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It has been hypothesized that the structure of tissues and the hierarchy of
differentiation from stem cell to terminally differentiated cell play a significant
role in reducing the incidence of cancer in that tissue. One specific mechanism
by which this risk can be reduced is by minimizing the number of divisions—
and hence the mutational risk—that cells accumulate as they divide to main-
tain tissue homeostasis. Here, we investigate a mathematical model of cell
division in a hierarchical tissue, calculating and minimizing the divisional
load while constraining parameters such that homeostasis is maintained.
We show that the minimal divisional load is achieved by binary division
trees with progenitor cells incapable of self-renewal. Contrary to the protection
hypothesis, we find that an increased stem cell turnover can lead to lower div-
isional load. Furthermore, we find that the optimal tissue structure depends
on the time horizon of the duration of homeostasis, with faster stem cell div-
ision favoured in short-lived organisms and more progenitor compartments
favoured in longer-lived organisms.
1. Introduction
Many tissues in the human body undergo constant regeneration of their con-
stituent cells. This regeneration allows the tissue to maintain effective
function and to prevent damage accumulation, for example from exposure to
acidic environments in the gut or ultraviolet light on the skin. In organs such
as the colon, skin and haematopoietic system, the regeneration is managed
through a hierarchical organization of stem and progenitor cells. These cells
undergo amplification of numbers and phenotypic differentiation to produce
the functional, terminally differentiated cells (TDC) in large enough quantities
to support the functioning of the tissue. The haematopoietic system is the arche-
typal example of such a tissue: in humans approximately 105 haematopoietic
stem cells [1] are ultimately responsible for producing approximately 1011

TDC per day to satisfy respiratory, immune and coagulation demands [2–4].
It has been hypothesized that hierarchical population structures have

evolved to protect against the accumulation of mutant cells [5–11]. Empirical
observations give weight to these claims: despite blood cells being over
10 times more frequent than any other human cell type [12], haematopoietic
cancers make up only a small fraction of cancer incidence statistics [13]. It
has been suggested that the protection against cancer is conferred by limiting
the cumulative number of cell divisions needed to maintain tissue homeostasis
[6], as well as ensuring that the majority of cells are transient such that
continued cell turnover washes out mutants [5,8].

Mathematical models in which cells are grouped into homogeneous com-
partments (so-called compartmental models) have been employed to test
different aspects of these cancer prevention hypotheses. With such models it
is possible to calculate the number of divisions that cells undergo as they differ-
entiate from stem cells to TDC [6,10,14–17]. The mutation risk is inherently
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Figure 1. Reduced model schematic. (a) We consider a hierarchical popu-
lation of cells, with stem cells (SC) at the top of the hierarchy giving rise
to progenitor cells and ultimately terminally differentiated cells (TDC).
(b) In this reduced model, cells can only symmetrically self-renew or symme-
trically differentiate and there are no quiescent SCs. Here, cells in
compartment i divide with rate βi. With probability αi the daughters are
both of type i, and with complimentary probability 1− αi the daughters
are of differentiated type i + 1. The parameter βn assumes the role of the
death rate of TDCs, where we have αn = 0. We also ignore SC quiescence
in the reduced model.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20210784

2
linked to this number of divisions; every DNA replication
event carries a risk of mistakes, such that more divisions
means a higher risk of genetic damage. Once an expression
is obtained for the number of cell divisions across the
tissue, it is then possible to optimize the tissue architecture
in order to minimize the number of divisions and the risk
of mutation accumulation [6,14].

Using a computational model, Pepper et al. [9] showed that
increasing the number of compartments in hierarchically orga-
nized tissues limits the somatic evolution (accumulation of
multiple beneficial mutations) of those cells. Similarly, Alvar-
ado et al. [14] focussed optimizing tissue structures to limit
mutation accumulation. They found that the optimal tissue
structure depends on the objective of optimization: minimiz-
ing the number of cells with a single mutation in the tissue
requires a high degree of self-renewal across the compart-
ments, while the time until two-hit mutants are generated is
maximized by the non-self-renewing binary division tree.
Derényi & Szöllősi [6] were the first to compute the divisional
load that is accumulated when producing a lifetime supply of
TDC, rather than explicitly focussing on somatic evolution.
They found that optimal tissues which minimize divisional
load follow a binary tree structure with no propensity for
self-renewal among the progenitor cells, as well as a power
law increase in differentiation output along the hierarchy.

What is missing is the following: what happens if we con-
strain the optimization of divisional load by ensuring tissue
homeostasis, and what changes if we minimize divisions
accumulated after stem cell differentiation or if we consider
the total divisions (including stem cells) accumulated across
a lifetime? Furthermore, what is the impact of the difference
between the timescale on which evolution acts (i.e. until
reproductive senescence) and the actual lifetime of an indi-
vidual on divisional load?

In the next section, we introduce our model of cell pro-
liferation in a hierarchical population structure. For the
purpose of our analyses, we primarily consider a reduced
model in which only symmetric division events can occur.
The full model, which considers symmetric and asymmetric
cell divisions, as well as cell death, is described in the elec-
tronic supplementary material. We further consider the
possibility for stem cells to be non-dividing in the full
model, as it has been suggested that quiescence is another
mechanism of cancer defence in hierarchical tissues [18].
Using these models, we quantify the number of divisions
that cells accumulate. We then use the method of Lagrange
multipliers to compute the optimum tissue architecture
which minimizes divisional load, while constraining the
number of TDC under homeostatic conditions. This optimiz-
ation is performed on post-stem cell divisions, as well as for
total divisions accumulated over a given time horizon.
2. Methods
2.1. Model structure
We consider a compartmental model for cell proliferation in a hier-
archical tissue, following the likes of Marciniak-Czochra et al. [17],
Rodriguez-Brenes et al. [19], Stiehl & Marciniak-Czochra [20],
Böttcher et al. [15], Nienhold et al. [21]. Cells are collected into
compartments which represent their level of differentiation.
Within each compartment, the cells are indistinguishable. The
compartments are labelled by i∈ {1, 2, …, n}, where i = 1
corresponds to stem cells (SC), 1 < i < n are progenitor cells, and
i = n are terminally differentiated cells (TDC). The number of
cells in compartment i is denoted as Ni. This structure is high-
lighted in figure 1a. We note that we only consider a linear
population structure, with population branching here ignored to
reduce the number of model parameters. In the full model, we
additionally consider a compartment of non-dividing (quiescent)
SCs, labelled i = 0. See appendix I in the electronic supplementary
material for details.
2.2. Dynamics
Cells move between compartments through differentiation,
which is strictly coupled to cell division in this model. A division
event produces two daughter cells, each of which may remain in
the same compartment as the mother cell (i), or differentiate to
the next compartment along the hierarchy (i + 1). We do not con-
sider the possibility of de-differentiation (i.e. cells cannot move
from compartment i to compartment i− 1). De-differentiation
would lead to an increase in divisions accumulated during
homeostasis compared to a forward-only differentiating tissue.

To build intuition and guide analytical calculations, we pri-
marily consider the reduced model (figure 1b) in which cells
only divide symmetrically. We ignore cell death and asymmetric
cell division, as well as SC quiescence compared to the full model
that is described in appendix I in the electronic supplementary
material. This reduced model is parametrized by βi, which is
the division rate of cells in compartment i, and αi, which is
their probability of self-renewal (correspondingly, 1− αi is the
probability of differentiation) following a division event. The
reduced model is described by the set of ordinary differential
equations

_Ni ¼ 2ð1� ai�1Þbi�1Ni�1 � ð1� 2aiÞbiNi, ð2:1Þ

where the first term describes the inflow of two daughter cells
from compartment i − 1 and the second term is the net loss rate
(differentiation minus self-renewal) of cells from compartment i.
Furthermore, we set αn = 0 and the parameter βn assumes the
role of the death rate of the TDCs.

Under homeostasis the number of cells per compartment
does not change ( _Ni ¼ 0). The steady state of equation (2.1),
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which we write as N�
i , satisfies the relation

ð1� 2aiÞbiN
�
i ¼ 2ð1� ai�1Þbi�1N

�
i�1, ð2:2Þ

i.e. the net loss from compartment i is balanced by the influx
from differentiating cells in compartment i − 1. For this steady
state to exist, we require α1 = 0.5 and αi < 0.5 for 1 < i < n. Solving
equation (2.2) recursively, we have

N�
i ¼ b1

bi

Yi�1

k¼1

2ð1� akÞ
1� 2akþ1

" #
N�

1

¼ 1
1� 2ai

b1

bi

Yi�1

k¼2

2ð1� akÞ
1� 2ak

" #
N�

1 : ð2:3Þ

In particular, for TDCs (i = n), we have

N�
n ¼ b1

bn

Yn�1

k¼2

2ð1� akÞ
1� 2ak

" #
N�

1 : ð2:4Þ
erface
19:20210784
2.3. Counting divisions
For compartmental models, the expected number of divisions
that cells accumulate in a tissue has previously been calculated
using two methods: firstly, Derényi & Szöllősi [6] constructed
ordinary differential equations (ODE) for the cumulative
number of divisions across all cells in a compartment, and
from this they extracted the average number of divisions that
cells undergo during their lifetime. Alternatively, Böttcher et al.
[15] constructed an explicit set of ODEs for sub-populations
of cells of type i that have undergone j division events,
from which the mean number of divisions per cell is easily
extracted. These models yield identical results for the mean
number of divisions in the reduced and full models,
as described in appendices II and III in the electronic
supplementary material, respectively.

Briefly, following the method of Derényi & Szöllősi [6], the
cumulative number of divisions accumulated across all SCs, T1,
in the reduced model satisfies the ODE

_T1 ¼ a1b1N
�
1

T1

N�
1
þ 2

� �
� ð1� a1Þb1N

�
1

T1

N�
1

� �
¼ b1N

�
1 , ð2:5Þ

where we have used α1 = 0.5. Together with the initial condition
T1(0) = 0, equation (2.5) can be solved to give T1ðtÞ ¼ b1N�

1 t.
Hence, the average number of divisions per SC at time t, D1(t),
satisfies

D1ðtÞ ¼ T1ðtÞ
N�

1
¼ b1t, ð2:6Þ

i.e. SC divisions are accumulated linearly with time.
The derivation of the equations for _Ti [similar to equation

(2.5)] for all compartments 1 ≤ i ≤ n is described in appendix
II in the electronic supplementary material. Ultimately, the
expected number of divisions that cells accumulate after a
time period t, Di(t), is described by a set of linear ODEs
which can be solved analytically. However, the resulting
expression becomes increasingly complicated for large n.
Instead, we here make the assumption that the SC dynamics
are much slower than non-SCs. We can then express the
mean number of divisions per TDC at time t, Dn(t), as the
sum of the SC divisions up to that point in time (equation
(2.6)) plus the expected number of divisions that are accumu-
lated after SC differentiation, Dn. The latter term can be
calculated (see appendix II in the electronic supplementary
material) as

Dn ¼
Xn
j¼2

1
1� 2a j

: ð2:7Þ
Hence, in the reduced model, the divisions accumulated by
TDCs after time t is approximated by

DnðtÞ � DSCðtÞ þDn ¼ b1tþ
Xn
j¼2

1
1� 2a j

: ð2:8Þ

This equation is equivalent to the result of Derényi & Szöllősi [6]
for the reduced dynamics. The calculation differs from Derényi &
Szöllősi [6] in the optimization procedure in the next steps.

2.4. Optimizing tissue architecture
Given the expressions for the expected number of divisions accu-
mulated per TDC, we can minimize these values—subject to
physical constraints—to deduce the optimal tissue structure par-
ameters which minimize the divisional load. The constraint that
we apply is that during homoeostasis the tissue should main-
tain a given number of TDCs, such that the tissue remains
functional. For the reduced model, we derive the constraint
from the equilibrium TDC population size, equation (2.4),
which we rearrange as

Yn�1

k¼2

2ð1� akÞ
1� 2ak

� bnN�
n

b1N�
1
¼ 0: ð2:9Þ

The parameters αi (1 < i < n), β1, N�
1 and n must satisfy this

relation to ensure that enough TDCs are present in the tissue.
We keep the number of TDCs (N�

n) and the death rate of
TDCs (βn) fixed, as well as setting α1 = 0.5 and αn = 0 as required
in the model definition.

We then use the method of Lagrange multipliers [22] to con-
strain the homeostatic number of TDCs and minimize the tissue’s
divisional load. The objective function that is to be optimized is
the number of divisions accumulated per TDC, which we can
construct in one of two ways: firstly, we can consider only the
divisions accumulated after a SC has differentiated, Dn (equation
(2.7)). In this scenario, we drop the time dependence and only
focus on optimizing the differentiation structure of the tissue.
The Lagrangian function is then constructed as the linear combi-
nation of equations (2.7) and (2.9), i.e.

L ¼
Xn
j¼2

1
1� 2a j

� l
Yn�1

k¼2

2ð1� akÞ
1� 2ak

� bnN�
n

b1N�
1

" #
, ð2:10Þ

where the coefficient λ is the Lagrange multiplier.
Secondly, we can include SC divisional history and ask how

many divisions have TDCs accumulated after a given time t,
Dn(t), using the approximation in equation (2.8) as the objective
function. The Lagrangian function in this case is

LðtÞ ¼ b1tþ
Xn
j¼2

1
1� 2a j

� l
Yn�1

k¼2

2ð1� akÞ
1� 2ak

� bnN�
n

b1N�
1

" #
: ð2:11Þ

The optimum tissue architecture is then found by computing
the stationary points of L or LðtÞ considered as a function of αi
(1 < i < n), β1, and the Lagrange multiplier λ. Due to the discrete
nature of n, we cannot identify its optimum value through
stationary point analysis. We can, however, identify it through
graphical methods. The number of SCs does not appear in the
objective function in the Lagrangian, so this too must be opti-
mized by graphical methods.

The Lagrangian functions for the full model can be con-
structed analogously. See appendix V in the electronic
supplementary material for details.
3. Results
Although our results are algebraic, we illustrate these results
using the observed parameters of human erythropoiesis (red



royalsocietypub

4
blood cell production). A healthy human has approximately
1013 red blood cells at any given time [12] and these cells have
a lifetime of approximately 120 days [3]. The most recent
estimates of human haematopoietic stem cell (HSC) numbers
are approximately 105 cells which divide approximately once
per year [1].
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3.1. Optimized tissue architectures in the reduced
model

3.1.1. Additional divisions after stem cell differentiation
To determine the architecture that minimizes the divisional
load, one needs to find the stationary points of the Lagran-
gian function in equation (2.10). These stationary points
satisfy @L=@ai ¼ 0 (1 < i < n) and @L=@l ¼ 0. As the SC div-
ision rate β1 features only in the constraint and not in the
objective function, this parameter cannot be optimized
through stationary point analysis. The values of the αi at
the stationary point of L are the parameters which minimize
the number of divisions accumulated by the TDCs after leav-
ing the SC compartment, while still maintaining the
homeostatic population of TDCs.

From the @L=@ai ¼ 0 (for 1 < i < n) condition, we arrive at

2ð1� aiÞ
1� 2ai

¼ l
Yn�1

k¼2

2ð1� akÞ
1� 2ak

, ð3:1Þ

which is only satisfied if

2ð1� aiÞ
1� 2ai

¼ l1=ð3�nÞ: ð3:2Þ

This implies that all αi are equal for 1 < i < n in a tissue which
minimizes the divisional load after SC differentiation. This
equivalence of the αi across compartments was used by
Böttcher et al. [15] and Alvarado et al. [14] as a simplifying
assumption without derivation. Furthermore, this result is
consistent with the result of Derényi & Szöllősi [6], who
found that the ratio of differentiation output between two
consecutive compartments is constant in optimized tissues.

The value of λ, and ultimately the value of the αi, are
obtained from the @L=@l ¼ 0 condition, which is equal to
the population size constraint (equation (2.9)). By substituting
equation (3.2) into equation (2.9) and then solving for λ, we
find the value of the Lagrange multiplier

l ¼ bnN�
n

b1N�
1

� �ð3�nÞ=ðn�2Þ
: ð3:3Þ

By rearranging equation (3.2), we can now define the values
of αi which minimize the number of divisions per TDC
during homeostasis and for a given number of compart-
ments. These values will depend explicitly on the number
of compartment size n, hence we write this value as âðnÞ,
which satisfies

âðnÞ ¼ l1=ð3�nÞ � 2
2l1=ð3�nÞ � 2

¼
bnN�

n

b1N�
1

� �1=ðn�2Þ
�2

2
bnN�

n

b1N�
1

� �1=ðn�2Þ
�2

: ð3:4Þ

We here want to differentiate between the subscript notation,
which is just the index of the compartment, and the bracket
notation, denoting that the optimized parameter value âðnÞ
depends on the number of compartments in the hierarchy.
From equation (3.4), we see that an increase in the number
of compartments n must be compensated by a decrease in the
progenitor self-renewal probability âðnÞ to maintain the
homeostatic level of TDCs. However, âðnÞ is a probability
and is bounded from below by zero. Once n is increased suf-
ficiently such that ðbnN�

n=b1N�
1Þ

1
n�2 , 2, we have to artificially

set âðnÞ ¼ 0 and there will be a new (increased) steady state
TDC population size N̂n. From equation (2.4), the number
of TDCs will satisfy

N̂n ¼ b1N�
1

bn

2½1� âðnÞ�
1� 2âðnÞ

� �n�2

, ð3:5Þ

while the number of divisions per TDC after SC differen-
tiation (equation (2.7)) satisfies

D̂n ¼ ðn� 2Þ 1
1� 2âðnÞ þ 1: ð3:6Þ

The minimum number of divisions occurs when âðnÞ first
reaches zero, i.e. when ðbnN�

n=b1N�
1Þ1=ðn�2Þ ¼ 2. At this

point, the number of compartments is given by

n̂ ¼ log2
bnN�

n

b1N�
1

� �
þ 2, ð3:7Þ

and the divisional load per TDC is

D̂n̂ ¼ log2
bnN�

n

b1N�
1

� �
þ 1 ¼ n̂� 1: ð3:8Þ

Therefore, perhaps unsurprisingly, the binary division tree
(âðnÞ ¼ 0) with minimal number of compartments (n ¼ n̂)
is the tissue structure which minimizes divisional load
while maintaining the TDC population. As shown by
Böttcher et al. [15], both the mean and variance of the cumu-
lative number of cell divisions is minimal for this non-self-
renewing structure. If the number of compartments n is
smaller than n̂, then there must be some self-renewal in the
progenitor compartments, which leads to an increase in the
cumulative number of divisions. If n . n̂, then there are
more divisions than required to maintain the TDC population
and the tissue produces more TDCs than necessary.

The values of âðnÞ (probability of self-renewal that mini-
mizes divisional load per TDC), N̂n (the corresponding
number of TDCs) and D̂n (the divisional load per TDC) are
illustrated in figure 2a–c as a function of total SC turnover
(b1N�

1 ) and the number of compartments in the tissue (n).
The line described by equation (3.7) (dashed diagonal) does
indeed follow the minimum divisional load; any change in
either SC turnover or the number of compartments leads to
an increase in divisional load. However, by moving along
this line (equation (3.7)), in particular to higher SC turnover
and lower number of compartments, the divisional load
can be reduced, as shown in figure 2f. Therefore, the
tissues which minimize divisional load after SC differen-
tiation would have very high SC turnover and few
differentiation steps.

If the SC turnover is fixed for another reason (e.g. due to
spatial and nutritional niche competition), then the minimum
divisional load occurs when there are enough compartments
such that there is no progenitor self-renewal (âðnÞ ¼ 0), but
not too many such that TDCs are not overproduced
(N̂n ¼ N�

n) (figure 2d–f ).
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Figure 2. (a) Self-renewal probability (âðnÞ), (b) TDC population size (N̂n) and (c) cumulative number of divisions per TDC after SC differentiation (D̂n) as a function
of the number of compartments n and SC turnover (total divisions per year) b1N

�
1 for the reduced model. Here, we have fixed the TDC properties

bn ¼ 1=120 day�1 and N�n ¼ 1013 cells, which are approximate numbers for red blood cells in humans [3]. The horizontal line is the approximate SC turnover
in humans (N�1 ¼ 105 cells; β1 = 1 yr−1; Lee-Six et al. [1]). The diagonal dashed line represents the optimum number of compartments n̂ for a given SC turnover
which minimizes the cumulative number of divisions (equation (3.7)). The values of âðnÞ, N̂n and D̂n along these solid and dashed lines are shown in (d–f ),
respectively. Colour scales for N̂n and D̂n are truncated for visual clarity.
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3.1.2. Cumulative divisions after lifetime t
The objective function in the Lagrangian LðtÞ (equation
(2.11)), which now counts SC divisions too, is explicitly
dependent on the SC division rate parameter β1, as well as
on the organism’s lifetime. We can now determine the
parameters and tissue structure which minimize the div-
isional load after a time period τ, which we call the
timescale of optimization. The optimum parameter values
must satisfy @LðtÞ=@ai ¼ 0 (1 < i < n), @LðtÞ=@l ¼ 0, as well
as @LðtÞ=@b1 ¼ 0. Note that τ is the timescale of optimization:
it is entirely possible that the organism lives for a shorter (t <
τ) or longer (t > τ) time and we therefore have to consider two
timescales.

The partial derivative of LðtÞ (equation (2.11)) with
respect to αi are unchanged from the previous section, such
that the condition equation (3.2) must be satisfied. From the
condition @LðtÞ=@b1 ¼ 0, we arrive at

b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l

t

bnN�
n

N�
1

s
: ð3:9Þ

Note that the SC division rate β1 is now decoupled from the
SC population size N�

1 for this time-dependent problem, and
therefore we can no longer consider SC turnover b1N�
1 as an

independently variable quantity as was done in figure 2.
These values of αi (equation (3.2)) and β1 (equation (3.9))

can be substituted into the population size constraint
equation (2.9), i.e. the @LðtÞ=@l ¼ 0 condition, and we can
solve for the value of the Lagrange multiplier λ:

l ¼ t
bnN�

n

N�
1

� �ð3�nÞ=ðn�1Þ
: ð3:10Þ

The values of αi and β1 which minimize the number of
divisions per TDC after time τ are thus given by

ai ¼ âðnÞ ¼ (tbnN�
n=N

�
1 )

1=ðn�1Þ � 2

2(tbnN�
n=N

�
1 )

1=ðn�1Þ � 2
and

b̂1ðnÞ ¼
1
t

t
bnN�

n

N�
1

� �1=ðn�1Þ
: ð3:11Þ

To satisfy âðnÞ � 0, we require ðtbnN�
n=N

�
1Þ1=ðn�1Þ � 2. This

condition imposes b̂1ðnÞ � 2=t. Again, we here want to clar-
ify the difference between the subscript notation, which is just
the index of the compartment, and the bracket notation,
denoting that the optimized parameter values âðnÞ and
b̂1ðnÞ depend on the number of compartments in the
hierarchy.
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From equation (2.4), the number of TDCs will satisfy

N̂n ¼ b̂1ðnÞN�
1

bn

2½1� âðnÞ�
1� 2âðnÞ

� �n�2

, ð3:12Þ

while the number of divisions per TDC after time t (equation
(2.8)) satisfies

D̂nðtÞ ¼ b̂1ðnÞtþ ðn� 2Þ 1
1� 2âðnÞ þ 1: ð3:13Þ

The minimum number of divisions occurs when âðnÞ ¼ 0
and b̂1ðnÞ ¼ 2=t, or when ðtbnN�

n=N
�
1Þ

1
n�1 ¼ 2. At this point,

the number of compartments is given by

n̂ ¼ log2
tbnN�

n

N�
1

� �
þ 1, ð3:14Þ

and the divisional load per TDC is

D̂n̂ðtÞ ¼ 2
t
t
þ n̂� 1: ð3:15Þ

Firstly, we consider the optimized parameters and div-
isional load when the lifetime is equal to the optimization
timescale (t = τ = 70 years). For this case, the values of âðnÞ,
b̂1ðnÞ, N̂n and D̂n are illustrated in figure 3a–d as a function
of SC number (N�

1 ) and the number of compartments in the
tissue (n). The line described by equation (3.14) (dashed diag-
onal) again follows the minimum divisional load; any change
in either SC population size or the number of compartments
leads to an increase in divisional load. However, by moving
along this line (equation (3.14), in particular to higher SC
population size and lower number of compartments, the div-
isional load per TDC can be reduced, as shown in figure 3h.
Therefore, the tissues which minimize TDC divisional load
have many SCs and few differentiation steps. The optimum
SC division rate b̂1ðnÞ is substantially slower than the
observed once per year [1], with SCs dividing twice per
lifetime in the optimized tissue.

For a fixed SC population size, the SC division rate is a
decreasing function of the number of compartments, such
that shorter hierarchies require more input from the SC com-
partment (figure 3f ). The minimum divisional load occurs
when there are enough compartments such that there is no
progenitor self-renewal (âðnÞ ¼ 0), but not too many such
that TDCs are not overproduced (N̂n ¼ N�

n), and when SCs
are dividing as slowly as possible (figure 3e–h).

The optimum progenitor self-renewal rate is âðn̂Þ ¼ 0.
However, the optimum SC division rate b̂1ðn̂Þ, as well as
the optimum number of compartments in the hierarchy, n̂,
depend on the timescale of optimization τ. As this timescale
increases, the optimum SC activity decreases (b̂1ðn̂Þ ¼ 2=t;
figure 4a) and the number of amplification steps required to
maintain homeostasis increases (n̂ ¼ log2ðtbnN�

n=N
�
1Þ þ 1;

figure 4b). These properties are independent of the lifetime
of the individual. However, the lifetime t does contribute to
the accumulated divisional load (equation (3.15)). When we
fix t = τ, we have D̂n̂ðtÞ ¼ n̂ðtÞ þ 1, which increases logar-
ithmically with τ (blue line in figure 4c). If the lifetime t
exceeds the optimization timescale τ (for example when an
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individual lives beyond reproductive senescence), then TDCs
accumulate additional divisions at a rate of 2/τ per year (the
SC division rate). For short optimization timescales τ, this
means a rapid accumulation of additional divisions (orange
lines in figure 4c).

This rapid accumulation of divisions can be seen more
clearly by plotting D̂n̂ðtÞ as a function of lifetime t for different
optimization timescales τ (figure 5). We also see that choosing
an optimization timescale τ that exceeds the lifetime t results in
more accumulated divisions than necessary in early life, due to
the increased number of differentiation steps.
3.2. Optimized architectures in the full model
For the full model (see appendix I in the electronic sup-
plementary material for parameter descriptions), including
quiescence and asymmetric division, we can repeat the
above analyses using the Lagrangian function

L ¼
Xn�1

j¼2

2b j þ c j
b j � a j

� 1
� �

þ 1

� l
Yn�1

k¼2

2bk þ ck
bk � ak

 !
� dnN�

n

ð2b1 þ c1Þðg=ð‘þ gÞÞN�
SC

" #
,

ð3:16Þ

for optimizing the divisional load after SC differentiation,
and

LðtÞ ¼ ð2b1 þ c1Þ g

‘þ g
tþ L, ð3:17Þ

for optimizing divisional load after a lifetime t. Note that cell
death would have to be compensated by additional cell div-
isions and will result in an increase in the average number of
divisions of the surviving cells. We have therefore immedi-
ately set the death rate di = 0 for 1≤ i < n. We have also
used the condition that SC self-renewal and SC differentiation
occur at the same rate, a1 = b1, which is required for
homeostasis.

The optimization process is described in full in appendix
V in the electronic supplementary material. From this
analysis, we find that the ratio

fi ¼
2bi þ ci
bi � ai

, ð3:18Þ

is conserved across all progenitor compartments in optimized
tissues, i.e. fi ¼ f̂ðnÞ for 1 < i < n. Because of the conditions
bi− ai > 0, as well as ai≥ 0, bi≥ 0, and ci≥ 0, this ratio is
bounded by 2 � f̂ðnÞ , 1. When considering only divisions
accumulated after SC differentiation (i.e. without time depen-
dence), this ratio takes the value

f̂ðnÞ ¼ dnN�
n

ð2b1 þ c1Þðg=ð‘þ gÞÞN�
SC

� �1=ðn�2Þ
, ð3:19Þ
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and the divisional load per TDC is

D̂n ¼ ðn� 2Þ½f̂ðnÞ � 1� þ 1: ð3:20Þ
This divisional load is minimized when f̂ðnÞ ¼ 2, which can
only be achieved if ai= ci= 0, i.e. progenitor cells (1 < i< n) do
not self-renew or divide asymmetrically, they only differentiate.
This pattern was also described by Derényi & Szöllősi [6]. By
increasing the SC differentiation flux ð2b1 þ c1Þðg=ð‘þ gÞÞN�

SC,
we can reduce the number of compartments while maintaining
the TDC population, hence reducing the divisional load (as
described for the reduced model).

When we optimize the tissue architecture based on the
total TDC divisional load including SC divisions, we have
to include an optimization timescale τ. From our analysis
(appendix V in the electronic supplementary material), we
find the following relations for the ratio f̂ðnÞ and the total
SC division rate

f̂ðnÞ ¼ t
dnN�

n

N�
SC

� �1=ðn�1Þ
and

ð2b1 þ c1Þ g

‘þ g
¼ 1

t
t
dnN�

n

N�
SC

� �1=ðn�1Þ
,

ð3:21Þ

and the divisional load after a lifetime t satisfies

D̂nðtÞ ¼ ð2b1 þ c1Þ g

‘þ g
tþ ðn� 2Þ½f̂ðnÞ � 1� þ 1: ð3:22Þ

From the relation for the total SC division rate, we
observe that there is a trade-off between the division rate of
active SCs (2b1 + c1) and the fraction of actively dividing
SCs [γ/(ℓ + γ)]: if active SCs are dividing faster, then the
number of actively dividing cells can be smaller. The total
SC division rate is bounded by 2/τ≤ (2b1 + c1)(γ/(ℓ + γ)) <∞.
The TDC divisional load is minimized when f̂ðnÞ ¼ 2,
(2b1 + c1)(γ/(ℓ + γ)) = 2/τ and n̂ ¼ log2ðtdnN�

n=N
�
SCÞ þ 1.
4. Discussion
In this study, we set out to quantify and then minimize the
divisional load that is accumulated in TDC in a homeostatic
tissue. For insight, we focussed on a reduced dynamical
model in which a division event either lead to symmetric
self-renewal or symmetric differentiation. Homeostasis was
enforced by constraining the number of progenitor cell
compartments (i.e. differentiation steps), self-renewal probabil-
ities per compartment and division rates per compartment
such that the TDC population remains at its steady-state level.

In tissues that minimize the divisional load, we find that
the self-renewal probability is constant throughout all
progenitor cell compartments. The optimum number of com-
partments is then the smallest number for which progenitor
self-renewal can be zero without producing excess TDCs.
Therefore, the optimum tissue structure that minimizes div-
isional load is a binary division tree. By increasing SC
turnover, either by increasing SC numbers or SC division
rate, the number of progenitor compartments that are
required to amplify cell numbers can be reduced and sub-
sequently the divisional load of TDCs is also reduced.
Therefore, if optimizing purely based on divisional load as
we have done here, it would make sense to have a high-turn-
over SC compartment, which is the opposite of what we
actually observe in, e.g. the haematopoietic system or colonic
crypts. Hence, there must be other selection pressures or
physiological constraints at play that result in the observed
low SC turnover in human tissues.

The above results were obtained based on the divisional
load accumulated in the tissue after SC differentiation and
in the absence of a time component. However, in our
model, SCs accumulate divisions linearly with time. When
including these SC divisions, we find that in the short term
it is better to have higher SC turnover and fewer progenitor
compartments, but in the long term having more compart-
ments and less SC turnover is optimal. Therefore, based on
our optimization criteria, we would expect that in longer-
lived organisms (with the same homeostatic TDC number)
SCs should divide more slowly and there should be a greater
number of amplification steps to minimize division accumu-
lation. A recent measurement of somatic mutation rate across
animals with different lifespans supports this hypothesis,
with longer-lived animals having a lower rate of somatic
mutation accumulation [23]. Furthermore, we find that
underestimating the timescale of optimization relative to life-
time leads to a large increase in divisional load at ages
beyond the optimization timescale.

Our full model of cell dynamics also allows asymmetric
division, cell death and SC quiescence. Repeating the above
analysis, we find that the ratio of differentiation output to
net loss in a progenitor compartment is conserved across pro-
genitor compartments in optimized tissues. This is a more
general principle than derived by Derényi & Szöllősi [6]
who found that the ratio of differentiation output between
two consecutive progenitor compartments is constant in opti-
mized tissues. Furthermore, the minimum divisional load is
achieved when the differentiation output to net loss ratio is
equal to two, i.e. when progenitor cells do not self-renew
and differentiate only symmetrically. This is something that
could be compared to empirical data to check for tissue
optimization, if such data existed. Finally, from our model
and analysis, we find that there is a trade-off between the
SC division rate and the fraction of quiescent SCs: faster
dividing SCs would require a larger quiescent fraction to
maintain the minimum divisional load (for a given number
of progenitor compartments).

Interestingly, although optimal tissues have a constant
self-renewal across progenitor cells, the division rates of the
progenitor cells do not affect the divisional load and are
thus unconstrained by our optimization procedure. Briefly,
the progenitor compartment size N�

i is inversely proportional
to the division rate in that compartment (equation (2.3)), so
the total differentiation flux out of that compartment
[ð1� aiÞbiN�

i ] is independent of βi. Therefore, the relationship
between compartment sizes in these optimized tissues are
unconstrained as well: i.e. it is not necessary to have a mono-
tonically increasing compartment size for the tissue to
minimize divisional load. In optimized tissue structures
(binary division trees), we do have a doubling of the flux of
cells between consecutive progenitor compartments. By
assuming a constant division rate across progenitor compart-
ments, we arrive at the doubling of subsequent progenitor
compartment sizes in these optimized tissues.

Our conclusions are in agreement with those of Derényi &
Szöllősi [6], despite different optimization procedures: we
both find that hierarchically organized tissues can be tuned
to minimize divisional loads, and therefore limit the occur-
rence of somatic mutations during homeostasis. Beyond
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Derényi & Szöllősi [6], we show that the constant ratio of
differentiation outputs between subsequent compartments
can be generalized further: we find that the ratio of differen-
tiation output to net loss per compartment is conserved
across all compartments, which in the absence of asymmetric
divisions means that self-renewal probability is constant
across all compartments. Furthermore, we explore the
impacts of varying the optimization timescale, lifetime, SC
numbers and SC quiescence.

Although the number of divisions itself is an important
measure for damage accumulation per cell, it is not the full
story in terms of cancer prevention. Intuitively, it is not
clear if the total number of divisions per TDC, or only the
number of divisions in the SC compartment, is important
for cancer initiation and incidence. Tomasetti & Vogelstein
have shown that across tissues the dependence of cancer inci-
dence on the number of SC divisions is sub-linear, such that
an increase in SC divisions does not lead to a proportional
increase in cancer risk [24,25]. Therefore, other factors are at
play, which could be extrinsic (e.g. smoking), or related to
tissue architecture. Nowak et al. [8] formalized the concepts
put forward by Cairns [5] to show that preventing self-
renewal in all cells downstream of the SC minimizes the
rate that mutations fixate in the population. This simple so-
called ‘linear model’ of somatic evolution corresponds to
our optimized binary division tree. Later, Pepper et al. [9]
extended the serial differentiation model to include cell com-
partments (as in our model). They showed that non-self-
renewing tissue structures can suppress cell level selection
and somatic evolution, as serial differentiation makes it poss-
ible to segregate proliferative activity and population self-
renewal into different cell compartments, such that no com-
partment possesses all the attributes necessary for somatic
evolution. Any progenitor self-renewal, including asym-
metric divisions, would allow rapid somatic evolution
because a mutant clone can sweep to fixation within a popu-
lation of such cells. Therefore, the tissue structures which we
find limit the divisional load also limit the rate of somatic
evolution.

Recently, Alvarado et al. [14] used an alternative ‘top-
down’ modelling approach in which cells that are lost from
the TDC compartment are replaced by pulling from the pre-
vious compartment (rather than SC division pushing cells
into the next compartment). They showed that by increasing
progenitor self-renewal it becomes unlikely that mutations
are acquired in the more primitive compartments, but
mutations that do occur take longer to be flushed out of the
tissue. Overall, large values of progenitor self-renewal result
in a smaller number of single-hit mutants across all compart-
ments. However, from the point of view of two-hit mutant
generation (e.g. the inactivation of a tumour suppressor
gene), less progenitor self-renewal is advantageous as the life-
time of the transient cells is shorter, and they therefore have
less time to accumulate two mutations. This optimal architec-
ture for delaying two-hit mutations corresponds to the binary
division tree which limits divisional load. Interestingly,
Alvarado et al. [14] found that the arrangement of progenitor
compartment sizes influences the total number of mutants
and the rate at which two-hit mutants are generated. This is
seemingly in contrast with our observation that progenitor
compartment sizes are essentially a free variable and uncon-
strained by minimizing the divisional load. This discrepancy
can be explained by the fact that the cell division rates in
Alvarado et al. [14] are determined by a feedback loop and
are intrinsically coupled to the self-renewal probabilities.

In our study, we have quantified only the mean divisional
load per TDC. Böttcher et al. [15] showed that, based on telo-
mere length distributions, there is significant heterogeneity
among divisional loads. In their analysis, Böttcher et al. [15]
showed that not only the mean, but also the variance,
increases with increasing progenitor self-renewal, leading to
few cells with very high divisional load. This again suggests
that the non-self-renewing tissue would be the optimum for
minimizing the probability of a cell evolving an oncogenic
phenotype through mutation accumulation.

Our analysis relies on assumptions about the system
being in steady state and parameter values being constant
(for example, constant HSC activation and deactivation
throughout life). This, however, is not representative of
early development when SCs undergo significant expansion
and tissue compartments are populated. An expansion
phase would require an initially increased SC self-renewal
rate to allow the SCs to reach the homeostatic level and to
populate the progenitor and TDC compartments.

With this study, we have shown that limiting progenitor
self-renewal in hierarchical tissues results in the lowest div-
isional load during homeostatic tissue maintenance. This
optimized tissue also satisfies some other somatic evolution
constraints put forward by multiple authors. Going forward,
we would like to bring all of these aspects together to achieve
an overall understanding of the selection pressures that act on
and shape tissue organization.
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