previously (30). The following
reverse primers were used: LTR-247s-50/+ 50 R1 oligo 5
AGT GGA GGT TTG ACA GCC GCC TAG CAT TTC
ATC ACG TGG CCC GAG AGC TGC ATC CGG AGT
ACG GTG TTT CGT CCT TTC CAC AA 3 and LTR-
247s-50/+50 R2 oligo 5 444 AAA CAG CTT GTT
ACA CCC TGT GAG CCT GCA TGG AAT GGA TGA
CCC TGA GAG AGA AGT GTT AGA GTG GAG
GTT TGA CAG CCG 3'. The following oligos were used
to generate pCR2.1-LTR-247as mutants (mA and mB) as
well as the sense RNA, LTR-247as: LTR-247s+ 7 oligo 5
AAA AAA GGG CTG TCA AAC CTC CAC TCG GTG
TTT CGT CCT TTC CAC AA 3, LTR-247as+7mA
oligo 5 444 AAA GAG TGG AGG TTT GAC AGC
GCG GTG TTT CGT CCT TTC CAC AA 3" and LTR-
247as+7mB oligo 54 A44 AAA GAG TTG AGG TTT
GAC AGC CCGGTGTTTCGT CCTTTC CAC AA 3.
For the above oligos, underlined regions correspond to
3" end of the U6+ 1 promoter, and the polyT termination
signal is italicized.

To generate luciferase reporter constructs containing
putative LTR-247as+7 target sequences within the
C100rf76 mRNA (Supplemental Figure 4), complemen-
tary oligonucleotides were treated with polynucleotide
kinase (Promega, WI, USA), annealed, and cloned
directly into the Xhol-Notl sites of the dual-luciferase
vector psiCheck2 (Promega, WI, USA). To facilitate
screening, an EcoRV site was inserted within each
annealed dsDNA insert. The oligonucleotides used
include: LTR-247as+7F target 5 TCG AGA TAT
CGA GTG GAG GTT TGA CAG CCC GC 3 and
LTR-247as+ 7R target 5 GGC CGC GGG CTG TCA
AAC CTC CAC TCG ATA TC 3’; Cl10orf76 1049F &
TCG AGA TAT CCA GAG TGG GCT CCC TAA ACA
GCC CCG C 3 and C100rf76 1049 R 5 GGC CGC GGG
GCT GTT TAG GGA GCC CAC TCT GGA TAT C 3
C100rf76 2230 F 5 TCG AGA TAT CGG GGA GTT
GGC TTG TGG TTC CTC CCT TGG ATA GCC TCG
C 3" and C100rf76 2230 R 5 GGC CGC GAG GCT ATC
CAA GGG AGG AAC CAC AAG CCA ACT cCccC
CGA TAT C 3’; Cl100rf76 463 F 5 TCG AGA TAT CCA
GTG GAA GGA AGC AGC TAG C 3 and C100rf76
463R 5 GGC CGC TAG CTG CTT CCT TCC ACT
GGA TAT C 3; Cl0orf76 1534F 5 TCG AGA TAT
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Figure 1. U6-antisense RNA cassettes generated to target regions flanking the LTR 247 site. (A) A set of nine asRNAs were selected that targeted
either site 247, or target regions which span upstream (+) and/or downstream (—) of 247. The respective asRINAs are shown aligned with the HIV-1
subtype B LTR and site 247 (targeted by LTR-247as). (B) Selected U6-expressing asRNAs were cloned into the pTopoTA-based vector system as

described (18).

CTA GAG ATG GAG TTT TTC ACC ATG TTA CCC
AGG ATG GTC TCG C 3 and Cl0Oorf76 1534R ¥
GGC CGC GAG ACC ATC CTG GGT AAC ATG
GTG AAA AAC TCC ATC TCT AGA TAT C 3
Cl0orf76 210F 5 TCG AGA TAT CGG CAC AGU
GGG GAG AGG CCU GC 3 and Cl0orf76 210R
5" GGC CGC AGG CCT CTC CCC ACT GTG CCG
ATA TC 3.

Transfections and detection of transcriptional silencing

To determine the efficacy of the various U6 expressed
HIV-1 subtype B LTR-specific asRNAs to suppress Tat-
mediated expression of LTR-driven luciferase, 1G5 cells
(~3—4 x 10°) were transfected with 2.5 pug of the respective
asRNA expressing vectors and 2.5pg of pTat-dsRed
(described previously) using the Bio-Rad Genepulser.
Briefly, cells were washed in 1x PBS without Ca’" or
Mg®* and then washed once with ice-cold Viaspan™

(DuPont Pharma). Cultures were then re-suspended in
800 ul of ice-cold Viaspan™, transferred to a 0.4 cm gap 5
Cuvette (Bio-Rad), and the total 5pg of plasmid DNA
was added. The samples were then electroporated using
0.3kV and 960puF (time constant = 11ms and field
strength 0.95kV/cm), before being transferred to 4 ml of
warm RPMI media, and cultured. Twenty-four hours
later, cultures were collected, total cellular RNA isolated
(Qiagen RNeasy), DNase treated (Ambion Turbo DNA-
free'™) and then 1pg of RNA was converted to cDNA
(BioRad iScript™). Next, ~50ng of ¢cDNA and non-
amplified RNA (control) were subjected to PCR to detect
the ratio of luciferase mRNAs normalized to GAPDH.
The PCR primers used were: Luc_F 5 CCT GGA ACA
ATT GCT TTT AC 3 and Luc_ R 5 GTT TCA TAG
CTT CTG CCA AC 3, GAPDH_F 5 CCA CCC ATG
GCA AAT TCC 3 and GAPDH_R 5 TGG GAT TTC
CAT TGA TGA CAA G 3.
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Chromatin immunoprecipitation assay (ChIP)

Previous work has shown that siRNA-mediated transcrip-
tional gene silencing in human cells involves histone
methylation, specifically H3K9me2 or H3K27me3, at the
siRNA-targeted promoter (9,18,20). To determine
whether the observed increase in transcription was the
result of the asRNAs directing histone modifications
associated with increased gene expression, we performed a
ChIP assay specifically for H3K4me2. Briefly, 1G5 cells
were co-transfected with 2.5 ug of the U6 expressing 21 bp
asRNA and 2.5 pug of pTat-dsRed (31). Twenty-four hours
later the cultures were collected and utilized in ChIP
assays as described previously (18) using an antibody
against H3K4me2 (Upstate #07-030, Lot#26355). The
final ChIP elutes were assayed by qPCR (BioRad Syber
Green™) using HIV-1 LTR-specific primers as follows:
LTR_F 5CAC ACA AGG CTA CTT CCC TGA 3 and
LTR_R 5 GGC CAT GTG ATG AAA TGC TA 3.

Microarray analysis

Microarray analysis was used to specifically determine the
genes involved in the LTR-247as+ 7-mediated increase in
gene expression. 1G5 cells were transfected in triplicate
with either 2.5 pg LTR-247as and 2.5 pug of pTat-dsRed or
2.5 ug GFPas and 2.5 ug pTat-dsRed. Twenty-four hours
later genomic RNA was isolated and 1 pg/sample was
labeled and hybridized to the Affymetrix Human
HG-U133 Plus 2.0 array. This array includes probes for
~52000 human probe-IDs. The Affymetrix chips were
then scanned using the Affymetrix GeneChip Scanner
3000. Chips have a background of less than 50 intensity
units and a GAPDH 3'/5 ratio of less than 3. Next,
Robust Multichip Average (RMA) was used to convert
the intensity values to expression values (32,33). RMA
consists of a three-step approach which uses a background
correction on the Perfect Match (PM) probes, a quantile
normalization and summarization of the probe set
information by using Tukey’s median polish algorithm.
Present and absent calls were calculated in the R software
package as implemented in the Affymetrix Microarray
Suite version 5. This algorithm uses a Wilcoxon signed
rank-based calculation to assign presence or absence of
probe sets. Probe set were filtered out if they were assigned
absent for all the samples, which left ~30 000 probes for
further analysis. ANOVA was performed using BRB
Array Tools, developed by Dr Richard Simon and Amy
Peng Lam. BRB utilizes multivariate permutation tests to
ensure that the number or proportion of false discoveries
is controlled and is effective when the number of samples
is at least three per treatment. The ANOVA analysis
identified 185 human genes on the chip that were
significantly altered at a P-value level of 0.05, which can
be considered as false positives. Heatmaps were generated
with Cluster and TreeView programs written by Michael
Eisen (34). The microarray analysis was validated on the
same cellular RNA collected and utilized for the micro-
array specifically for 4 of the 20 most distinctly
deregulated genes by RT-PCR (Table S1) using primers
NSBP1 F 5 AGG CAC CAG CTT CTG AAA AA 3 and
NSBP1R 5 GCT GCC ACT GCT TCT TTC TT 3,

Cl0orf76 F 5" ATG GCC TGG ACC AGT ATG AG 3
and C10orf76 R YCCT TGA GCA GGA CTT CTT GG
3, NFYB F 5 GGA ATT GGT GGA GCA GTC AC 3
and NFYB R 5 TGT TGT TGA CCG TCT GTG GT 3
with the above described RT PCR methodology.

Dual luciferase reporter assay

To evaluate the effects LTR-247as+ 7 encoding plasmids
on a reporter target, HEK293 cells were seeded 24 h prior
to transfection at 1.2 x 10° cells per well in 24 well culture
dishes. Cells were transfected with 150ng of psiCheck2
target plasmid, 750ng of pCR2.1-LTR-247as or pTZ-
U6+1 (Mock) and 100ng of pCI-eGFP. Forty-eight
hours post-transfection, cells were lysed and luciferase
determined according to the manufacturer’s instructions
(Promega, WI, USA) using a Veritas dual-injection
luminometer (Turner Biosystems, C A, USA).

The siRNAs for C100rf76 targeting and for the RT primer
assay

The C100rf76 siRNAs (C10-sil 5 5 GCU GUG AAU
CAC AUA UCC CAA 3, C10-si2 ¥ CCA GAG CTT
TGA CAA CCT CAA 3 and C10-si3 5 CCT ACT TTG
CTG GTT CCC TAA 3') and the control AKT-19 5 AAC
ACC ATG GAC AGG GAG AGC 3’ were transfected
(50 nM, Lipofectamine 2000) into 293-CCRS5-GFP cells as
described previously and 24h later culture mRNA
assessed for C10or76, GFP, NFYB and NSBPI expres-
sion, each relative to GAPDH expression by qRT PCR.
To determine whether or not LTR247as+ 7 can directly
interact with C100rf76 the siRNA 247as+7 or an oligo
specific for C100rf76 mRNA or a negative control siRNA
targeted to AKTI19 were incubated with total DNase
treated (Ambion TurboDNAse, TX) cellular RNA (293T
cells) at 95°C for 5min, room temperature cooled and
converted to cDNA in the absence of a degenerate or poly
A primer (Superscript III, Invitrogen, Carlsbad, CA). The
converted ¢cDNA was PCR amplified using C100rf76
gene-specific primers Cl0orf76 F and Cl10orf76 R. The
miRNA RT Primer assay is based on work done by
Vatolin et al. (35).

RESULTS
Selection of HIV-1 subtype B LTR targeted asRNAs

Previously we have demonstrated that only the antisense
strand of the promoter-directed siRNA is required to
initiate transcriptional silencing in human cells (18).
Specifically, a U6 expressed 21 base asRNA targeted to
site 247 (denoted as LTR-247as), which lies 205bp
upstream of the HIV-1 transcription start site, was
capable of suppressing Tat-mediated transcription of
HIV-1 LTR-luciferase expression in 1G5 cells (18). 1G5
cells possess an integrated LTR-driven luciferase reporter
gene construct, which is responsive to the HIV transacti-
vating protein Tat (22). In order to comprehensively
characterize the suppressive efficacy of LTR-247as to
the 247 target site, a series of U6 expressed asRNAs
were generated to target the region surrounding site



247 (Figure la). Antisense RNAs of 22 nucleotides (nt)
and 100nt were generated to span site 247, and 21 nt
asRNAs were constructed such that they are shifted
50 bases upstream and downstream in relation to
LTR-247as. We hypothesized that site 247 (Figure 1a) is
intrinsically unique with regards to siRNA and/or asRNA
targeted TGS.

Screening of HIV-1 LTR targeted U6 expressed antisense
RNAs

The asRNA expression plasmids (Figure la and b) were
transiently co-transfected into 1G5 cells with a Tat
expression plasmid, pTat-dsRed (23,24). To determine
asRNA-mediated promoter suppression, 24h later the
cultures were collected and firefly luciferase (hLuc) mRNA
relative to GAPDH was assessed. Interestingly, one of the
U6 expressed asRNA constructs, LTR-247as + 7, which is
shifted seven bases downstream relative to LTR-247as
(Figure 1la), produced a significant increase in luciferase
mRNA expression when compared to an asRNA targeted
to the green fluorescent protein (GFP) open reading
frame. LTR-247as and LTR®-247as [targeted to the same
sequence on HIV subtype C, isolate Dul51 (accession
DQ411851)], suppressed Tat-mediated activation of the
LTR similarly to what had been shown previously (18)
(Figure 2a and Supplemental Figure la). Moreover, the
observed increase in luciferase expression did not appear
to be the result of varied cell numbers or an increase in cell
death and was also observed at 48h post-transfection
(Supplemental Figure 1b). Thus, to determine if the
increased gene activation was independent of the activity
of HIV-1 Tat, 1G5 cells were co-transfected with either
LTR-247as+7 and the HIV-1 Tat expression plasmid,
pTat-dsRed, or LTR-247as+ 7 and an irrelevant plasmid,
pBluescript. There was a ~1.5-fold enhancement of LTR-
mediated luciferase expression in the absence of HIV-I1
Tat (Figure 2b), suggesting that the previously observed
increase in LTR activity (Figure 2a and Supplemental
Figure la and b) was specifically mediated by LTR-
247as+ 7. These observations were not exclusively related
to integrated transgenes, since LTR-247as+7 was addi-
tionally shown to modulate episomal activation
(Supplemental Figure 2a and b). Activation of an
episomal HIV-1 subtype B and subtype C LTR-
expressed luciferase reporter was determined by transient
co-transfections in HEK293 cells (Supplemental
Figure 2a). Treatment with U6-expressed LTR-247as+7
plasmids resulted in a significant increase in episomal gene
expression in a Tat-independent manner (Supplemental
Figure 2b), albeit to a lesser degree than when targeting
LTR-247as+7 to an integrated target.

The role of histone modifications in LTR-247as +7
mediated increase in LTR-luciferase expression

Methylation of histone 3 at lysines 9 and 27 (H3K9me2 or
H3K27me3) is observed in genes silenced by siRNAs
targeted to their respective promoter regions in human
cells (5,7-10,12,13,18,20), Saccharomyces Pombe and
plants [reviewed in (36,37)]. While H3K9me2 and
H3K27me3 correlates with transcriptionally silent genes
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Figure 2. Effects of various U6 expressed antisense RNAs on luciferase
expression. 1G5 cells containing an integrated HIV-1 subtype B LTR-
Luciferase-SV40 poly A cassette were co-electroporated with pTat-
dsRed and the respective LTR-247as vectors (2.5 pg of each plasmid
respectively) and assessed for luciferase expression. (A) Relative
luciferase expression standardized to GAPDH per cell presented
relative to the control treated cultures (pU6 GFPas) as determined
by real-time RT-PCR 24h post-transfection. Data represent three
independent experiments with the standard deviations shown.
LTR-247as + 7-mediated increased transcription (P = 0.06093) relative
to the control GFPas based on a single-sided f-test. (B) Non-specific
LTR-247as+ 7-mediated enhancement of luciferase expression. 1G5
cells (3 x 10°) were co-transfected with either pBSK + or pTat-dsRed
and either pU6 LTR-247as+7, pU6 LTR-247as or the control pU6
GFPas. Twenty-four hours later cultures were collected, qRT-PCR was
performed and luciferase expression determined and normalized to
GAPDH. Results represent the mean =+standard deviations of three
independent experiments.

(38), H3K4me?2 associates with transcriptionally active
genes (39). Recently, siRNAs have been shown to
participate in the activation of genes via epigenetic
modifications that include the acetylation and/or methyla-
tion of histone N-terminal residues (16,17). In light of this
observation, we hypothesized that the increase in LTR-
luciferase reporter gene expression observed with asRNA
LTR-247as+7 may be mediated by asRNA-directed
H3K4me2. We assessed levels of enrichment of
H3K4me2at the targeted LTR 247 promoter site with
asRNAs LTR-247as, LTR-247as+7, LTR-247as-7 and
LTR-247as+13 by chromatin immunoprecipitation
(ChIP). Relative to the suppressive effects of asRNA
LTR-247as, which did not enrich for H3K4me2,
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Figure 3. H3K4me2 in various asRNA-treated 1G5 cells. A total of
4% 10° 1G5 cells were co-transfected with pTatDSRed or one of the
various U6 expressed asRNA constructs [pU6 GFPas (control), pU6
LTR-247as, pU6 LTR-247as+7, pU6 LTR-247as+ 13 and pU6 LTR-
247as-7]. Twenty-four hours later the cultures were collected and ChIP
analysis performed specifically for H3K4me2 as described (18). The
relative enrichment following ChIP was determined by qPCR (SYBR
green, BioRad™) with LTR-specific oligonucleotides (18). Data
represent four independent experiments standardized to no antibody
controls with the standard deviation shown.

LTR-247as+7, LTR-247as-7 and LTR-247as+ 13 were
enriched for H3K4me?2 in 1G5 cells (Figure 3). Although
LTR-247as-7 and LTR-247as+13 showed a 6-fold
increased enrichment of H3K4me2 (relative to 2-fold
enrichment by LTR-247as+7), these asRNAs were only
capable of marginal gene activation when compared to
LTR-247as+ 7 (Figure 2a, Supplemental Figure 1a and b).
The presence of activating H3K4me2 marks may be
a contributing factor in LTR-247as+ 7-mediated gene
activation. However, this alone is not sufficient to explain
the marked activation observed relative to LTR-247as-7
and LTR-247as+ 13.

Single changes in LTR-247as + 7 sequence can abrogate
the LTR-targeted activation

To determine whether LTR-247as+7 activation is
sequence-specific, we generated two U6 expressed
LTR-247as+7 RNAs containing single mutations
(LTR-247as+7mA and mB) aimed at disrupting
sequence-specific interactions between the asRNA and
the target. Construct LTR-247as+ 7mA includes nucleo-
tide changes within the first seven bases, since this region
acts as a ‘seed’ region defining typical microRNA target
specificity (40) and also because this sequence discrimi-
nates LTR-247as+7 from the suppressive asRNA
LTR-247as. We additionally generated a sense sequence
construct (LTR-247s+7) as a control (Figure 4a). When
these expression vectors were co-transfected into 1G5 cells
with HIV-1 Tat, a single mutation (G to C) at position 2 in
LTR-247as+7 (mutant LTR-247as+7mA) was enough

to partially reverse the activation potential of
LTR-247as+ 7 in 1G5 cells (Figure 4a and b).

Microarray analysis of LTR-247as + 7-treated cells

We noticed that the observed increase in gene expression
by LTR-247as+7 was not unique to the LTR-luciferase
target in 1G5 cells. Co-transfections with LTR-247as+7
were performed in a cell line (HEK293-CCR5-GFP) that
contains an integrated CCRS promoter that constitutively
expresses GFP (9). Similar to observations in 1G5 cells,
the addition of LTR-247as+ 7 resulted in an increase in
CCRS5-expressed GFP mRNA (Supplemental Figure 3).
Yet, no corresponding homologous target site for
LTR-247as+ 7 exists within the CCRS promoter, indicat-
ing a possible off-target effect induced by LTR-247as+7.
Moreover, an off-target increase in GFP expression was
also observed in cells treated with a synthetic siRNA of
LTR-247as+7 (data not shown). To determine which
genes may be involved in LTR-247as+ 7-mediated activa-
tion, microarray analysis was performed on 1G5 cells
treated with LTR-247as+7 or the control GFP asRNA
(GFPas). A total of 185 genes showed significant
alterations in their expression profile when compared to
control-treated cultures (Table S1), with RNA-associated
proteins such as La, DEAD box proteins (polypeptide 50
and 26B), and a cold inducible RNA binding protein,
standing out as being of interest (Table S1). Of the 185
deregulated genes, we focused on 23 genes, which could be
involved (based on their annotation) in producing the
observed off-target effect (Figure 5a). The microarray
analysis was further validated by RT PCR for 3 of these
23 genes which confirmed the corresponding trend
(Figure 5b). The 23 deregulated genes were screened
for microRNA-like characteristics with homology to
the LTR-247as+ 7 sequence. Based on multiple positive
matches using the online miRNA target-site search
algorithms: RNA22 (41) and RNAhybrid (42)
(Supplemental Figure 4), we decided to investigate the
role of C100rf76, a suspected non-coding gene expressing
a ~2730nt transcript from chromosome 10 of unknown
function (accession no. NM_024541).

The effect of C100rf76 on 247as + 7-mediated gene activation

To assess if C100rf76 functions to modulate the suppres-
sion of genes that were deregulated in the microarray
study, we targeted C100rf76 with three different siRNAs
(Figure 6a). Interestingly, when C100rf76 was suppressed,
increased expression of NSBP1, NFYB and CCRS-
expressed GFP was observed that was inversely propor-
tional to the suppression of Cl0orf76 by RNAI
(Figure 6b). These results matched the increase seen in
the microarray data for NSBP1, NFYB and CCRS-
expressed GFP following treatment with LTR-247as+7
(compare Figures 5b and 6b).

To determine if any of the putative predicted LTR-
247as+ 7 targeted sites on Cl0orf76 were susceptible to
LTR-247as + 7-mediated inhibition, HEK293 cells were
co-transfected with LTR-247as+ 7 and various psiCheck
dual-luciferase reporter constructs, each containing indi-
vidual C100rf76 target sequences for LTR-247as+ 7 in the
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3’ UTR of Renilla luciferase (Figure 6¢ and Supplemental
Figure 4). Relative to a complete LTR-247as+ 7 target as
a control, 2 of the 5 putative C100rf76 target sites tested
were susceptible to LTR-247as+7, suggesting that
C100rf76 is being directly suppressed via LTR-247as+ 7-
mediated post-transcriptional inhibition (Figure 6d).
Moreover, the Cl10orf76 transcript could be selectively
reverse-transcribed using the priming of LTR-247as+7
siRNA (Figure 6e). No alteration in suppression was
observed when Argonaut 2 (Ago2) was inhibited by an
anti-Ago2 siRNA (Supplemental Figure 5), indicating that
LTR-247as+7 is likely inhibiting C100rf76 through an
antisense mechanism. However, we cannot completely
rule-out a role for the RNAi-related pathway in suppres-
sing C10orf76. Taken together these data suggest that
off-target inhibition of C100rf76 expression is predomi-
nantly responsible for the observed gene activation.

DISCUSSION

We previously identified a TGS-susceptible region, site
247, which when targeted by an asRNA (LTR-247as), was
capable of suppressing a HIV-1 subtype B LTR promoter
in the presence of the transactivator Tat (18). It was
unexpected that a 22nt asRNA sequence targeted only
seven bases downstream of site 247 (LTR-247as+7), and
still largely overlapping with the suppressor LTR-247as,
showed the opposite effect of increased gene activation.
Short dsRNAs of ~22bp targeted to non-coding regula-
tory regions in gene promoters have been recently shown
to induce potent gene activation, thus adding to the
diversity of functions for short RNAs in gene regulation
(16,17). However, since a mechanistic explanation
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Figure 5. Microarray analysis of 23 deregulated genes. (A) A heatmap
was produced depicting the variation in gene expression in triplicate
treated LTR-247as+ 7 relative to the corresponding expression profile
for the control GFPas treated 1GS cells. (B) The microarray analysis
was utilized to validate the increase in expression from 3 of the 23
candidate genes by real-time RT PCR analysis. Results represent the
mean + standard  deviations of three independent transfection
experiments.
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(RNA +RT) were converted to cDNA and PCR was performed using C10orf76-specific oligos for an expected band ~136 bp.

for RNA activation remains to be elucidated, we were
unsure whether this phenomenon represented a unique
pathway, or formed part of an existing framework of
post-transcriptional inhibitory effects caused by antisense
RNAs or RNAi effector sequences. A number of
mechanisms exist whereby RNAs can modulate gene
activity. For example, gene activation has been observed
for 20bp dsRNAs containing neuron restrictive silencer
element (NRSE/RET) sequences. NRSE dsRNA activates
expression of NRSE/RE[-containing genes by recognizing
the NRSF/REST transcriptional regulator to stimulate
neural stem cell differentiation (43).

The gene activation observed for LTR-247as+7 is
likely due to a sequence-specific off-target effect that is
ubiquitously observed when using RNAi and antisense
effector sequences for post-transcriptional inhibition (44),
and explains why ~185 genes were deregulated by LTR-
247as+ 7 (Table S1). The data presented here suggests that
a complex cascade exists which possibly includes several of

the genes which have been shown to be deregulated by
LTR-247as+ 7. However, we have focused our attention
on a gene of unknown function, C100rf76, which was
downregulated by LTR-247as+7. The link between
Cl10orf76 and LTR247as+7 was determined via an
in silico analysis of putative microRNA-like binding
sites, two of which were established to be susceptible to
post-transcriptional inhibition by LTR-247as+ 7.

Even though we ascribe the observed RNA-mediated
gene activation to an off-target effect, some of the
experimental criteria used by Li (16) and Janowski (17)
in establishing the wvalidity of RNA-mediated gene
activation may also be true for off-target effects. These
include the sequence specificity and length characteristics
of the targeting asRNA or dsRNA. First, no notable
increase in gene expression was observed with LTR-247as-
50/+ 50, which includes the LTR-247as+7 sequence,
indicating that the LTR-247as+ 7 sequence motif alone
is not a determinant for off-target gene activation.



Moreover, a mutant version of LTR-247as+ 7, with ‘seed’
region mismatches, can abrogate activation, similarly to
what was observed by Li er al. (16). Since sequence
specificity may not be a determinant for ruling out off-
target or RNA-protein interactions, more stringent
criteria may be necessary for determining sequence-
dependent effects induced by RNA when targeted to
promoter sequences. As was shown for antisense RNAs
that induce TGS (18), direct association of effector RNAs
at the targeted promoter would be of value, although this
was attempted without success by Janowski et al., for
Agol and Ago2 (17). Secondly, RNA activation has been
associated with the removal of silencing histone methyla-
tion marks and/or addition of activating acetylation and
methylation marks (16,17). While we show some increase
H3K4me?2 elicited by LTR-247as+ 7, even greater enrich-
ment was elicited by upstream and downstream over-
lapping asRNAs, which do not show potent gene
activation. It is possible that the off-target inhibition of
a repressor may function to induce active chromatin. Our
data suggest that showing active or suppressive chromatin
marks are largely correlative, and do not provide
mechanistic basis for the underlying result. Lastly, both
Li and Janowski use siRNAs and not antisense RNAs to
induce gene activation. Li et al. (16) show that the
inhibition of Ago2 negatively affects the ability of siRNAs
to inhibit RNAa. Taken together with the inability to
localize Ago2 to the activating promoter (17), the data are
consistent with the possibility that siRNAs are inadver-
tently inhibiting a transcriptional regulator. In addition,
most studies that target siRNAs for TGS make use of very
high concentrations of siRNAs (>30nM) in order to
direct nuclear localization of the siRNAs. However to
date, much lower concentrations were used to elicit RNA-
mediated gene activation [InM for Li er al. (16) and
12nM for Janowski et al. (17)].

Even though the data presented here point to an off-
target mechanism for RNA activation, previous reported
observations of this phenomenon (17) do show some
intriguing differences which warrant further explanation.
Importantly, both studies by Li and Janwoski show that
RNA activation activity lasts longer than traditional
knockdown times established for siRNAs (16,17). This
effect is difficult to explain using an antisense- or siRNA-
based  post-transcriptional  inhibition  hypothesis.
Moreover, Janowski ef al. (17) do show that peptide
nucleic acid (PNA) mimics of their activating dsSRNAs do
not induce gene activation and that inactive siRNAs with
overlapping sequences abrogate activating siRNAs when
added sequentially. These latter experiments either suggest
a direct link between the activating siRNA and the targeted
promoter sequence or that Argonaut 2 is simply swamped
out by the addition of competitive small RNAs for RISC.

Overall, our findings indicate that targeting promoter
regions with short RNAs can have unintended effects,
especially if there exists partial homology to transcripts in
the treated cell. The targeting of promoter DNA sequences
with RNAs has recently been described as a novel
sequence-specific mechanism for activating downstream
elements. Here we show that indiscriminate cell-wide gene
activation can be elicited by off-target downregulation of a
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suppressor gene. Just as off-target effects mask the efficacy
of siRNAs for post-transcriptional gene knockdown,
caution should be taken when RNAs (either siRNAs and
asRNAs) are generated to target promoter regions with the
intention of inducing specific RNA-mediated transcrip-
tional modulation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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