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Abstract

Precision medicine is becoming the standard of care in anti-cancer treatment. The personalized precision
management of cancer patients highly relies on the improvement of new technology in next generation
sequencing and high-throughput big data processing for biological and radiographic information.
Systemic precision cancer therapy has been developed for years. However, the role of precision medicine in
radiotherapy has not yet been fully implemented. Emerging evidence has shown that precision radiotherapy for
cancer patients is possible with recent advances in new radiotherapy technologies, panomics, radiomics and
dosiomics.
This review focused on the role of precision radiotherapy in non-small cell lung cancer and demonstrated the
current landscape.
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Introduction
Precision medicine is an emerging new era of future
healthcare [1]. It has become feasible because of ad-
vances in next generation sequencing (NGS) and
panomics technologies as well as the integration of
large-scale biologic databases and artificial intelligence
to identify biomarkers, stratify patients and precisely
guide clinical practices. It has significantly improved the
treatment outcome of human diseases especially in can-
cer therapy.
Non-small cell lung cancer (NSCLC) is one of the ex-

amples of precision medicine being most successfully ap-
plied [2]. The standard guidelines for precision
management in NSCLC recommend stratifying patients
by histology (adenocarcinoma versus squamous cell car-
cinoma or large cell carcinoma), followed by gene testing

of druggable driver mutations (EGFR, ALK, ROS1,
BRAF, NTRK, etc.) for target therapy. If patients were
negative for druggable mutations, PDL-1 immunohis-
tochemistry and/or tumor mutation burden will be
tested to assess the suitability of immune checkpoint
inhibitor therapy. The implementation of precision
therapy has significantly improved the treatment out-
come of NSCLC [3].
Radiotherapy is an effective anti-cancer treatment for

nearly half of all cancer patients [4]. In NSCLC, radio-
therapy may serve as a definitive treatment to early stage
inoperable tumor [5] and local advanced disease [6, 7].
With the improvement in the survival of NSCLC cancer
patients, the use of radiotherapy has become more com-
mon. Radiotherapy was also the greatest increase in
Medicare expenditures between 2003 and 2009 in the
U.S. [8]. It was used not only in definitive treatment but
also in palliative therapy. For example, better local con-
trol can be achieved with thoracic re-irradiation for
NSCLC [9]. Stereotactic radiosurgery (SRS) has been be-
coming the standard management to treat NSCLC pa-
tients with limited brain metastases [10]. The idea of
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customized systemic precision management of NSCLC
has been extended to combine local radiotherapy with
the current standard options of chemotherapy, targeted
therapy or immunotherapy. In the radical-palliative set-
ting, stereotactic ablative radiotherapy (SABR) to oligo-
metastatic NSCLC lesions was proved to be effective
with promising outcome. Iyengar P. et al. conducted a
phase two trial to compare maintenance chemotherapy
alone versus SABR followed by maintenance chemother-
apy for patients with limited (up to 5 metastatic sites)
metastatic NSCLC. The results showed SABR arm tri-
pled the progression-free survival [11, 12].
The term precision radiotherapy aims to stratify and

precisely treat each individual cancer patient, using
state-of-the-art new radiotherapy technology and bio-
markers to improve treatment outcome and reduce ad-
verse effects. The advances of radiotherapy technology
make precision radiotherapy applicable. Technological
advances provided better treatment modalities, although
did not necessarily individualize the treatment plan for
each patient. Emerging investigations and reviews have
raised the attention of true personalized radiotherapy
[13, 14] for different cancer types. In this article, we
summarize the current landscape of precision radiother-
apy for NSCLC (Fig. 1), focusing on recent advances in
radiotherapy technology, radiomics and dosiomics, as
well as biomarkers derived from panomics that may im-
prove treatment outcome and reduce potential adverse
effects (Table 1).

Technological advancements for precision radiotherapy
Precision radiotherapy was used for decades to describe
the improvement of technology in medical ionizing ir-
radiation. The development of radiotherapy techniques
can be characterized into several aspects. First, the radi-
ation machine improved from a low-voltage X-ray gen-
erator to a high voltage X-ray linear accelerator. Second,

in addition to conventional fractionated treatment, the
idea of high-dose-single-shot stereotactic radiosurgery
has also been developed to achieve better tumor control
[5]. Through the development of planning systems and
hardware, such as multi-leaf collimators, intensity modu-
lated radiotherapy (IMRT) can be administered with
adaption to the tumor location and surrounding normal
tissues, which may improve tumor control and reduce
toxicity [15]. For particle treatment, commercialized cy-
clotrons and synchrotrons make proton treatment more
popular in real world practice. The development of
Monte Carlo dose simulation has helped to overcome
the treatment uncertainty in proton therapy [16]. Heavy
particles are also under investigation and may be benefi-
cial in some challenging cases [17]. Another improve-
ment in radiotherapy is image registration modality for
delivery precision. In-room cone beam CT on a linear
accelerator improved the treatment accuracy. Some
immobilization devices associated with adaptive software
for breath control and gating system, also improve the
treatment accuracy for moving targets, especially lung
tumors. A recent recommendation was proposed by the
European Organization for Research and Treatment of
Cancer (EORTC) group, which provided a suggestion to
provide high precision radiotherapy especially for lung
cancer patients [18].

Radiomics
Radiomics is an emerging field in cancer treatment. For
NSCLC, chest images are necessary for diagnosis and
follow up, which makes NSCLC a good candidate for
radiomics investigations [19]. In general, quantitative
data from images for tumors were mined automatically
to correlate with tumor behavior, treatment response,
and clinical prognosis. The predictive power of radio-
mics provides a great opportunity for a non-invasive ap-
proach for precision radiotherapy. Without invasive

Fig. 1 Landscape of Precision Radiotherapy in NSCLC
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procedures, tissue, blood or fluid samples, tumor charac-
teristics can be represented from images themselves. Im-
provements in data processing tools and deep learning
techniques helpinterpret data more efficiently and make
clinical use possible. The major imaging methods used
in NSCLC radiomics are CT and PET scans. The ideas
between these two images are different. The tumor
structure, shape, and compaction on a CT scan can be
associated with tumor biological behavior and clinical
outcome. In contrast, PET scan is a functional imaging
tool, and the use of different tracers can directly show
distinct biological features of disease.

Computed tomography (CT)
CT is the most common tool in radiomics studies for
lung cancer. In the radiotherapy field, the main
utilization of CT radiomics includes auto-segmentation
and feature extractions [20–22]. For radiotherapy treat-
ment of lung cancer, one of the most challenging issues
is consistent contouring for an organ at risk (OAR) and
accurate delineation for the gross tumor volume (GTV).
The Thoracic Auto-Segmentation Challenge organized

at the 2017 Annual Meeting of American Association of
Physicists in Medicine (AAPM) reported the outcome of
thoracic auto-segmentation with different approaches. In
general, lung and heart cane be segmented consistently
in most algorithms, while deep learning can better delin-
eate the esophagus. This tool improves the treatment
quality and precision [23]. As a moving target, the
blurred border of lung tumors makes accuracy in con-
touring difficult. Besides, the collapsed lung field, pleural
traction, and regional bronchus and vessels were not
easy to differentiate from true GTV. A semi-automated
method with three-dimensional lung CT was developed
[24]. The GrowCut algorithm, an interactive region seg-
mentation strategy, was reported to be able to reduce
inter-physician differences in lung tumor contouring.
More popular issues are the feature extraction

andprognostic or predictive values from different radio-
mic features. Features, which include lesion shape, inten-
sity, texture and wavelet, together with location, can be
extracted [21]. Longitudinal pattern changes were used
to associate the response to radiotherapy. Definitive
stereotactic ablative radiotherapy (SABR) is a treatment

Table 1 Biomarkers predicting outcome and toxicity in radiotherapy for NSCLC

Types of
Biomarkers

Outcome predictors Toxicity predictors

Panomics

Genomics Genomic predicting scores: Radiosensitiviy Index (RSI), Genomic-
adjusted radiation dose (GARD)
Lung adenocarcinoma associated gene: KRAS
Squamous cell carcinoma associated genes: KEAP1, NFE2L2

DAN repair genes: ATM
Other mutated genes: PTEN, RB1, TP53 …

SNPs DNA repair gene sites: XRCC1, BRCA1, and ERCC1 DNA repair gene sites: ATM, RAD51, XRCC family, LIG4,
MTHFR
Inflammatory gene sites: TGFβ1
Immune modulated gene sites: CBLB

Epigenetics DNA methylation profile, IGFBP-3
Micro RNA: p53 regulation, RAD51 regulation (MiR-34a)

–

Proteome
/Metabolome

– Serum inflammatory biomarkers: TGFβ, IL-1, KL-6, IL-6 IL-8,
PDGF, TGFα, TNFα, CXCL10 (IP-10), CCL2 (MCP-1), Eotaxin,
and TIMP-1
Novel proteins identified by mass spectroscopy:C4BPA,
VTN, α2M, CO4A, CO5

Immunological
markers

Neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio
(PLR), neutrophil count, lymphocyte count

Neutrophil-to-lymphocyte ratio (NLR)

Radiomics

CT scan Post SABR local recurrence prediction: enlarging opacity at 12
months after SABR, bulging margin, loss of linear margin and air
bronchogram lossPost SABR recurrence free survival: tumor size,
pleural retraction, vessel attachment
For adaptive RT during chemoradiation: LARTIA trial

Combination of radiomic signatures predict radiation
pneumonitis

PET FDG-PET: Max SUV, metabolic volume, total lesion glycolysis
FLT-PET: sensitive than FDG-PET to predict tumor response
F-MISO-PET: identify radioresistant area for adaptive treatment

FLT-PET: predict hematological toxicity (bone marrow)

Dosiomics Dosiomic information + dosimetric information (DVH) +
clinical factors better predict radiation pneumonitis

Abbreviations: NSCLC Non-small cell lung cancer. CT Computed tomography. PET Positron emission tomography. SABR Stereotactic ablative radiotherapy. DVH
Dose volume histogram
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of choice for early stage lung cancer. For medically inop-
erable NSCLC patients with impaired lung function (for
example, FEV1 < 40% predicted), SABR provided excel-
lent outcme and became the standard of care [5]. With-
out other intervention procedures, SABR might be the
least confounded treatment modality to investigate
radiomics in radiotherapy treatment outcome. There are
several applications of radiomics in NSCLC patients
receivving SABR, and these include the assessment of
early recurrence post SABR, the correlation between
pretreatment radiomic features and clinical outcome,
and the prediction of radiation induced lung toxicity.
A retrospective series analyzed the radiomic features

associated with a higher risk of local and distant recur-
rence. CT density changes are common after SABR. In a
systemic review, high risk features related to local recur-
rence were identified including enlarging opacity at dif-
ferent time points after SABR, bulging margin, loss of
linear margin and air bronchogram loss [25]. These fea-
tures were validated [26, 27] in other series. Enlargement
of opacity 12 months after SABR was considered most
predictive compared with other parameters. Opacity
change in the primary lesion within 1 year may be re-
lated to post-irradiation change and subacute radiation
pneumonitis. Considering that the lung is a moving
organ, it was reported that average intensity projection
images (AIP) are better than free breathing CT in a lung
radiomics study [28] for predicting the treatment out-
come. The main clinical implication is to help physicians
makie decisions for the diagnosis of local recurrence. In
a retrospective study, physician assessment and a radio-
mic prediction tool for local recurrence diagnosis were
compared. A high false negative rate was noticed in the
physician assessment group [29]. With radiomic predic-
tion assistance, local recurrence after SABR can be iden-
tified earlier than physician’s assessment.
Radiomic features extracted from pre-treatment CT

scans can be used to associate with clinical outcomes
such as progression-free survival and overall survival
[30–34]. Radiomic features from images were sorted into
clusters and correlated with survival outcome. Li Q et al.
[30] established a prognostic model incorporating clin-
ical and genomic features. In addition to tumor size, an
extracted feature from histogram analysis, measured the
energy of Housfield unit (HU) values within the lesion,
and this was considered a prognostic factor for recur-
rence and was incorporated into their prognostic model.
Timmerman et al. [35, 36] used features extracted from
cone-beam CT (CBCT) during radiotherapy treatment
to validate the previously reported radiomic features for
NSCLC outcome prediction [37]. Their works demon-
strated that some CT and CBCT radiomic features are
interchangeable. Longitudinal CBCT information can be
potentially useful clinically in outcome prediction.

Radiomics predictions were not merely applied in the
SABR cohort. A study focused on stage III NSCLC pa-
tients treated with concurrent chemoradiation proposed
that a specific radiomic signature can be used in predic-
tion tumor shrinkage [31]. Specific feature pattern
differences between tumor shrinkage or not during
chemoradiation can help in treatment decisions for
radiotherapy plan adaptation. This study group proposed
an ongoing prospective trial (LARTIA Trial,
NCT03583723) based on these predictive features, but
the results are not available yet.
Similarly, radiation induced lung toxicity can be pre-

dicted with similar methods [38–41]. Post SABR CT im-
ages were analyzed and certain radiomic features were
found to have a dose response relationship [41], suggest-
ing that radiomic features can provide a quantitative
measurement of radiation induced lung toxicity after
SABR. Traditionally radiation pneumonitis can be pre-
dicted with clinical factors including age, combination of
systemic treatment, or dosimetric factor, the lung dose
exactly. It was shown that incorporating radiomic factors
into a prognostic model can better predict radiation
pneumonitis [39]. If these radiomic signatures associated
with recurrence patterns or toxicity can be validated ex-
ternally, they might be a good imaging biomarker for ra-
diation treatment.

Positron emission tomography (PET)
FDG-PET scan is a common diagnostic tool and is con-
sidered standard procedure used in NSCLC staging
workup. PET-CT can provide two dimensional informa-
tion, which includes feature information, which is the
same as that of a CT scan, and the biological informa-
tion, such as maximum standardized uptake value
(SUV), metabolic tumor volume (MTV) and total lesion
glycolysis (TLG). PET has been utilized in radiotherapy
contouring and planning for more than a decade [42].
The idea to target the metabolic tumor volume rather
than gross tumor volume is proposed to enhance the
therapeutic ratio. Unsupervised machine learning of
radiomic features combining functional and texture pa-
rameters from FDG-PET scans showed predictive value
for treatment response in early stage NSCLC patients
post SABR [43]. A high level of pre-treatment SUVmax
generally predicted worse local control [44] and possibly
worse survival [45]. FDG-PET was also applied in locally
advanced lung cancer. Since FDG-PET aims to target
the metabolic function of tumors, the question was
raised if interim FDG-PET scans can help to better adapt
treatment. A prospective single arm study revealed that
FDG-PET during chemoradiotherapy is predictive of
one-year survival [46]. Individual studies also showed
prognostic values of FDG-PET, and PET directed MTV
has a better response assessment to radiotherapy than
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that of the traditionally CT based tumor volume [47].
However, a systemic review failed to show the benefit of
interim FDG-PET [48]. The lack of univocal PET param-
eters among studies might be the major issue. A pilot
trial revealed the potential local control benefit of dose
escalation based on during-treatment FDG-PET with a
fixed risk of radiation induced lung toxitiy (RILT) [49].
RILT, or radiation pneumonitis, is common in thoracic
irradiation, and is usually correlated with poor quality of
life, impaired lung function, and may be lethal. RILT has
been widely studied not only in lung cancer patients but
also in esophageal cancer, lymphoma, and breast cancer
patients. Ongoing study RTOG 1106, is a PET-directed
phase II randomized trial intended to validate this find-
ing. The application of PET scan may be broadened if
more solid evidence is available.
FLT-PET, with the tracer fluorothymidine, targets

tumor proliferation and is also used in lung cancer and
radiotherapy. FLT uptake reduction was observed during
and after radiotherapy for lung tumor [50], and was
considered more sensitive than FDG-PET scans in com-
parative studies [51, 52]. With the adjunctive use of
FLT-PET, postirradiation changes can be distinguished
from tumor recurrence more clearly [53]. Interestingly,
correlation with the changes in FLT-PET uptake with a
clinical outcome showed that stable FLT uptake was
paradoxically associated with longer overall survival and
progression-free survival. The results suggested that sup-
pression of tumor cell proliferation might lead to the
protection of tumor cell damage from irradiation [51].
Reductionin the bone marrow was also observed during
radiotherapy treatment [54, 55], which may be a predict-
ive marker for hematological toxicity.
F-MISO-PET, focused on tissue hypoxia, can help to

identify hypoxic areas in tumors for the adaptation of
treatment. The uptake of F-MISO was not completely
correlated with FDG, suggesting the discordance be-
tween tumor glycolysis and hypoxia [56]. During
conventional fractionated radiotherapy for NSCLC, a
comparison study showed a rapid decrease in FLT up-
take, a modest decrease in FDG, and stable uptake of F-
MISO [57]. Those results suggested that F-MISO
reflected the hypoxia and potentially radioresistant area,
not the tumor response during treatment. Adaptive
radiotherapy with an escalating dose to the hypoxic area
was proposed [58, 59]. Prospective trial based on F-
MISO PET is ongoing (RTEP5 trial, NCT01576796).

Dosiomics
Dosiomics is a novel idea of radiotherapy emerged in
these 2 years. It is an extension from radiomics. The 3D
information from the dose distribution in the radiother-
apy plan can also be considered as an image for data ex-
traction. In addition to the traditional dose volume

histogram (DVH) and logistic normal tissue complica-
tion probability (NTCP) model, dosiomics provides a
new approach for modeling treatment related toxicity.
This approach was proposed in the prostate cancer
HYPRO trial to predict gastrointestinal (GI) and genito-
urinary (GU) toxicities [60], and the results showed that
including dosiomic factors can improve prediction per-
formance. Dosiomics has also been applied in thoracic
malignancy to predict radiation pneumonitis [61]. Trad-
itionally, dosimetric factors in lung from a DVH analysis
were the most commonly used in predicting RILT. The
mean lung dose (MLD) and the percentage of lung vol-
ume received more than 20 Gy (V20) are the two com-
mon parameters. NTCP is a mathematical model to
predict toxicity via transforming heterogeneous dose dis-
tribution to an equivalent uniform dose. These two ap-
proaches were compared with dosiomics factors in the
NSCLC radiotherapy cohort. The results demonstrated
that the dosiomics outperformed the MLD, V20, and
NTCP models in predicting radiation pneumonitis [61].
More investigations are warranted to elucidate the appli-
cation of dosiomics in NSCLC, its predictive value or its
further application in adaptive radiotherapy.

Panomics biomarkers to improve treatment outcome and
reduce toxicities
Genetics
Like response to drug varied among every single person
with the same disease diagnosis, response and toxicity to
radiotherapy also differed according to inherent genetic
features. Since the biological basis of radiotherapy is to
cause DNA double- strand breaks, genes correlated with
DNA repair were reported to enhance radiation effects
[62, 63] in in vitro and in vivo models With the
generalization of genetic testing tools, several genetic
testing models to predict radiotherapy responses have
been proposed. The standard approach was to identify
the different genetic features between radiosensitive and
radioresistant samples, either from cell lines, animal
models, or patients. Furthermore, to validate the prog-
nostic models in other cohorts.
The most widely studied was the radiosensitivity index

(RSI) proposed by Javier F. Torres-Roca and his col-
leagues [64]. From cancer cell lines, inherent radiosensi-
tivity was tested by measuring the survival fraction at 2
Gy (SF2). Ten genes were selected to derive the predic-
tion model for the tumor radiotherapy response. This
genetic prediction model was validated in breast,
esophageal, rectal, head and neck, glioblastoma, pan-
creas, and prostate malignancies and in brain metastases
cohorts [65–72]. Despite the good association achieved
in retrospective series, no prospective investigations
based on RSI are currently available. This study group
further combined the RSI and the linear quadratic model
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to obtain the genomic-adjusted radiation dose (GARD)
[73]. GARD was tested in patients from the Total Can-
cer Care (TCC) protocol, a prospective, observational
database. GARD was shown to independently predict
clinical outcome in breast, lung, pancreatic, and glio-
blastoma cancer patients. For the NSCLC cohort, GARD
significantly predicted local control with adjusted sur-
gery, stage, histology, and lymphovascular invasion. Cur-
rently there are no clinical trials designed based on
GARD.
Implications of genetic testing for radiotherapy were

studied recently. The major concern is whether germline
mutations will increase radiation toxicity or not. The
American Society for Radiation Oncology (ASTRO) re-
cently held a workshop to address this issue [74]. As
previously known, bi-allelic pathological mutations at
certain DNA repair genes, such as those found in ataxia
telangiectasia [75], was considered contraindicated to
radiotherapy. However, according to the currently avail-
able data, no single copy genetic alteration related to the
radiation response will definitely increase radiation re-
lated toxicity.
The information for the relationship between somatic

mutations in tumors and the radiation response was not
sufficient to generate a consensus.

Single nucleotide polymorphisms
Single nucleotide polymorphisms (SNPs) were also ap-
plied to predict radiotherapy response in cancer. Poly-
morphisms at genes related to DNA repair were most
reported, These include XRCC1, BRCA1, and ERCC1
[76–78]. A polymorphism within the promoter of the
TGFβ1 gene is also reported to be associated with radi-
ation sensitivity [77]. SNPs were more widely used in
predicting RILT. SNPs at DNA repair or synthesis genes
including ATM, RAD51, XRCC family, LIG4, and
MTHFR were published in many single institutional
studies to predict RILT [79–83]. Other SNPs at inflam-
matory genes, such as TGFβ1 [84–86], or immune mod-
ulated genes, such as CBLB [87], a regulator of T-cell
response, were also associated with a higher grade of ra-
diation pneumonitis. The problem for SNPs is the repro-
ducibility and generalization across different patient
populations [88]. Yuan X et al. reported that a single nu-
cleotide polymorphism at rs1982073:T869C of the
TGFβ1 gene is predictive of a higher grade of RP [86] in
Caucasian population. Niu X et al. then showed ethic
differences in TGFβ1 gene polymorphisms [84]. The
rs1982073:T869C did not predict radiation pneumonitis
in the Chinese population. Another SNP in the TGFβ1
gene, the AG/GG genotype of n rs11466345 was associ-
ated with a higher risk of RP in Chinese NSCLC patients
after thoracic radiotherapy.

Epigenetics
Radiation induced DNA methylation changes were
found with dose dependent relationship and tissue speci-
ficity [89–91]. The most successful clinical application is
the methylation status of the O6-methylguanine-DNA-
methyltransferase (MGMT) promoter, which predicts
radiation response and prognosis in glioblastoma [92]
Epigenetic control also plays an important role in radi-
ation response in NSCLC. Differential methylation pro-
files were detected in radiosensitive and resistant NSCL
C cell lines. Artificially changed methylation profiles by
gene knockdown or knockin also modified the in vitro
radiation response [93]. The unmethylated IGFBP-3 pro-
motor was found to be associated with poor response to
radiation in NSCLC cell lines and poor outcome for pa-
tients who received adjuvant chemoradiotherapy [94] In
addition to DNA methylation, non-coding RNA was also
identified to have an impact on the tissue response to
ionizing irradiation. A global decrease in microRNA
(miRNA) levels is a common observation in human can-
cers, indicating that miRNAs may have function in
tumor suppression [95]. The most important pathway
was to modify p53 tumor suppression network [95–97].
Another subset of miRNAs involved in DNA repair
function, is also important in modulating the radiation
response. For example, miR-34a, an important tumor-
suppressing microRNA, was tested in vivo to sensitize
lung tumor to radiation through RAD51 regulation [98].
Collectively, current evidence suggests that gene poly-
morphisms or epigenetic profiles may serve as bio-
markers to predict radiation induced lung toxicity. The
information might not be strong enough to guide radio-
therapy decisions.

Proteome and metabolome
The systemic effect of radiotherapy at the proteome and
metabolome profile is another way to predict treatment
related toxicity. Serum inflammatory biomarkers as
TGFβ, IL-1, KL-6, IL-6 IL-8, PDGF, TGFα, and TNFα
are the most addressed [99]. Some early response
changes in the levels of CXCL10 (IP-10), CCL2 (MCP-
1), eotaxin, and TIMP-1 were also reported to correlate
with RILT [100]. However, no single molecule outper-
forms others in predicting RILT well. A combination ap-
proach is more favored. IL-8 and TGFβ1 combined with
mean lung dose was reported to have good predictive
values for RILT [85]. In addition to inflammatory
markers, mass spectrometry (MS)-based proteomic tech-
niques can be used to identify new biomarkers in the
prediction of radiation induced lung fibrosis [101]. Pre-
RT C4BPA, VTN, α2M, CO4A and CO5 were some
peptides identified with mass based strategies to correl-
ate lung toxicity [102, 103]. Immunological markers
were also proposed to predict outcome and toxicity. In
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an NSCLC SABR cohort, pre-treatment high neutrophil-
to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio
(PLR), high neutrophil count and the presence of lym-
phopenia were associated with poor overall survival. Be-
sides, patients with a higher NLR and low serum
albumin level had less symptomatic radiation related
toxicities [104].

Lung cancer specific driver genes
Lung adenocarcinoma is a unique cancer notable for its
driver gene dominant patterns. EGFR activating muta-
tion, ALK translocation, KRAS mutation, and HER2
amplification and mutation are the most common driver
gene alterations. EGFR mutation, the most important
targetable gene mutation, was also investigated for its
impact on radiotherapy response [105, 106]. In basic
research, EGFR mutant lung cancer cell lines were re-
ported to have better radiosensitivity in low dose
fractionation [107]. EGFR is known to modulate nonho-
mologous end-joining DNA repair. Impaired EGFR po-
tentially sensitized tumors to radiation [108, 109].
Considering the complexity of lung cancer treatments
and interactions between treatment strategies, the influ-
ence of EGFR mutations on the radiation response has
seldom been proven in clinical studies. Radiation re-
sponse differences between EGFR mutant and wild type
patients is an issue under debate and the clinical data
showed inconsistent results. A chemoradiation cohort
suggested that EGFR mutant patients have shorter pro-
gression free survival than patients with wild-type EGFR
[110], while another retrospective study showed better
in-field local control for EGFR mutant patients after
chemoradiation [111]. The discrepancy between studies
might reflect the distinct biological feature of EGFR mu-
tant lung cancer. The failure patterns in clinical series
[111–113] showed that EGFR mutant tumors tend to
distant metastasize rather than local recurrence. Even if
the tumor is more responsive, the overall outcome may
not be determined by radiotherapy alone.
KRAS mutations are associated with poor survival in

NSCLC without adequate target treatment [114]. They
were also reported to correlate with radioresistance, yet
the biological basis was not fully understood [114–117].
Downstream pathway molecules of RAS including PI3K
and Akt were reported to contribute to radioresistance
[116, 118]. Other mechanisms are still under investiga-
tion. A subset phenotype of KRAS mutant NSCLC char-
acterized by osteopontin/EGFR-dependent MLCC
mitosis-like condensed chromatin (MLCC). It was
shown to protect against radiation-induced DNA
double-strand breaks and to repress negative regulators,
including CRMP1 and BIM in in vitro and in animal
models [117]. Clinical data addressing this issue are lim-
ited. A proton-based liver SABR phase II study showed

that KRAS mutations were associated with worse local
control. However, lung cancer patients in this study only
accounted for less than 10% of the participants [119]. An
early stage NSCLC SABR cohort showed that KRAS is a
negative predictor of cancer specific survival [120].
Although less discussed, the response to radiation may

be more important in squamous cell carcinoma (SqCC).
Generally, SqCC is more sensitive to radiotherapy than
adenocarcinoma. Aside from immunotherapy, systemic
treatment strategies for SqCC are relatively limited with-
out available target therapy. The lack of effective sys-
temic treatment makes radiotherapy more important in
squamous lung cancer management. Abazeed ME et al.
[121] found that in lung squamous cell carcinoma cell
lines, activation of NFE2L2 and KEAP1, key regulators
of the oxidative stress response, is associated with radi-
ation resistance though the transcription factor NRF2.
NRF2 is responsible for cell protection including the
function of scavenging reactive oxygen species (ROS),
which was reported to confer radioresistance [122]. The
authors proposed the radiation sensitizing effect of a se-
lective PI3K inhibitor, which negatively regulated
NFE2L2 and reduce NRF2 levels. Further clinical studies
are warranted to prove this concept.
The radiogenomic approach is becoming more ap-

plicable as genetic testing techniques improve. We
summarized all biomarkers addressed in this review
and categorized the strength in predicting radiosensi-
tivity into three categories as shown in Table 2. Bio-
markers with clinical references and independent
validation were considered strong predictors (category
A) for radiation response or toxicity. Those who had
several institutional studies with inconclusive results
were characterized as moderate predictors (category
B). Biomarkers from single retrospective series or data
from cell lines / animal models were considered as
weak predictors (category C). Collectively, simple bio-
markers like CT radiographic patterns or FDG-PET
SUV values were easily to be validated in clinical use.
However, the benefit could be small. The CT radio-
graphic information may not provide additional infor-
mation for adaptive treatment. FDG-PET information
was applied successfully in treatment adaptation for
Hodgkin lymphoma [123] but failed to show definite
clinical benefit in driving clinical judgements in head
and neck cancer [124]. Current data generally focus
on the predictive and prognostic effects. Guiding the
adaptive radiotherapy according to genomic informa-
tion is scarce and not solid enough to support prac-
tice changes in non-small cell lung cancer fields.

Conclusion
Emerging data suggesting that incorporating the infor-
mation genomic, radiomics, and dosiomics techniques
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into clinical practice can improve treatment quality
and make personalized radiotherapy in NSCLC pos-
sible. Basic studies addressing genomic issues are
plenty, and this study topic has been studies for more
than two decades; however, the application remains in
outcome and toxicity predictions. The data based on
genomic information have not yet extended its use to
guide personalized radiotherapy. In contrast, radio-
mics and dosiomics are rapidly growing fields in the
past 10 years. Adaptive radiotherapy according to
radiomics information is more common and some
clinical trials are ongoing (Supplementary Table 1).
The reproducibility might be the major cause of this
discrepancy. Genomic guided treatment might be at
higher cost and time consuming than radiomics
guided treatment. Nevertheless, breast cancer is con-
sidered a successful example. A 21-gene recurrence

score assay has been established as a standard ap-
proach in adjuvant treatment for early breast cancer
[125]. With a better integration of clinical, genomic,
radiomics and even dosiomics factors, it may be ex-
pected that precision radiotherapy will be feasible for
the treatment of NSCLC in the near future.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12929-020-00676-5.

Additional file 1: Supplementary Table 1. Ongoing or recent
completed clinical trials with precision radiotherapy strategies in non-
small cell lung cancer

Abbreviations
NGS: Next generation sequence; NSCLC: Non-small cell lung cancer;
SABR: Stereotactic ablative radiotherapy; IMRT: Intensity modulated

Table 2 Strength of biomarkers in predicting radiation sensitivity in NSCLC

Types of
biomarkers

Outcome predictors Reference Strength Category

Panomics

Genomics Radiosensitiviy Index (RSI) [64–72] A

Genomic-adjusted radiation dose (GARD) [73] B

Lung adenocarcinoma associated gene: KRAS [114–117] B

Squamous cell carcinoma associated genes: KEAP1, NFE2L2 [121] C

DNA repair genes: ATM and other mutated genes: PTEN, RB1, TP53 … [74, 75] C

SNPs DNA repair gene sites: XRCC1, BRCA1, and ERCC1 in predicting radiation response [76–78] C

SNPs in predicting radiation related toxicity
DNA repair gene sites: ATM, RAD51, XRCC family, LIG4, MTHFR
Inflammatory gene sites: TGFβ1
Immune modulated gene sites: CBLB

[79–83]
[84–86,
88]
[87]

B
B
C

Epigenetics unmethylated IGFBP-3 predicting radiation response [94] C

miRNAs level in predicting radiation response [95–97] C

Proteome
/Metabolome

Serum inflammatory biomarkers in predicting radiation induced toxicity
IL-1, KL-6, IL-6, PDGF, TGFα, TGFβ, IL-8
CXCL10 (IP-10), CCL2 (MCP-1), eotaxin, and TIMP-1

[85, 99]
[100]

B
B

Mass spectrometry (MS)-based proteomic markers in predicting lung fibrosis
C4BPA, VTN, α2M, CO4A, CO5

[101–103] B

Immunological
markers

Serum markers in predicting SABR outcome
neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), high neutrophil count

[104] C

Radiomics

CT scan Post SABR local recurrence prediction: Enlarging opacity at 12 months after SABR Bulging margin;
loss of linear margin, air bronchogram loss

[25–27] A

Combined radiomic features in predicting post SABR recurrence and radiadiation [30–37] B

Combined radiomic features in predicting radiation pneumonitis [38–41] B

PET FDG-PET: Max SUV, metabolic volume, total lesion glycolysis in predicting treatment response [43–47] A

FLT-PET change in predicting tumor response [50–53] B

F-MISO PET in predicting radioresistant area for dose escalation [56–59] B

Dosiomics Combined 3D dosiomitc information in prediction GI, GU and lung toxicity [60, 61] B

Abbreviations: NSCLC Non-small cell lung cancer. CT Computed tomography. PET Positron emission tomography. SUV Standard uptake volume. SABR Stereotactic
ablative radiotherapy. SNP Single nucleotide polymorphisms
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radiotherapy; EORTC: European organization for research and treatment of
cancer; CT: Computed tomography; OAR: Organ at risk); GTV: Gross tumor
volume; AAPM: American association of physicists in medicine; AIP: Average
intensity projection images; CBCT: Cone-beam CT; PET: Positron emission
tomography; SUV: Standardized uptake value; MTV: Metabolic tumor volume;
TLG: Total lesion glycolysis; DVH: Dose volume histogram; NTCP: Normal
tissue complication probability; MLD: Mean lung dose; V20: Percentage of
volume received more than 20 Gy; SF2: Survival fraction at 2 Gy;
GARD: Genomic-adjusted radiation dose; SNPs: Single nucleotide
polymorphisms; NLR: Neutrophil-to-lymphocyte ratio; PLR: Platelet-to-
lymphocyte ratio
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