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ABSTRACT 
Plasma based genotyping via cell-free DNA may identify actionable mutations for 

potential therapeutic intervention in patients with advanced malignancies including 
breast cancer. In this article, we discuss recent studies using cell-free DNA testing 
to identify and classify somatic BRCA1/2 mutations in metastatic breast cancer, and 
potential future applications for the treatment of metastatic breast cancer.

INTRODUCTION 

In recent years, plasma based genotyping via cell-
free DNA (cfDNA) or “liquid biopsy” has emerged as a 
robust means to detect actionable mutations and guide 
genotype-directed therapies for patients with advanced 
malignancies [1]. For metastatic breast cancer, the utility 
of cfDNA in identifying actionable mutations has been 
demonstrated [2], and recent studies have validated the 
feasibility of tumor genotyping for targeted treatment 
matching [3]. Notably, a PI3K inhibitor has now been 
approved for PI3KCA mutant hormone receptor positive 
(HR+)/HER2- metastatic breast cancer using diagnostic 
cfDNA testing to identify PI3KCA mutations [4]. CfDNA 
offers the advantage of being less invasive and possibly 
more sensitive than tumor tissue genotyping assays [5, 6]. 

PARP inhibitors have recently been approved as a 
targeted therapy for the treatment of germline BRCA1/2 
mutant metastatic breast cancer based on results from two 
pivotal phase III clinical trials. The phase III OlympiAD 
[7] and EMBRACA [8] studies demonstrated significant 
improvement in progression-free survival with olaparib 
and talazoparib, respectively, compared to chemotherapy, 
for metastatic breast cancer. PARP inhibitors may also 
improve patient reported outcomes and quality of life. 
However, germline BRCA1/2 mutations only account for 
about 5–10% of breast cancer [9], limiting their broad 
applicability. 

A question that arises is whether PARP inhibitors 
may also be beneficial in metastatic breast cancer with 
somatic BRCA1/2 mutations. In a recent study led by our 

team [10], we demonstrated the emergence of somatic 
BRCA1/2 mutations detectable by cfDNA, largely in the 
absence of germline BRCA1/2 mutations. In our analysis 
of 215 patients undergoing cfDNA testing as part of care 
for metastatic breast cancer, we observed that 29 (13.5%) 
had somatic BRCA1/2 mutations detectable in cfDNA, 
which were seen in various subtypes, and often clonal 
in nature. Four percent had somatic BRCA1/2 mutations 
that were known germline-pathogenic, and the rest were 
novel variants, based on classification using extrapolation 
from reputable genomic databases. In addition, we 
demonstrated increased sensitivity to a PARP inhibitor in 
a CTC culture derived from a patient with a pathogenic 
somatic BRCA1 mutation, highlighting the unique role 
of PARP inhibition for patients with somatic BRCA1/2 
mutant breast cancer. However, not all somatic BRCA1/2 
mutations are functionally significant, i.e., pathogenic. For 
example, in a CTC culture derived from a patient with a 
novel variant BRCA2 mutation, we did not observe any 
impact of a PARP inhibitor. Interestingly, this patient also 
had widespread expression of the APOBEC mutation 
signature that encompassed the BRCA2 mutation itself, 
suggesting the novel BRCA2 mutation was likely a 
passenger mutation rather than a driver mutation. Based 
on these findings, we developed an algorithm to guide 
clinical assessment of somatic BRCA1/2 mutations, as well 
as designed a genotype-directed clinical trial for patients 
with metastatic breast cancer [11]. 

A genotype-directed clinical trial is currently 
ongoing at our institution and other academic centers 
to determine the efficacy of PARP inhibition in somatic 
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cfDNA BRCA1/2-mutant metastatic breast cancer [11], 
and the results of this trial may help expand the population 
of patients who benefit from PARP inhibitors, similar to 
what has been observed in ovarian cancer. A combined 
analysis of two studies evaluating a PARP inhibitor in 
ovarian cancer demonstrated similar efficacy in germline 
BRCA1/2 mutant patients and somatic BRCA1/2 mutant 
patients [12]. 

Besides detection of germline and somatic BRCA1/2 
mutations, cfDNA analysis also allows for detection 
of reversion BRCA1/2 mutations [13]. The acquisition 
of BRCA1/2 reversion mutations is a well described 
phenomenon [14], which restores the open reading frame 
(and function) of the BRCA1/2 gene, thus rendering 
a PARP inhibitor ineffective. In a second multicenter 
analysis [13], we demonstrated that routine plasma-based 
genotyping can be utilized to classify BRCA1/2 cfDNA 
mutations as germline, somatic or reversion mutations, 
based on specific loci and the mutant allele fraction of 
the BRCA1/2 mutation. Of 828 patients with advanced 
malignancies including breast cancer undergoing testing 
with a 73 gene cfDNA assay, one or more pathogenic 
BRCA1/2 mutation was identified in 7.2% of patients, 
and both somatic and germline variants were detected. 
Polyclonal reversion mutations were found in 21.4% of 
patients with germline BRCA1/2 mutations, most often in 
association with receipt of a prior PARP inhibitor. 

Another study found that the absence of pre-existing 
cfDNA BRCA1/2 reversion mutations in patients with 
ovarian cancer who had somatic or germline BRCA1/2 
mutations and were treated with rucaparib was associated 
with improved progression-free survival [15]. Therefore, 
the identification of cfDNA BRCA1/2 reversion mutations 
may have important implications for therapeutic response to 
PARP inhibitors, and will be studied in our ongoing clinical 
trial of a PARP inhibitor for somatic BRCA1/2 mutant 
metastatic breast cancer [11]. A complementary ongoing 
trial is also evaluating the efficacy of the PARP inhibitor, 
olaparib, in somatic BRCA1/2 mutant metastatic breast 
cancer, with initial results suggesting potential efficacy [16]. 

In summary, plasma-based genotyping is a 
promising strategy for the detection of BRCA1/2 mutations 
and could potentially guide triage to genotype-directed 
matched therapy with a PARP inhibitor. Ongoing studies 
will help determine the therapeutic utility of this approach 
and impact on long term clinical outcomes for patients 
with metastatic breast cancer. 
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