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Abstract: Despite the significant reduction in pneumococcal disease due to pneumococcal vaccines,
protection of vulnerable high-risk individuals, especially pediatric populations, remains a great
challenge. In an effort to maximize the protection of high-risk children against pneumococcal disease,
a combined schedule that includes both conjugate and polysaccharide vaccines is recommended
by several countries in the developed world. On the other hand, middle- and low-income coun-
tries do not have in place established policies for pneumococcal immunization of children at risk.
Pneumococcal conjugate vaccines, despite their benefits, have several limitations, mainly associ-
ated with serotype replacement and the wide range of serotype coverage worldwide. In addition,
PPV23-impaired immunogenicity and the hyporesponsiveness effect among populations at risk have
been well-documented. Therefore, the added value of continuing to include PPV23 in vaccination
schedules for high-risk individuals in the years to come remains to be determined by monitoring
whether the replacing/remaining serotypes causing IPD are covered by PPV23 to determine whether
its benefits outweigh its limitations. In this review, we aim to describe serotype distribution and
vaccine efficacy data on pneumococcal disease in the pre- and post-PCV implementation era among
high-risk children in both developed and developing countries, assessing the optimization of current
recommendations for their vaccination against pneumococcal disease.

Keywords: Streptococcus pneumoniae; high-risk children; pneumococcal vaccines; high-income countries;
middle- and low-income countries

1. Introduction

Streptococcus pneumoniae (S. pneumoniae) is a leading cause of mucosal diseases (e.g.,
otitis media, sinusitis, and non-bacteremic pneumonia) as well as invasive infections (e.g.,
meningitis and bacteremia) with considerable morbidity and mortality worldwide, com-
prising a major public health problem [1]. Young children under 2 years of age and the
elderly are more vulnerable to pneumococcal infection [2,3]. In addition, individuals
with weakened immune systems are at higher risk for pneumococcal infection, associated
hospitalizations, and related mortality. Only minor differences exist regarding the high
risks for pneumococcal disease when considering different settings worldwide. According
to the CDC and the American Academy of Pediatrics, high-risk conditions for pneumo-
coccal disease include cerebrospinal fluid leak, cochlear implants, diabetes, HIV infection
or immunodeficiencies (congenital, acquired, or secondary to medications), anatomic or
functional asplenia, sickle cell disease and other hemoglobinopathies, neoplasms, and
chronic diseases including chronic heart, lung, kidney, or liver diseases, with incidence
rates more than 50 times higher than those among children of the same age without these
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conditions [3–6]. Similarly, the latter conditions as well as previous repetitive episodes
of invasive pneumococcal disease (IPD), trisomy 21, and solid organ transplants are con-
sidered high risk factors for pneumococcal disease by the Department of Health of the
Australian Government [4,5]. In England, chronic liver disease, immunosuppression, and
chronic respiratory diseases, including asthma, are the most common IPD risk factors
among children 2–15 years of age [6,7]. Asthma is not currently considered a high-risk
condition for pneumococcal infection in the United States, unless treated with high-dose
oral corticosteroid therapy [8,9].

The number of patients at high risk requiring protection against IPD is persistently
increasing owing to increasing numbers of people with underlying medical conditions and
the elderly population worldwide. Pneumococcal infection is often more severe in such
high-risk individuals than in immunocompetent subjects [10–12]. Currently, recorded resis-
tance to common antimicrobials further impedes the successful treatment of pneumococcal
infections [13,14]; therefore, optimal protection of high-risk groups against pneumococcal
disease, especially children, through vaccination remains challenging.

Currently, two types of pneumococcal vaccines, both targeting capsular polysaccha-
rides, are licensed: the 23-valent pneumococcal polysaccharide-based vaccine (PPV23)
and the 10- and 13-valent pneumococcal conjugate vaccines (PCV-10 and PCV-13, respec-
tively) (Table 1). PPV23 primarily induces a T-cell-independent immune response, is poorly
immunogenic in children under 2 years of age, and elicits neither an immune memory
response nor herd protection since it has no effect on pneumococcal carriage [15–17]. Conju-
gation of pneumococcal polysaccharides to a highly immunogenic carrier protein turned
polysaccharide-based vaccines from T-cell-independent to T-cell-dependent antigens, en-
hancing their immunogenicity and extending the duration of the vaccine-induced immune
response. In addition, conjugation of capsular polysaccharides with a carrier protein induces
both arms of the immune response (B- and T-cell response), leading not only to a systemic
immune response but also to the production of IgA and IgG antibodies in saliva, enhancing
the mucosal immune response and mucosal immune memory as well [17]. PPV23 is effective
among children older than 2 years of age and young adults, while it is less effective among
elderly adults [18]. Age-related ineffectiveness may be due to age-associated changes in the
antibody repertoire and/or a reduction in IgM antibody production due to changes in B cell
subpopulations as well as to impaired T-cell immunity [18]. On the other hand, PCVs are
immunogenic in both children younger than 2 years of age and the elderly.

Table 1. Pneumococcal vaccines and the serotypes covered by each of them.

Vaccine Serotypes Covered

PCV7 4, 6B, 9V, 14, 18C, 19F and 23F
PCV10 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F
PCV13 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F and 23F
PPV23 1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F and 33F

Following routine PCV administration in North America and Europe, a rapid and
dramatic decline in vaccine-type (VT) invasive pneumococcal disease (IPD) and nasopha-
ryngeal carriage was recorded not only among vaccinated children (direct effects) but
also among unvaccinated children and adults through reduced transmission of vaccine
serotypes (indirect effects) [19,20]. Reductions were significantly enhanced following the
replacement of PCV7 by the higher-valency conjugate pneumococcal vaccines PCV10
and PCV13. PCVs’ impact in low-income countries is less obvious as many countries in
Africa and East Asia did not introduce PCV10 or PCV13 into their Expanded Program of
Immunization (EPI) before 2011, financially supported by the Global Alliance for Vaccines
and Immunization (GAVI), the vaccine alliance. South Africa, Rwanda, and Gambia were
the exceptions, implementing PCV7 in 2009 and PCV13 afterwards. Thus, the initial data
come from the latter countries, showing a significant decline in VT-IPD, pneumococcal
pneumonia, and hospitalizations for severe pneumonia among vaccinated individuals [21].
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For more than two decades, PPV23 has been recommended for the protection of
immunocompromised individuals and the elderly against pneumococcal disease [22]. Fol-
lowing PCVs’ licensure, a combined schedule that includes PCV13 followed by PPV23 has
been recommended in many countries in Europe and North America in an effort to enhance
the protection of high-risk individuals against S. pneumoniae. Combined PCV13/PPV23
immunization schedules are expected to combine the establishment of an immunological
memory with maximum serotype coverage. Current guidelines from the U.S. Centers
for Disease Control and Prevention (CDC) [8] and the American Academy of Pediatrics
recommend four doses of PCV13 (in a 3 + 1 schedule) and a dose of PPV23 at 2 years
of age for children with conditions considered high risk for IPD or as soon as possible
after a diagnosis of chronic illness is made after the age of 2 years. PPV23 vaccination is
recommended for patients with asthma only if they are treated with high-dose oral corti-
costeroid therapy [8,9]. Among European countries, where the main vaccination schedules
are 3 + 1 or 2 + 1, only Cyprus, France, Greece, Spain, and the United Kingdom recommend
PPV23 vaccination additionally to the basic PCV13 scheme for the high-risk children [23].
Regarding low-income countries, the vast majority of these regions in Africa and South-
East Asia do not have in place established policies for pneumococcal immunization of
high-risk children, although IPD cases and associated deaths are higher compared with
Europe and North America, mainly due to the higher prevalence of comorbidities that
increase an individual’s vulnerability to pneumococcal disease in these settings [24–26].

The net benefits of pneumococcal vaccination are at least partially offset by several lim-
itations. Both PPV23 and PCVs are serotype-based vaccines and therefore they elicit only
serotype-specific protection. Emergence of replacement serotypes has repeatedly occurred
after their introduction, even after the use of expanded-valency PCVs, albeit to a lesser
extent [9–12]. Serotypes 8, 12F, and 33F are the most common serotypes responsible for the
replacement phenomenon [27]. Increases in serotype 12F have been recorded in certain Eu-
ropean countries (England, Wales, France, and Germany), while serotype 33F has been one
of the most important causes of NT-IPD among children in several countries (the United
States, Israel, and France) [27,28]. Vaccine failures reported following PCV13 implementa-
tion remain an important challenge mainly associated with serotypes 3 and 19A [29,30].
In addition, PCVs are less efficient against non-IPD (including otitis media, sinusitis, and
non-bacteremic pneumonia) compared with IPD (e.g., meningitis, bacteremia, and bac-
teremic pneumonia) [20,31–34]. Moreover, their serotype coverage in developed countries
is substantially higher compared with the developing world, where pneumococcal dis-
ease is caused by a wider spectrum of serotypes [35]. Remarkably, controversy regarding
PPV23’s effectiveness among high-risk individuals raises several issues about the optimal
use of polysaccharide vaccines in the context of combined vaccination schedules [36]. Most
importantly, evidence of PPV23-induced immunological hyporesponsiveness has been
well documented among high-risk individuals, representing a quite important issue in
the developing world with a high prevalence of comorbidities [36]. Hyporesponsiveness
is a phenomenon where vaccine recipients are unable to elicit an immune response that
is higher or at least of the same magnitude as the primary response following repeated
vaccinations [37]. The extent of the hyporesponsiveness impact upon vaccine protection
remains unclear, but it is expected to be of greater importance in individuals with distinct
immunocompromising conditions, where antibody levels are known to be already limited
compared with the healthy [36]. Hyporesponsiveness was first described in the 1990s
following vaccination with meningococcal polysaccharide vaccines and has been attributed
to the immune tolerance induced by the vaccine polysaccharide antigens [38,39]. Since
then, several studies have demonstrated the same phenomenon following pneumococcal
polysaccharide vaccination [36].

Decisions to fund and implement vaccination recommendations in both the developed
and the developing world require assessing data on epidemiology in conjunction with
vaccine efficacy data in each region. The added value of continuing to include PPV23 in
vaccination schedules for high-risk individuals in the years to come remains to be deter-
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mined by monitoring whether the replacing/remaining serotypes causing IPD are covered
by PPV23 to determine whether its benefits outweigh its limitations. In this review, we aim
to describe serotype distribution and vaccine efficacy data on pneumococcal disease in the
pre- and post-PCV implementation era among the high-risk children in both developed
and developing countries, assessing the optimization of current recommendations for the
vaccination of the high-risk children against pneumococcal disease. To this aim, an exten-
sive PUBMED literature search was conducted using the terms “pneumococcal vaccines”,
“high-risk children”, “immunocompromised children”, “vaccine efficacy”, “vaccine effec-
tiveness”, “polysaccharide conjugate vaccines”, “PCV7”, “PCV10”, “PCV13”, “23-valent
vaccine”, “23-valent pneumococcal capsular polysaccharide vaccine”, “Pneumovax 23”,
“PPSV23”, “PPV23”, “Pneumo23”, and “pneumococcal polysaccharide vaccine”.

1.1. Current Burden of Disease and Serotype Epidemiology in High-Income Countries

Universal childhood pneumococcal vaccination with PCVs+/-PPV23 has significantly
reduced the pneumococcal disease burden in high-income countries among individuals
at risk, although residual pneumococcal disease remains significantly high among such
vulnerable populations due to limited vaccine efficacy or high rates of replacement dis-
ease [27,40–50]. Data from several countries highlight the significant proportion of PPV23-
only serotypes among the serotypes that emerged following PCV implementation (Table 2).
In a recent study from the United States, during the post-PCV13 era, IPD cases among chil-
dren with comorbidities (mainly immunosuppression due to a primary immunodeficiency
or immunosuppressive or radiation therapies and chronic respiratory diseases, including
asthma) caused by non-PCV13 serotypes accounted for approximately 60% of cases, of which
50% were PPV23-only and 50% were non-vaccine serotypes, predominantly serotypes with
a lower invasive capacity (PPV23-only serotypes 11A and 15A and non-vaccine serotypes
6C, 23A, and 35B) [42,50]. Furthermore, vaccine failures were more common among indi-
viduals with at least one comorbidity and mainly associated with serotype 3, followed by
serotypes 7F and 19A, highlighting the inadequate effectiveness of PCV13 among high-risk
individuals [42,44]. In line with this, in the post-PCV13 era, among children and following
transplantation in the United States, although the proportion of PCV13-serotype-caused
IPD declined from 49% to 37% of IPD cases, 19A and 19F-associated cases were the most
common breakthrough diseases, followed by PPV23-only serotypes (33F, 10, and 11) as well
as NVTs (6C, 25B, and 35B) [41]. A meta-analysis in the United States and South Korea
revealed that children with asthma vaccinated only with a PCV (PCV7, PCV10, or PCV13)
but not with PPV23 had about 90% increased odds of IPD, mainly due to serotypes 4, 19F,
and 9V (serotypes included in both PCV and PPV23), implying the added benefit of the
combined PCV13/PPV23 vaccination schedule [40]. Unpublished data of Public Health
England (United Kingdom) show that children with comorbidities, especially sickle cell
disease, functional or anatomical asplenia, and diabetes, have higher mortality rates due
to IPD than healthy children, while serotype-specific analysis showed that 19% of cases
were caused by PPV23-only serotypes and 31% by non-vaccine serotypes [51]. A retrospec-
tive cohort analysis in the United Kingdom revealed that PPV23-only serotypes are more
likely to cause IPD than the PCV13 serotypes and supported the evidence of higher rate
ratios for IPD among asthmatic children and children with multiple at-risk conditions [46].
A small study in England among children with sickle cell disease, the majority of whom
were appropriately immunized, revealed that the 15B/C serotype, a PPV23-only serotype,
was responsible for most IPD cases [44]. In Brazil, a study among 51 pediatric oncology
patients (only four vaccinated with at least a dose of PCV), PCV13 types 3 and 19A and
PPV23-only serotypes 10A and 11A were the most frequent causes of IPD cases [47]. A more
recent study in Denmark showed that following the introduction of PCVs in children, the
net impact of serotype replacement varied considerably among different age groups and
comorbidities. However, the relative increases in the incidence of IPD caused by specific
NVT serotypes did not differ appreciably between risk groups in the post-vaccination era
with the PPV23-only serotypes 8 and 12F, accounting for the majority of such cases [49].
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Table 2. Summary of studies showing the pneumococcal disease serotype epidemiology among pediatric populations at risk in the developed world.

Study Country
Vaccination

Schedule
High-Risk Factor

Pneumococcal
Disease/Carriage

Age
Serotypes
Recorded

Ladhani et al. (2013) [5] UK PCV Children with comorbidities IPD 3–59 months
1, 3, 5, 6A, 7F, 19A/PPV-23 only (2, 8, 9N, 10A,
11A, 12F, 15B, 17F, 20, 22F, 33F)/remaining non

PPV-23 serotypes (all other serotypes)

Castro-Rodriguez et al. [40] USA PCV13 Children with asthma IPD 0–18 yers 19F, 4, 9V

Olarte et al. (2016) [41] USA PCV13 Children following transplant IPD ≤18 years 19A, 19F, 33F, 10, 11, 6C, 26B, 35B

Lapidot et al. (2020) [42] USA PCV13
Children with underlying comorbidities (cerebral palsy,

chronic lung disease, congenital heart disease,
prematurity/low birth weight, and sickle cell disease)

IPD <18 years 3

Yildirim et al. (2020) [43] USA PCV13

Any underlying risk factor-
69.2% of mortality cases had a comorbidity (sickle cell

disease, hematological malignancy, neuromuscular
disorder, chronic lung disease, congenital heart disease)

IPD <18 years
PCV13 serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14,

18C, 19A, 19F, 23F), NVTs (all other serotypes)

Yildirim et al. (2015) [44] USA PCV13 Children with underlying medical conditions IPD <18 years
PPV-23 only serotypes (2, 8, 9N, 10A, 11A, 12F,
15B, 17F, 20, 22F, 33F)/serotypes not icluded in
any of the vaccines (6C, 23A, 11A, 35B, 15A, 15C)

Oligbu et al. (2017) [45] UK PCV13
Twelve children with sickle cell disease (eleven

homozygote for hemoglobin S (HbSS) and one double
heterozygote for hemoglobin S and C (HbSC))

IPD <5 years 7F, 15A, 15B/C, 35B, 35F

Pelton et al. (2014) [46] UK PCV ± PPV23 Children with chronic medical conditions IPD <18 years

PCV7 (4, 6B, 9V, 14, 18C, 19F, and 23F) and
PCV13 serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14,

18C, 19A, 19F, and 23F)/PPV23-only (2, 8, 9N,
10A, 11A, 12F, 15B, 17F, 20, 22F, 33F)

Lages et al. (2020) [47] Brazil PCV
Pediatric oncology patients

(POP)-(n = 51)
IPD <18 years 3, 19A, 10A, 11A

Asner et al. (2019) [48] Switzerland PCV Healthy children and children with a risk factor for IPD IPD <17 years
PCV13 serotypes 3, 7F, 19A)/non-PCV

serotypes (15, 23)

Weinberger et al. (2019) [49] Denmark PCV Children with and without comorbidities IPD <5 years

PCV7 (4, 6B, 9V, 14, 18C, 19F, and 23F) and
PCV13 serotypes (1, 3, 4, 5, 6A, 6B, 7F, 9V, 14,

18C, 19A, 19F, and 23F)/non-PCV 7/13
serotypes (6A, 6C)
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The net benefits of conjugate vaccines remain significant among high-risk children in
high-income countries with substantial reductions in IPD incidence rates; however, a rise
in the proportion of PPV23-only and NV-serotypes causing IPD in high-risk individuals
occurred following PCV13 implementation in these settings. Thus, the current disease
epidemiology, characterized by a significant proportion attributed to PPV23-only serotypes,
could justify the use of a combined PCV13/PPV23 immunization schedule for the protec-
tion of immunocompromised pediatric populations in the developed world. The rationale
behind this schedule is to benefit from the improved opsonophagocytic antibody activity
and the immunological memory provided by PCV13 as well as the complimentary broader
serotype coverage provided by PPV23. However, vaccine immunogenicity and effective-
ness in this population, and PPV23-driven immunological hyporesponsiveness, should
be taken into account when drafting or recommending anamnestic PPV23 immunization
policies for the “high-risk” [36].

1.2. Current Burden of Disease and Serotype Epidemiology in Low- and Middle-Income Countries

In low- and middle-income countries of Africa, South-East Asia, and Latin Amer-
ica, the incidence of IPD as well as the associated mortality are higher compared with
high-income countries. In addition, the pneumococcal epidemiology in these settings
is characterized by higher rates of carriage and transmission than in high-income set-
tings [25,26,52–54], mainly due to the low vaccine coverage and higher prevalence of
coexisting morbidities, such as human immunodeficiency virus (HIV) infection and sickle
cell disease, that predispose to IPD [55]. In most low- and middle-income countries, PCV
vaccines were introduced during the last decade, and the current main dosing schedule
for PCV13 is (2 + 1) or (3 + 0), while that for PCV10 is (3 + 0) [56]. However, there are still
several countries in Africa (e.g., Chad, Capo Verde, and South Sudan) and most countries
in South-East Asia (e.g., Thailand and Indonesia) that have not included PCVs in their
national vaccination program yet [57,58].

South Africa was one of the first African countries to introduce PCV7 immuniza-
tion in 2009 and transitioned to PCV13 in mid-2011. The incidence of IPD decreased
substantially following PCV implementation among vaccinated young children, but also
in non-vaccinated adults through herd protection [59]. However, there is evidence of
significant residual disease caused by serotypes 4, 19F, 19A, 3, and 1 in South Africa, while
there was a rise in non-vaccine disease mainly in individuals older than 45 years of age led
by the PPV23-only serotypes 8 and 12F, albeit not significant [60–62]. Even in South Africa,
where PCVs were first implemented with the vaccine coverage reaching up to 99% in
2012 [62], there are not clear recommendations for vaccinating high-risk patients and there
is no clear definition of patients at risk. Nevertheless, significant reductions in PCV13-type
IPD have been documented after PCV implementation programs, although rates of IPD
remained 25-fold higher in HIV-infected children than in HIV-uninfected children [59].
In the PCV13 era, among HIV-infected children, 11%, 17%, and 64% of IPD cases were
caused by PCV7, PCV13-only, and non-vaccine serotypes, respectively. The most common
non-vaccine types (NVTs) that emerged included 10A, 15A, 16B, and 35B, of which only
10A is included in PPV23, showing that the majority of non-vaccine serotypes currently
causing IPD in the HIV-infected population are not included in PPV23 [63]. Moreover, in
Latin America PCV13 serotypes 1, 3, 5, 6A/B, 7F, 9 V, 14, 18C, 19A/F, and 23F are most
commonly associated with IPD among children and adolescents with predisposing risk
factors, despite the high PCV13 coverage, implying the potential benefits of even higher
rates of compliance with established vaccination schedule and its extension to high-risk
individuals [64]. In Thailand, a country where PCVs are not included in the national
vaccine program, the most common disease-causing serotypes are 6B and 23F, which are
included in the PCVs, implying the potential benefit of its implementation in the future
(VTs) [65].

Nasopharyngeal carriage of S. pneumoniae, which is an important precursor of pneumo-
coccal disease, remains extremely common among children in many developing countries,



Vaccines 2021, 9, 1390 7 of 17

such as India [66], Vietnam [67], Ethiopia, Mozambique, and Gambia [68], even with VTs
(3, 11, and 19F), implying the need for higher vaccination coverage [69]. In South Africa,
in spite of the high vaccine coverage, a high proportion of NVTs was reported; the most
common NVTs were 15A, 15B/C 16F, 23A, and 35B, of which only 15B is included in
PPV23, while a significantly lower proportion of VT carriage was observed in every age
group of children under 5 years, highlighting the PCV effectiveness [69]. In Ghana, among
HIV-infected children, the most prevalent carriage serotype was 19F, a PCV13 serotype,
followed by 16F, a NVT serotype. Notably, the serotype coverage of PCV13 in this study
was 41.5%; PPV23-only serotypes represented only 14.6%, and NVT serotypes 43.9% [70].

The pneumococcal disease serotype epidemiology among high-risk children is summa-
rized in Table 3. Due to the limited data on pneumococcal disease, early currently available
data on pneumococcal carriage that precedes pneumococcal disease are also described.

Table 3. Summary of studies showing the pneumococcal disease serotype epidemiology among pediatric populations at
risk in the developing world.

Study Country
Vaccination
Schedule

High-Risk Factor
Pneumococcal

Disease/Carriage
Age Serotypes Recorded

Cohen et al.
(2017) [59]

South Africa PCV13 HIV
Pneumococcal

infection
IPD

<5 years 19A

Falleiros-Arlant
et al. (2015) [64]

Latin America
PCV

PCV13

children and
adolescents with

predosposing risk
factors

IPD
Pneumonia

5–19 years
PCV13 serotypes (1, 3, 4, 5,
6A, 6B, 7F, 9V, 14, 18C, 19A,

19F, and 23F)

Sutcliffe et al.
(2019) [66]

India PCV -
Clinical

pneumonia
2–59 montths 6A, 6B, 14, 19A, 19F

Nguyen et al.
(2019) [67]

Vietnam PCV
Acutespiratory
infection (ARIs)

Pneumococcal
disease

<5 years 19F

Usuf et al. (2007)
[68]

Ethiopia,
Mozambique,

Gambia
PCV -

Pneumococcal
disease

IPD

<5 and
5–15 years

19F, 6B, 6A, 14, 23F

Donkor et al.
(2017) [70]

Ghana
PCV

PCV13
HIV

Pneumococcal
disease

<15 years 19F, 6F

Swarthout et al.
(2020) [71]

Malawi PCV HIV IPD <10 years

PCV13 serotypes (1, 3, 4, 5,
6A, 6B, 7F, 9V, 14, 18C, 19A,
19F, and 23F), non-PCV13

serotypes (all other serotypes)

Kartasasmita et al.
(2020) [72]

Indonesia PCV HIV
Pneumococcal

disease
4–144 months

PCV13 serotypes (3, 6A, 6B,
14, 19A,19F, 23F), non-PCV13
serotypes (11A, 15B/C, 23A)

Mackenzie et al.
(2012) [73]

Gambia PCV - IPD
2–59 months,

>5 years
1, 3, 5, 6A, 7F, 19A

Ramakrishnan
et al. (2010) [74]

Nigeria,
Senegal, Kenya,

Congo
PCV Sickle cell disease

Pneumococcal
infection

0–168 months

PCV7 serotypes (4, 6B,
9V, 14, 18C, 19F, and 23F),
non-PCV7 serotypes (all

other serotypes)

1.3. Data on PCV Effectiveness among High-Risk Pediatric Populations

PCVs have been universally used for pediatric populations since 2000 and their
significant effectiveness among healthy children in high-income settings has been well
documented. Early PCV7 studies had demonstrated 96% vaccine effectiveness against IPD
among healthy children [75], while the effectiveness of different PCV13 schedules against
IPD across high-income countries varies between 78% [76] and 89% [77].
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Data on PCV effectiveness among high-risk individuals in high-income countries are
limited. Thus, the recommendation of PCVs for the protection of individuals at increased
risk for pneumococcal infection has been made based upon immunogenicity studies that
showed non-inferiority to the previously recommended PPV23 [78]. An observational
study conducted in the United States among children aged ≤ 10 years with SCD estimated
the vaccine effectiveness against IPD to be 81% among those who received at least one dose
of PCV7 [79]. In addition, it was shown that the effectiveness of one or more doses of PCV7
against vaccine serotypes was 96% in healthy children and 81% in those with coexisting
disorders, underlying the significant benefit of conjugate vaccines in the protection of such
populations [80].

Among healthy children in middle- and low-income countries, the introduction of
PCV resulted in a significant reduction in deaths due to pneumococcal disease. Remarkably,
Rwanda, Peru, and El Salvador, with the highest pneumococcal mortality rates in the pre-
PCV era, had the greatest relative reductions ranging from 89% to 93% [81]. A 7-year
population-based surveillance study in Gambia showed a 82% reduction in vaccine-type
IPD and a 55% reduction in all-type IPD after the implementation of a 3 + 0 PCV13 schedule
among children 0–2 years of age, while significant reductions were also observed in older
children aged 2–4 years old [82].

Data on PCV effectiveness among high-risk children in developing counties are even
more scarce. Nevertheless, there are some effectiveness and efficacy studies that collectively
demonstrate that the PCV effectiveness for the prevention of IPD is higher than that of
PPV23 in immunocompromised children, although inferior to that in the healthy aged-
matched population [59,71,83,84]. An early study conducted by Klugman et al. in South
Africa showed that a nine-valent PCV was 65% effective in preventing IPD in children
with HIV infection [83]. This was further confirmed by post-licensure surveillance that
showed an effectiveness of approximately 55% against IPD in HIV-infected children [84].
In South Africa, an 86% decline in PCV7-caused IPD was recorded among HIV-infected
children < 2 years of age [71]. Moreover, a recent study by Cohen et al. demonstrated that
two or more doses of PCV13 have an effectiveness of 91% against vaccine-type IPD among
children with HIV [59]. PCV13 implementation in the South African EPI (2 + 1 schedule)
was significantly effective against VT-caused pneumococcal disease in children not infected
with HIV (against 19A, 14, and 23F), in children exposed to HIV but not infected, as
well as in malnourished children, given that the latter two are considered important risk
factors for IPD [59]. In Malawi, a lower possibility of VT carriage was reported among
vaccinated children aged 3–5 years as well as a more marked decline in VT carriage among
unvaccinated children 6–8 years old due to a herd protection effect [71].

Thus, early surveillance data from low-income countries that have already incorpo-
rated PCV vaccination show indeed a high degree of vaccine effectiveness with a significant
public health benefit through direct and herd protection [36]. The benefit of such significant
reductions in pneumococcal disease is expected to extend to the large numbers of children
with comorbidities living in these regions. Notably, co-existing morbidities such as malaria,
HIV, and sickle cell disease in these settings may also reversely affect vaccine efficacy. As
for children with functional asplenia or splenectomy due to sickle cell disease, vaccine
efficacy and immunogenicity studies have shown significant results, albeit to a lesser extent
compared with the general population [85].

1.4. Data on PPV23 Effectiveness among High-Risk Pediatric Populations

PPV23’s effectiveness against IPD among high-risk individuals remains debatable
despite its extensive use for over 25 years. A number of randomized controlled trials
and observational studies [86–88], as well as several meta-analyses [89–91], have been
conducted among children and adults with immunocompromising conditions with incon-
clusive results regarding vaccine effectiveness against IPD and pneumonia. Nevertheless,
the most recent Cochrane meta-analysis demonstrated effectiveness of PPV23 against IPD
for healthy adults but no protection against pneumonia and all-cause mortality [92]. More-
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over, a sub-analysis in high-risk populations of high-income countries showed no evidence
of protective vaccination efficacy even against IPD. Interestingly, there are findings imply-
ing not only attenuated protection but possibly an increased risk for IPD in individuals
with severe immunodeficiency induced by the use of polysaccharide vaccines [36]. Simi-
larly, increased rates of all-cause pneumonia have been demonstrated among HIV-infected
PPSV23 recipients in Uganda compared with unvaccinated patients [93]. Moreover, evalua-
tion of the kinetics of PPV23-induced serotype-specific antibodies in high-risk individuals
revealed that antibody levels decrease substantially shortly after vaccination, implying that
the duration of protection is relatively short-lived [60,94,95]. According to a study among
children with chronic disease, the effectiveness against invasive disease caused by PPV23
serotypes was 63%, and the effectiveness against PPV23-only serotypes was 94% [89].
Another study in children aged > 5 years at risk for serious pneumococcal infection showed
that the overall PPV23 efficacy for preventing infection caused by serotypes included in
the vaccine was 57% [37]. In an effort to protect individuals at risk, immunization with
PPV23 used to be repeated every 5 years. However, the repeated use of PPV23 required for
protection of high-risk individuals has been associated with hyporesponsiveness [36].

2. Discussion

This is a time of change for pneumococcal vaccination policies in both the developed
and the developing world. In Europe, there is a continuing effort to implement infant
schedules with a reduced number of doses in order to minimize public expenses and facili-
tate the funding of other important vaccines [96]. On the other hand, countries in Africa,
South-East Asia, and other low-income regions are currently introducing a universal PCV
infant schedule, expecting significant changes in disease burden and serotype distribution.
In this study, we aimed to summarize the current knowledge regarding the pneumococcal
disease burden and vaccine effectiveness against IPD among high-risk individuals in high-
and low-income countries in order to assess the optimal immunization policies for the
protection of high-risk individuals in each setting.

In the developed world, disease epidemiology and vaccine efficacy data support
the recommendation of a combined PCV13/PPV23 immunization schedule for immuno-
compromised individuals [22]. PCV13/PPV23 immunization schedules have been estab-
lished on the basis of combining PCV13-induced immunological memory with the broader
serotype coverage of PPV23. Today, sustaining high coverage rates of the direct PCV13
immunization of high-risk individuals is crucial, as reduced-dose infant schedules might
lead to attenuation of herd protection [97]. Regarding PPV23, current surveillance data in
the developed world show that PPV23-only serotypes take up a significant percentage of
IPD cases among the high-risk population; thus, the continuation of one dose of PPV23
after PCV13 is expected to offer some additional benefit, despite the documented limited
effectiveness of the vaccine in such individuals. However, PPV23 should be used with
caution, as it could attenuate PCV13-induced immunological memory if administered
shortly before or after the conjugated vaccine [36].

In the low-income regions, the success of the early years of PCV implementation
should be enhanced by maximizing coverage rates among infants. Regarding the use of
PPV23 for the protection of high-risk individuals in low-income countries, there is currently
no clear evidence of emerging PPV23-only serotype IPD in these settings, implying that the
potential benefits of PPV23 implementation may not offset its limitations (low effectiveness
among high-risk individuals, the hyporesponsiveness phenomenon). As for HIV-infected
individuals in developing countries, the WHO has concluded that currently available
evidence does not support the routine use of PPV23 in HIV-infected patients and focus
should be placed on the early HAART initiation [98] in order to maintain the ability to
mount protective immune responses.

As in most low-income countries, high-risk older children and adults are not univer-
sally immunized with PCVs, so their protection largely depends upon the establishment
of strong herd protection through the infant vaccination schedules. Therefore, the opti-
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mization of infant schedules in order to maximize the conferred herd protection is highly
important. Recent data show that the lack of anamnestic immunization in the three-dose
schedule has a significant effect on both direct and indirect vaccine protection. More specif-
ically, the 3 + 0 PCV13 schedule implemented in Australia [99] resulted in lower disease
reductions than the 2 + 1 schedule in the United Kingdom [100] among unvaccinated
adults aged 15–44 years and the >65 year olds. This observation is further supported by
epidemiological data regarding pneumococcal serotype 1 meningitis outbreaks in Ghana,
where 3 + 0 schedules have been adopted. Currently, pneumococcal meningitis outbreaks
continue to occur in this region, despite the introduction of a 3 + 0 PCV13 infant schedule
in 2012 and the achievement of high vaccination coverage. Although PCV13 vaccination
seems to have protected infants and young children under 5 years of age in the most
recent outbreak of 2016, older children and adults were significantly affected, suggesting
that the implemented 3 + 0 schedule did not offer protective herd protection to these
older age groups and further justifies the need for direct protection through immunization
of these high-risk groups [60]. Moreover, vaccination policy-makers should revisit the
possibility of introducing 2 + 1 immunization schedules across the African Meningitis
belt in order to maximize cost-effectiveness across all age groups and stop vaccine-type
outbreaks. Given the likely importance of an early reduction in transmission intensity
to maintain a reduced carriage prevalence, a catch-up-campaign with booster doses over
a broader age range (e.g., <5 years of age) may also be required. Although GAVI has
considerably reduced PCV costs for low-income countries [101,102], the vaccine impact
must be optimized (particularly indirect effects) to achieve financial sustainability.

Therefore, a combined PCV/PPV23 schedule may be justified for use among high-risk
individuals in developed countries. In these combined schedules, where recommended,
PCV administration should precede PPV23 administration, in order for the PCV to establish
immunological memory for the serotypes it includes and for PPV23 to induce antibody
responses to the additional serotypes [36]. However, there are increasing data showing that
PPV23 may reversely affect the immunological memory induced by the PCV even when it
is given soon after PCV13 [36]. Importantly, it has been well-documented that hyporespon-
siveness is a time-dependent phenomenon and PCV-induced memory is affected more
significantly when PCV13 is given shortly after PPV23 [36]. However, current guidelines
still allow for short intervals between PPV23 vaccination and subsequent PCV13 vaccina-
tion for PPV23-experienced individuals; for children previously immunized with PPV23, a
single PCV13 dose given just ≥8 weeks after the last PPV23 dose is recommended [103].
Measurement of levels of serotype-specific antibodies before vaccination could play a
beneficial role in optimizing intervals between vaccinations for such individuals. In the
presence of high antibody levels, subsequent pneumococcal vaccination may be delayed in
order to maximize the potential of the immune response to future vaccination in terms of
magnitude and longevity.

On the other hand, in the developing world emphasis should be placed on better
compliance with PCV vaccination schedules. Nevertheless, all currently available im-
munization strategies for high-risk individuals have limitations due to reduced vaccine
efficacy and the unique epidemiology of pneumococcal disease among patients at risk.

To expand serotype coverage, a 20-valent PCV (PCV20) containing PCV13 components
and seven additional serotypes (8, 10A, 11A, 12F, 15B, 22F, and 33F) has been recently
developed and already approved for use among adults > 18 years of age. These serotypes
were selected due to their association with increased disease severity, invasive potential,
antibiotic resistance, and increased prevalence as a cause of pediatric pneumococcal disease
worldwide in the post-PCV era [20]. A meta-analysis has highlighted that these seven
serotypes are among the most prevalent serotypes causing pediatric IPD in countries with
ongoing PCV programs [20,104]. Surveillance data by the Centers for Disease Control and
Prevention found that in 2018, these seven serotypes alone accounted for an estimated 37%
of IPD in U.S. children < 5 years of age [105] PCV20 implementation for high-risk children
is expected to further enhance their protection against pneumococcal disease, especially
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in the developed world where the serotype replacement phenomenon is more obvious.
However, pneumococcal conjugate vaccine formulations designed exclusively for high-risk
patients might be inevitably necessary while waiting for the development of innovative
protein-based vaccines that could offer serotype-independent coverage and an optimal
immunological profile for individuals at risk. Still, since the type and invasive potential
of new serotypes are not easily predictable, careful monitoring of pneumococcal disease
is necessary.

3. Conclusions

In the developed world, a combined PCV/PPV23 schedule may be justified for use
among high-risk pediatric populations based on serotype-epidemiology. However, re-
assessment of the intervals between vaccinations is an important priority to maximize the
potential of the immune response to future vaccination in terms of magnitude and longevity.

In the developing world, special focus should be given on better compliance with
PCV vaccination schedules. In these settings with higher prevalence of coexisting morbidi-
ties, such as human immunodeficiency virus (HIV) infection and sickle cell disease that
predispose to IPD, current serotype epidemiology does not justify PPV23 administration,
as its limitations will most likely outweigh its benefits.
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