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Diabetes in whites of European descent with hemochromatosis was first attributed to pancreatic siderosis. Later observations
revealed that the pathogenesis of diabetes in HFE hemochromatosis is multifactorial and its clinical manifestations are
heterogeneous. Increased type 2 diabetes risk inHFE hemochromatosis is associated with one or more factors, including abnormal
iron homeostasis and iron overload, decreased insulin secretion, cirrhosis, diabetes in first-degree relatives, increased body mass
index, insulin resistance, and metabolic syndrome. In p.C282Y homozygotes, serum ferritin, usually elevated at hemochromatosis
diagnosis, largely reflects body iron stores but not diabetes risk. In persons with diabetes type 2 without hemochromatosis
diagnoses, serum ferritin levels are higher than those of persons without diabetes, but most values are within the reference range.
Phlebotomy therapy to achieve iron depletion does not improve diabetes control in all persons with HFE hemochromatosis. The
prevalence of type 2 diabetes diagnosed today in whites of European descent with and without HFE hemochromatosis is similar.
Routine iron phenotyping or HFE genotyping of patients with type 2 diabetes is not recommended. Herein, we review diabetes
in HFE hemochromatosis and the role of iron in diabetes pathogenesis in whites of European descent with and without HFE
hemochromatosis.

1. Decreasing Prevalence of Diabetes and
Cirrhosis in Hemochromatosis

Theprevalence of diabetes decreased among hemochromato-
sis case series published in the interval 1935–1998 (Figure 1).
Earlier diagnosis of hemochromatosis due to iron pheno-
typing in probands and family members and subsequent
phlebotomy therapy could partly explain the decrease. In
two nonscreening hemochromatosis case series published in
2006 and 2008, respectively [1, 2], the prevalence of diabetes
was lower than reported in the 20th C. The widespread
adoption of HFE genotyping to confirm and enhance early
hemochromatosis diagnoses after 1996 could explain much
of the further decline in diabetes prevalence (Figure 1). The
prevalence of diabetes in p.C282Y homozygotes identified in
population screening programs is relatively low (Figure 2).

The prevalence of cirrhosis in hemochromatosis case
series also decreased in the interval 1935–1996 (Figure 3). Ear-
lier diagnosis of hemochromatosis due to iron phenotyping

of probands and family members and their subsequent
phlebotomy therapy to achieve iron depletion could partly
explain this decrease. The widespread adoption of HFE
genotyping to enhance hemochromatosis diagnosis after
1996 could partly explain the further decline in cirrhosis
prevalence in nonscreening hemochromatosis index patients
reported in 2000 [3] (Figure 3). The proportion of p.C282Y
homozygotes identified in population screening who had
biopsy-proven cirrhosis was lower than that observed in
nonscreening settings but is typically higher than in control
subjects (Figure 4).

2. History of Hemochromatosis and Diabetes

In 1865, Trousseau described the syndrome of hepatic cir-
rhosis, pancreatic fibrosis, and cutaneous hyperpigmentation
[4]. Troisier’s confirmatory 1871 report of diabète bronze et
cirrhose pigmentaire described iron deposition in various
tissues [5]. In 1889, von Recklinghausen described staining

Hindawi Publishing Corporation
Journal of Diabetes Research
Volume 2017, Article ID 9826930, 16 pages
http://dx.doi.org/10.1155/2017/9826930

http://dx.doi.org/10.1155/2017/9826930


2 Journal of Diabetes Research

0
10
20
30
40
50
60
70
80
90

1935 1955 1967 1972 1973 1980 1997 1998 2006 2008 2014

Pe
rc

en
t o

f s
ub

je
ct

s

Year of publication

Figure 1: Diabetes in nonscreening hemochromatosis. Percentages
of patients diagnosed to have hemochromatosis phenotypes in
nonscreening settings who also had diabetes [1, 2, 8–10, 42, 131, 167–
169]. HFE mutation genotyping was a diagnostic adjunct in three
studies [1, 2, 10].
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Figure 2: Diabetes in screening hemochromatosis. Percentages
of participants in population-based screening studies discovered
to have HFE p.C282Y homozygosity who reported that they had
previous diagnoses of diabetes [115, 170–172]. There were two such
reports from 2002 and two others from 2008. Hemochromatosis was
also evaluated with iron phenotyping. In the respective populations,
the prevalence of diabetes in p.C282Y homozygotes and control
subjects did not differ significantly.

excess iron and its tissue distribution at autopsy of persons
withhämochromatose [6]. Clinicians inEurope andderivative
countries reported the association of hemochromatosis and
diabetes mellitus in whites with increasing frequency in the
remaining 19th C [7]. Diabetes, a sine qua non of most
hemochromatosis diagnoses through the first two-thirds of
the 20th century, was usually observed in persons who also
had severe iron loading and cirrhosis [8, 9].

During the latter third of the 20th century, the devel-
opment of methods to measure serum iron, transferrin
saturation (TS), and serum ferritin (SF) and the increased
use of liver biopsy facilitated diagnosis of hemochromatosis
phenotypes. After the discovery of HFE in 1996, hemochro-
matosis diagnosis shifted toward a genetic criterion. Most
persons who were ascertained to have hemochromatosis
using HFE genotyping had milder iron overload phenotypes
and fewer complications, including diabetes, than patients
with the diagnostic triad [10].
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Figure 3: Cirrhosis in nonscreening hemochromatosis. Percentages
of patients diagnosed to have hemochromatosis phenotypes who
also had cirrhosis [3, 8, 169, 173–177]. There were two such reports
from 1997.HFEmutation genotyping was a diagnostic adjunct in the
more recent study [3]. Modified from [25, 178]. Greater proportions
of men than women had cirrhosis. See cirrhosis prevalence in
screening hemochromatosis cases in Figure 4.
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Figure 4: Cirrhosis in screening hemochromatosis. Percentages
of participants in population-based studies [3, 172, 179, 180] and
in an archived liver biopsy collection (second 2000 publication)
[181] discovered to have HFE p.C282Y homozygosity who were
previously diagnosed or were subsequently demonstrated to have
advanced hepatic fibrosis or cirrhosis by biopsy [3, 170, 172, 180, 181].
Greater proportions of men than women had cirrhosis. See cirrhosis
prevalence in nonscreening hemochromatosis cases in Figure 3.

3. HFE Hemochromatosis

HFE hemochromatosis occurs as an autosomal recessive trait
[11, 12] in 0.3–0.6% of whites of European descent [13–
15] that is due to homozygosity for p.C282Y of the HFE
gene (chromosome 6p21.3) [13]. HFE is linked to the major
histocompatibility complex (MHC) [13]. p.C282Y homozy-
gosity accounts for ∼90% of whites of European descent with
“classical” hemochromatosis iron phenotypes [13–15]. Severe
iron overload in p.C282Y homozygotes may cause cirrhosis,
primary liver cancer, diabetes, other endocrinopathies, and
cardiomyopathy [15, 16].

p.C282Y allele frequencies in whites who reside in dif-
ferent regions of Europe range from 13% in Ireland to less
than 2% in Italy, Greece, and Spain [17–19]. p.C282Y allele
frequencies in non-Hispanic whites who reside in North
America are 6-7% [19]. Mean serum iron, TS, and SF levels
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of adults with p.C282Y homozygosity are higher than those
of adults with other commonHFE genotypes [20]. In clinical
practice, persons with common HFE genotypes other than
p.C282Y homozygosity cannot be distinguished by serum
iron, TS, and SF measurements [19].

Themembrane proteinHFEhas a structure similar to that
of MHC class I proteins and also binds beta-2 microglobulin
[13]. Transferrin receptor binds to the HFE extracellular 𝛼1-
𝛼2 domain [21, 22]. HFE contributes to regulation of hepatic
synthesis of hepcidin, the main controller of ironmetabolism
[23].

Ferroportin, a transmembrane iron-binding protein and
the hepcidin receptor, exports iron from absorptive entero-
cytes, macrophages, and hepatocytes [23]. Hepcidin regulates
small intestinal iron absorption, plasma iron concentrations,
and tissue iron distribution by inducing inactivation and
ubiquitination of ferroportin [23, 24].

Hepcidin synthesis by the liver is regulated by extracellu-
lar and intracellular iron concentrations and the iron require-
ments of erythroid precursors via complex mechanisms that
are incompletely understood [23]. InHFE hemochromatosis,
excessive iron absorption and increased iron stores are due
to lack of hepcidin upregulation, although mutations in non-
HFE genes may act as positive “modifiers” of iron absorption
in some p.C282Y homozygotes [19, 25, 26].

4. Measuring Iron Stores

Quantitative phlebotomy, the standard reference method
for assessing body iron stores, permits measurement of the
amount of iron mobilizable for hemoglobin synthesis [15,
27, 28] (Table 1). Measuring liver iron by atomic absorption
spectrometry is also widely used for clinical assessments of
iron overload [15, 29]. SF is the most widely used surrogate
indicator of body iron stores (Table 1). Elevated SF levels
in most patients without p.C282Y homozygosity are caused
by noniron liver disease and other conditions [28, 30, 31]
(Table 1). Histologic grading of Prussian blue positivity in
bone marrow aspirates and liver biopsy specimens is not
quantitative.

5. Diabetes Pathogenesis in Hemochromatosis

5.1. Pancreatic Siderosis. Through the mid-20th C, diabetes
was observed in ∼80% of patients with hemochromatosis
(Figure 1). Most of them also had heavy liver iron loading
and cirrhosis [8, 9]. Postmortem evaluations revealed severe
hemosiderin deposition and iron-induced fibrosis of the islets
of Langerhans and pancreatic acini [8, 9]. Specificity of iron
deposition for the pancreatic beta cells was described in 1956
[32] and confirmed in 1987 [33].

5.2. Iron Entry into Pancreatic Islets. Transferrin receptors in
normal human pancreas are expressed predominantly in the
islets [34] and are presumed to be a physiologic means by
which transferrin-bound iron enters islet cells. Divalentmetal
transporter 1 (DMT1) is also localized primarily to pancreatic
islet cells [35]. The abundant expression of DMT1 in islet
cells suggests that DMT1 also plays an important role in iron

uptake by beta cells [36]. In a study of mice with global or
tissue-specific inactivation of the Slc11a2 gene that encodes
DMT1, the investigators concluded that hepatocytes and
most cells (other than placenta, small intestinal mucosa, and
erythroid cells) “must have an alternative, as-yet-unknown,
iron uptake mechanism,” although iron uptake by pancreas
was not reported [37].

In HFE hemochromatosis, iron loading of parenchymal
cells is partly due to uptake of non-transferrin-bound iron
(NTBI) from plasma. In one study, an anti-DMT1 antibody
significantly decreased the uptake of NTBI into human hep-
atocytes and hepatocellular carcinoma cells (HLF), although
pancreas cells were not evaluated [38].

Mouse solute carrier Slc39a14 mediates NTBI uptake into
cells in vitro [39]. Slc39a14 deficiency inmicewith hemochro-
matosis induced by double homozygosity for Slc39a14−/− and
eitherHfe−/− orHfe2−/− greatly diminished liver iron loading
and prevented iron deposition in hepatocytes and pancreatic
acinar cells [40].

5.3.Hepcidin Expression in BetaCells. Immunohistochemical
studies in humans and rats localized hepcidin exclusively
to pancreatic beta cells [41]. Immunoelectron microscopy
analyses demonstrated that hepcidin is limited to the beta-
cell secretory granules that store insulin [41]. Hepcidin
expression in beta cells is regulated by iron in vitro [41].Thus,
beta cells, in addition to hepatocytes, are sources of hepcidin
and may contribute to iron homeostasis and blood glucose
regulation [41].

5.4. Decreased Insulin Secretion in HFE Hemochromatosis.
In an early study, some patients with hemochromatosis
had subnormal fasting plasma insulin levels and subopti-
mal increments in plasma insulin levels after intravenous
glucose infusions [42]. In a subsequent report, loss of
insulin secretory capacity was the primary event leading
to hemochromatosis-related diabetes in thirty nonscreening
patients with hemochromatosis (26 p.C282Y homozygotes)
and mean SF 1501 ± 287 (standard deviation) ng/mL [1].

5.5. Iron, Islet Cells, and Insulin Secretion in Hfe−/−Mice. Iron
metabolism characteristics of Hfe knockout (Hfe−/−) mice
are inherited as autosomal recessive traits and are typical
of HFE hemochromatosis [19, 43], but iron metabolism
characteristics of different Hfe−/− mouse strains vary [44].
Hepatic gene expressions inHfe−/−mice profiles also differ by
strain and age [45].The inheritance of hepatic iron loading in
Hfe−/− mice is polygenic [46].

In Hfe−/− mice (C57BL/6J genetic background) 10 weeks
of age, Perls’ Prussian blue-stained sections of liver, spleen,
and small intestine, but not pancreas, revealed iron deposi-
tion [43]. At 10–12 months of age, Hfe−/− mice (C57BL/6J
background) had decreased glucose tolerance caused by
inadequate increments of insulin levels [47]. Hfe−/− mice
(129/SvEvTac background) had islet cell iron content that
was 72% higher than that of wild-type controls by age
5 weeks [47]. Similar results were obtained in mice with
homozygosity for a Hfe mutation knockin orthologous to
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Table 1: Measures of body iron stores.

Measures Specimen Advantages Disadvantages References

Iron removed
to achieve iron
depletion

Blood

Standard reference
method;
therapeutic;
minimally invasive;
quantitative; whole
body; widely
available

Lengthy;
inconvenient;
moderate cost

[25, 27, 30, 182, 183]

Hepatic iron
content Biopsy

Invasive;
quantitative;
widely available;
strong correlation
with quantitative
phlebotomy;
permits evaluation
of liver histology

Possible
inadequate
specimen; risks of
pain, bleeding,
pneumothorax,
bile leak; single
organ; moderate
cost

[25, 183, 184]

Iron in liver SQUID Noninvasive;
quantitative

Few devices exist;
not routinely
available; single
organ; expensive

[183, 185–187]

Iron in liver,
heart, pancreas

Magnetic
resonance

scan

Noninvasive;
quantitative;
detects iron
overload over wide
range of
concentrations

Equipment
expensive; all MRI
devices not
calibrated to
measure iron

[183, 188]

Serum ferritin Blood
Widely available;
semiquantitative;
inexpensive

Elevated in many
subjects with
excess alcohol
consumption,
inflammation,
infection, chronic
disease,
malignancy; fair
correlation with
measured iron
stores

[25, 28, 30, 80, 182, 183]

Serum
transferrin
recep-
tor/serum
ferritin
(sTfR/SF)

Blood
Widely available;
semiquantitative;
inexpensive

Unsuitable for
subjects with
inflammation,
infection, chronic
disease,
malignancy; not
validated for iron
overload study

[189, 190]

humanp.C282Yhomozygosity [47]. Cooksey et al. concluded
that excess iron in mice induces beta-cell oxidant stress
and decreases insulin secretion due to desensitization and
apoptosis [47]. Regardless,Hfe−/− mice of both the C57BL/6J
and 129/SvEvTac strains usually do not develop diabetes [47].
These observations suggest that diabetogenesis inHfe−/−mice
requires decreased insulin secretion and other factor(s).

5.6. Diabetes and Liver Disease. Diabetes is a frequent com-
plication of cirrhosis [25, 48–50]. Cirrhosis due to both
iron overload and nonhemochromatosis causes occurs in
HFE hemochromatosis [51]. Some persons with cirrhosis

also have insulin resistance (IR) [52] and hyperglucagone-
mia [53] that may contribute to diabetogenesis. Kushner
informally reported that “of 104 clinically affected male
[hemochromatosis] probands, 32 (31%) had diabetes, and
of these, 23 had biopsy-proven cirrhosis, five had moderate
fibrosis, and only four had normal liver architecture” [47].
In hemochromatosis probands homozygous for p.C282Y
diagnosed in medical care, neither biopsy-proven cirrhosis
nor an aggregate variable “liver disorders” was significantly
associated with diabetes [10]. In another study, the preva-
lence of diabetes in men with p.C282Y homozygosity and
markedly increased iron stores (14% diabetes; 40% cirrhosis)
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did not differ significantly from that of men with p. C282Y
homozygosity and normal or mildly increased iron stores
(15% diabetes; no cirrhosis) [26].

5.7. Glucagon Secretion. Patients with hemochromatosis and
impaired glucose tolerance or diabetes have enhanced
glucagon responses after arginine infusion [54–59]. In one
study, glucagon immunoreactivity in plasma was higher in
patients with hemochromatosis than in control subjects,
regardless of glucose tolerance [57]. When nonspecific reac-
tivity was deducted, the resulting values for true glucagon
concentrations were similar in hemochromatosis and control
subjects [57]. It can be inferred from these reports that
alpha-cell function is preserved in typical patients with
hemochromatosis and diabetes [58].

5.8. Chromium. Retention of radiochromium administered
intravenously to persons with hemochromatosis was reduced
[60, 61]. Chromium potentiates the action of insulin in vivo
and in vitro [62, 63] and may alleviate IR [64]. Chromium
deficiency is common in persons with prediabetes [65].
Persons with type 2 diabetes have lower blood levels of
chromium than those without diabetes [66]. DMT1 prefer-
entially transports ferrous iron from the intestinal lumen
into absorptive cells by a H+-dependent process. In HFE
hemochromatosis, DMT1 mRNA levels are increased [67].
Expression of DMT1 in Xenopus oocytes did not stimulate
the transport of Cr(2+) or Cr(3+) [68]. Chromium, like
iron, binds plasma transferrin [69, 70]. Mechanisms and
kinetics of chromium absorption, intermediate metabolism,
and excretion in hemochromatosis are unreported.

6. Iron Phenotypes and Diabetes

6.1. Hemochromatosis. The prevalence of previously undi-
agnosed hemochromatosis in patients attending a diabetes
clinic in Australia was 2.4-fold higher than that of the general
population [71]. The prevalence of hemochromatosis pheno-
typeswas significantly greater in Italian patients with diabetes
(117 type 1; 777 type 2) than control subjects (odds ratio 6.3)
[72]. In the two aforementioned studies, hemochromatosis
was diagnosed using iron phenotyping; HFE genotyping was
not performed.

In the multiracial, multiethnic Hemochromatosis and
Iron Overload Screening (HEIRS) Study of 97,470 partici-
pants in North America, 2.0% of participants who reported
that they had diabetes also had hemochromatosis or iron
overload [73].

6.2. Transferrin Saturation. TSwas not a significant predictor
of diabetes in non-Hispanic whites with p.C282Y homozy-
gosity detected in the HEIRS Study [51]. In contrast, there
was a significant negative trend of TS across increasing
homeostasis model assessment-insulin resistance (HOMA-
IR) quartiles in a postscreening cohort of p.C282Y homozy-
gotes and HFE wild-type homozygotes [74].

In cohorts unselected for hemochromatosis, TS was
inversely related to prediabetes [75] and diabetes [73, 76, 77].
In the HEIRS Study, mean TS was lower in non-Hispanic

whites with diabetes [73]. To the contrary, TS was not a
risk factor for diabetes in Australian adults in a large cross-
sectional analysis [78]. In ameta-analysis, TSwas a risk factor
for type 2 diabetes [79].

6.3. Serum Ferritin in Diabetes with Hemochromatosis. SF
levels were not significantly associated with diabetes in
p.C282Y homozygotes identified in screening [51]. Neither SF
nor quantities of iron removed to achieve iron depletion was
significantly associated with type 2 diabetes in hemochro-
matosis probands with p.C282Y homozygosity diagnosed
in medical practice [10]. In screening and nonscreening
p.C282Y homozygotes, correlations of SF with iron burdens
were positive and significant [51, 80]. These results indicate
that increased storage iron in p.C282Y homozygotes, not
diabetes, is the major determinant of SF levels [51].

6.4. Serum Ferritin in Diabetes without Hemochromatosis.
SF levels were positively associated with fasting glucose
[81]; impaired glucose metabolism [77]; insulin levels [81];
prediabetes [75]; and diabetes [73, 76–78, 82–85] in cross-
sectional studies of participants unselected for hemochro-
matosis diagnoses. In a longitudinal study, SF levels were
positively associated with glucose intolerance and IR [86]. In
overall HEIRS Study analyses of observations of 97,470 par-
ticipants, SF levels were significantly associated with diabetes
in a regression model that included HFE genotype [73]. In
769 postscreening HEIRS Study participants (including 188
p.C282Y homozygotes), log SF was significantly associated
with diabetes in a regression model that includedHFE geno-
type [74]. In meta-analyses, there were positive associations
of SF with type 2 diabetes [79, 87]. The ratio of serum
transferrin receptor (sTfR) to SF (sTfR/SF ratio) was inversely
associated with diabetes in case-control studies [82, 85, 88]
and in a case-cohort study [84]. Lower ratios of sTfR/SF
were independent predictors of incident type 2 diabetes
[89]. Evidence from the EPIC-InterAct Study suggests that
the relationship between type 2 diabetes and iron stores in
persons unselected for hemochromatosis diagnoses is more
complex than the association with SF levels alone [90].

6.5. Serum Ferritin in Diabetes: Hemochromatosis versus Non-
hemochromatosis. Mean SF levels in subjects with untreated
hemochromatosis and p.C282Y homozygosity [20, 91] were
much higher than SF levels in subjects with or without
diabetes who did not have HFE hemochromatosis genotypes
[78, 92]. SF levels predict type 2 diabetes in persons without
hemochromatosis diagnoses but the SF levels are typically
below the concentration indicative of iron overload (7, 10, 13–
22). Some authorsmistakenly interpret or report highermean
SF levels in subjects with diabetes than controls or upward
trends of SF levels across HOMA quartiles as evidence of
increased body iron stores or iron overload. Elevated iron
stores are not typical of patients with type 2 diabetes [88,
93]. A persistently elevated SF criterion has a low positive
predictive value in screening patients with diabetes for
hemochromatosis [94].

Hyperferritinemia is not significantly associated with
diabetes in untreated p.C282Y homozygotes [10, 51]. In
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p.C282Y homozygotes, prephlebotomy plasma levels of C-
reactive protein (CRP) and interleukin- (IL-) 6 did not differ
significantly between those with high iron stores and those
with low iron stores [95].

Ferritin is an iron storage protein. SF consists of iron-rich
ferritin and iron-poor apoferritin [96, 97]. Body iron stores
are in equilibrium with iron-rich SF [98, 99]. Levels and iron
content of SF are increased in hemochromatosis and other
iron overload disorders [30, 96]. The iron content of SF in
noniron liver disorders associated with hepatocyte injury is
also increased due to release of iron-rich hepatocyte ferritin
into the blood [30, 96, 97]. Ferritin released from diverse
tissues into the blood due to inflammation, anemia of chronic
disease, ormalignancy is typically apoferritin [30, 96, 97, 100–
103]. Apoferritin synthesis and secretion are enhanced by
interleukin-1 and chronic ethanol consumption [104, 105].

7. HFE Genotypes and Diabetes

In patients with type 2 diabetes, the prevalence of p.C282Y
homozygosity did not differ significantly from that of control
subjects [106–109]. The prevalence of undiagnosed diabetes
or impaired fasting glucose in p.C282Y homozygotes iden-
tified in population screening was similar to that in control
subjects with HFE wild-type genotypes [110]. Diabetes also
occurs in some persons with the common HFE genotypes
p.C282Y/p.H63D and p.H63D homozygosity [111, 112] and in
other persons with hemochromatosis phenotypes and novel
HFE genotypes [113, 114]. Regardless, clinical and screening
studies of persons with hemochromatosis phenotypes did not
detect significantly increased diabetes prevalence associated
with common HFE genotypes, including p.C282Y homozy-
gosity [2, 73, 115].

8. Morbidity and Mortality of Diabetes in
HFE Hemochromatosis

8.1. Inflammation. Higher SF levels, lower TS levels, and
higher blood neutrophil counts in patients with hemochro-
matosis and diabetes [51] may signify inflammation related to
underlying processes that ultimately result in diabetes, rather
than representing diabetogenic factors. Common inflamma-
tory disorders in persons with diabetes, with or without
hemochromatosis, include obesity, arthropathy, atheroscle-
rosis, dyslipidemia, microvascular disease, and fatty liver. In
persons with type 2 diabetes, CRP levels are elevated in ∼
50% of those with [51] and in ∼40% of those without [116]
hemochromatosis. Elevated CRP and IL-6 concentrations are
significantly associated with increased type 2 diabetes risks in
populations unselected for hemochromatosis diagnoses [117].
Subclinical inflammation is associated with hyperglycemia
and IR in type 2 diabetes unassociated with hemochromato-
sis [118]. Single-nucleotide polymorphisms (SNPs) of three
genes were associated with markers of islet cell inflammation
[119].

8.2. Diabetes Risk. Decreased insulin secretion increases dia-
betes risk in persons with hemochromatosis [1, 42]. Obesity
or increased body mass index (BMI) in persons with HFE

hemochromatosis also increases diabetes risk [10, 51, 74, 120].
IR and metabolic syndrome (MetS) are common in patients
with hemochromatosis [42, 121–123]. In non-Hispanic white
adults without diabetes (including 188 p.C282Y homozy-
gotes), IR as determined by HOMA-IR was a significant
predictor of MetS but p.C282Y homozygosity was not [74].
In screening p.C282Y homozygotes, SF was significantly
associated with HOMA-IR 4th quartile, MetS, and diabetes
[51]. In addition, age, male sex, and BMI were significantly
associatedwithHOMA-IR fourth quartile [51]. OnlyHOMA-
IR fourth quartile was significantly associated withMetS [51].
Diabetes in first-degree family members was significantly
associatedwith type 2 diabetes in hemochromatosis probands
with p.C282Y homozygosity diagnosed inmedical care (odds
ratio 8.5 [95% confidence interval 2.9–24.8]) [10].

The general population prevalence of type 1 diabetes
defined as autoimmune beta-cell destruction and absolute
insulin deficiency is approximately the same as that of
hemochromatosis [124]. Genes within the MHC are major
risk factors for type 1 diabetes [125, 126], although diverse
autoimmune conditions in 236 nonscreening hemochro-
matosis probands with p.C282Y homozygosity did not
include type 1 diabetes [127]. In a population study of
hemochromatosis and iron overload, it was unclear whether
participants with “late-onset type 1 diabetes” had beta-cell
autoimmunity [128]. Genome-wide association studies have
not identified a consistent association of human leukocyte
antigen (HLA) region genes with type 2 diabetes although
many other associated genes occur on chromosomes other
than 6p [129, 130]. Type 2 diabetes risk in nonscreening
p.C282Yhomozygoteswas not associatedwith commonHLA
types and haplotypes [10].

9. Complications of Diabetes

9.1. Typical Complications. Many complications of diabetes
in patients with hemochromatosis are typical of those that
occur in patients without hemochromatosis. These include
obesity; fat atrophy; proteinuria/albuminuria; retinopathy;
peripheral neuropathy; and coronary artery and peripheral
vascular disease [42, 131].

9.2. Diabetes, Arthropathy, Cirrhosis, and Pancreatic Cancer.
The prevalence of second and third metacarpophalangeal
arthropathy, a proxy for hemochromatosis hand arthropa-
thy, was significantly associated with diabetes in p.C282Y
homozygotes [51]. Erosive hand osteoarthritis in personswith
type 2 diabetes unselected for hemochromatosis was also
associated with hand pain [132]. Serum levels of the cellular
adhesion molecule VCAM-1 were significantly associated
with hemochromatosis arthropathy, independent of diabetes,
BMI, and age [133]. Elevated VCAM-1 is also a significant
predictor of incident diabetes [134]. Phlebotomy therapy
reverses cirrhosis due to iron overload and hemochromatosis
in some patients [135], although it is unreported whether
cirrhosis reversal also reduces IR or diabetes manifestations.
In a meta-analysis, the risk of cancer of the pancreas in
persons with diabetes was increased (odds ratio 1.8) [136]. In
contrast, pancreatic adenocarcinoma risk is not increased in
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hemochromatosis [137, 138], although adenocarcinoma of the
pancreas has been described in hemochromatosis case series
[10, 137, 138].

9.3. Diabetes, Survival, and Causes of Death in Hemochro-
matosis. Survival of German subjects after hemochromatosis
diagnosis between 1959 and 1983 was decreased in those
who had either cirrhosis or diabetes [139]. There was a 7-
fold increased risk of death due to diabetes in patients with
hemochromatosis [139].The common feature of subjects with
cirrhosis and diabetes was heavy iron overload [124, 139].
In a 1991 study of Canadian patients with hemochromatosis,
diabetes did not increase the risk of death after data were
controlled for the presence of cirrhosis [140]. In a large study
of Danes reported in 2014, the mortality risk in individuals
with diabetes was more than threefold greater in those
with HFE p.C282Y/p.C282Y than in those with HFE wt/wt
genotypes [141].

In the US, hemochromatosis was more likely to have
been diagnosed in subjects who died with liver disease, liver
neoplasms, cardiomyopathy, diabetes, or viral hepatitis [142].
The proportionate mortality ratios were even higher when
liver neoplasms or liver disease was combined with diabetes
[142]. Liver disease, liver neoplasms, cardiomyopathy, dia-
betes, and viral hepatitis were more likely to occur among
hemochromatosis-associated deaths than among all deaths
[142]. Men were more likely to have liver disease (excluding
neoplasms), cardiac disorders, nonhepatic neoplasms, dia-
betes, liver neoplasms, and infectious diseases [142].

10. Iron in Nonhemochromatosis Diabetes

Most persons diagnosed to have type 2 diabetes do not have
iron overload [88, 93]. Favorable effects of phlebotomy on
diabetes manifestations suggest that abnormal distribution of
normal quantities of body iron contribute to diabetogenesis
in some persons without hemochromatosis [143–145]. Iron-
related dietary, cellular, andmolecular mechanismsmay con-
tribute to the development or expression of type 2 diabetes
[146] (Table 2). These and other mechanisms may also be
associated with or cause impaired glucose metabolism, IR,
and MetS. It is plausible but unproven that the same mecha-
nisms would be applicable to persons with hemochromatosis.
Detailed review of these mechanisms is beyond the scope of
this review.

11. Management of Diabetes in
HFE Hemochromatosis

11.1. General Management. Treatment of type 2 diabetes in
persons with or without hemochromatosis is similar [15, 147].
Reducing inflammation of diverse sources may have a posi-
tive effect on potentially injurious iron-related mechanisms,
although this is unproven. In hemochromatosis probands
with p.C282Y homozygosity, probands with diabetes had
greater mean BMI [10, 120].

Physicians should recommend appropriate weight reduc-
tion via diet modifications and increased activity to all
patients. Modifiable risks for patients with elevated CRP

include suboptimal physical activity (men) and central obe-
sity and lack of statin use (women) [116]. Some patients with
diabetes would benefit from reduced consumption of red
meat and alcohol [15]. Persons with hemochromatosis, dia-
betes, or chronic liver disease have increased risks to develop
septicemia or wound infections due to Vibrio vulnificus, a
cosmopolitan halophilic bacterium [148–152]. These persons
should not consume uncooked shellfish or expose wounds to
warm coastal waters [15, 148–152].

11.2. Phlebotomy. Persons with HFE hemochromatosis who
present with elevated SF levels (men > 300 𝜇g/L, women >
200𝜇g/L) should undergo phlebotomy therapy to achieve
iron depletion [15, 147]. The goal of phlebotomy thereafter
is to maintain nonelevated SF values [15]. Elevated TS in
p.C282Y homozygotes is due to decreased hepcidin available
to bind ferroportin and consequent increased storage iron
release from macrophages and hepatocytes, not iron over-
load. Thus, elevated TS levels persist after iron depletion is
achieved. Elevated TS is not a target of treatment in HFE
hemochromatosis [15, 147].

In patients with hemochromatosis and diabetes who
are presumed or known to have pancreatic siderosis, phle-
botomy therapy is likely to improve insulin secretion only
when hemochromatosis diagnosis and iron depletion are
early [15, 153, 154]. Hemochromatosis patients with neither
diabetes nor cirrhosis had normal insulin sensitivity but
their acute insulin responses to glucose were decreased [122].
Phlebotomy treatment normalized their SF levels, increased
their acute insulin responses, and normalized their glucose
tolerance [122]. In five referred adults with hemochromatosis
and iron overload, insulin secretory capacity improved after
normalization of iron stores [155].

The efficacy of iron depletion in decreasing IR in persons
with hemochromatosis or p.C282Y homozygosity is variable
[122, 154, 156]. Phlebotomy therapy did not improve diabetes
control in the majority of 44 patients with hemochromatosis
(25 insulin-dependent, 19 noninsulin-dependent) [154]. In
15 men with hemochromatosis, phlebotomy therapy lowered
insulin requirements in those with insulin dependency and
improved diabetes control in about half of those without
insulin dependency [154]. In another study, IR in patients
with hemochromatosis and either cirrhosis or diabetes was
unaffected by phlebotomy treatment [15]. Impaired glucose
tolerance resulting from IR in hemochromatosis subjects
with cirrhosis or diabetes is not affected by phlebotomy
treatment [122].

Treating type 2 diabetes with phlebotomy is not rou-
tine. In type 2 diabetes without hemochromatosis, partici-
pants randomized to phlebotomy therapy achieved decreased
hemoglobinA1c levels and favorable changes in insulin secre-
tion and IR [143]. As expected, phlebotomy also decreased
SF, TS, and hemoglobin levels [143]. Iron depletion improved
control of poorly controlled type 2 diabetes in patients with
elevated SF levels who did not have common HFE alleles
[145]. Repeated phlebotomies of patients with type 2 diabetes
significantly decreased serum glucose levels [144]. Blood
donation or phlebotomy was associated with more favorable
or improved metabolic indices associated with diabetes risk
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Table 2: Proposed roles of iron in type 2 diabetes.

Variable Mechanism Reference

Body iron status

Modulates transcription, membrane
expression/affinity of insulin receptor expression in
hepatocytes, influences insulin-dependent gene
expression

[191]

Dietary iron Controls circadian hepatic glucose metabolism
through heme synthesis [192]

Intake of processed
meat, red meat Higher risk of type 2 diabetes [161, 193, 194]

Dietary iron restriction,
iron chelation

Increased insulin sensitivity, beta-cell function (ob/ob
lep−/− mice)

[195]

Iron chelation
Ameliorates adipocyte hypertrophy via suppression of
oxidative stress, inflammatory cytokines, and
macrophage infiltration

[196]

Starvation

Increased liver Pck1 transcription, hepcidin
expression, and degradation of ferroportin;
hypoferremia, hepatic iron retention (C57BL/6Crl,
129S2/SvPas, BALB/c, and Creb3l3−/− null mice)

[197]

High fat diet

Increased hepatic iron regulatory protein-1, increased
transferrin receptor 1 expression, increased hepcidin,
decreased ferroportin (Hfe−/− mice); increased fatty
acid oxidation, hypermetabolism, elevated hepatic
glucose production (Hfe−/− mice)

[198, 199]

Cellular iron uptake Stimulated by insulin [200]

Excess hepatic iron Hyperinsulinemia due to decreased insulin extraction,
impaired insulin secretion [121]

Iron-related proteins in
adipose tissue Expression modulated by insulin resistance [201]

Adipocyte iron Regulates leptin and food intake [202]
Adiponectin Transcription negatively regulated by iron [203, 204]

Visfatin
Positive association with serum prohepcidin, negative
correlation with serum soluble transferrin receptor in
men with altered glucose tolerance

[205]

Heme oxygenase-1
promoter microsatellite
polymorphism

Higher ferritin with short (GT)(𝑛) repeats [206]

Antioxidants Lower levels partially explained by iron alterations [207]

in subjects without diagnosed diabetes [144, 157–160]. In
another study, blood donations did not influence diabetes risk
[161].

12. Problems That Have Been Resolved

Pathogenesis of diabetes in HFE hemochromatosis is mul-
tifactorial and the clinical manifestations of diabetes are
heterogeneous (Table 3). Increased type 2 diabetes risk in
HFE hemochromatosis is associated with one or more fac-
tors, including iron overload, decreased insulin secretion,
increased BMI, IR, MetS, diabetes in first-degree relatives,
and cirrhosis. Iron overload alone is insufficient to cause type
2 diabetes in most p.C282Y homozygotes. Iron removed by
phlebotomy is not significantly associated with diabetes in
p.C282Y homozygotes in multivariate analyses. Phlebotomy

therapy to achieve iron depletion does not improve control of
diagnosed diabetes in all persons with HFE hemochromato-
sis. SF levels do not predict diabetes in p.C282Y homozygotes.
No consistent association of chromosome 6p or HLA region
genes (including HFE) that increase type 2 diabetes risk has
been demonstrated. Prevalence of type 2 diabetes in persons
with and without HFE hemochromatosis diagnosed today
is similar. Routine iron phenotyping or HFE genotyping of
patients with type 2 diabetes is not recommended. Persons
with newly diagnosed type 2 diabetes who have arthropathy
involving the second and third metacarpophalangeal joints
are candidates for iron phenotyping or HFE genotyping
because this manifestation is associated with increased dia-
betes risk. Iron overload alone is insufficient to cause type 2
diabetes in most HFE p.C282Y homozygotes.
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Table 3: Diabetes risk in HFE hemochromatosis.

Risk factors Proposed mechanisms and pathophysiology

Increased iron entry into beta
cells of islets

Increased transferrin saturation and transport via transferrin receptors
Elevated nontransferrin bound iron in plasma and entry by incompletely described
mechanisms
Increased iron transport by divalent metal transporter 1

Decreased insulin secretion
Islet inflammation
Beta-cell injury
Pancreatic islet fibrosis

Cirrhosis
Associated with severe iron overload, pancreatic fibrosis
Hyperglucagonemia
PCSK7 rs236918 allele C

History of diabetes in first-degree
relatives Multiple genetic and acquired factors

Genetic markers Multiple loci for type 2 diabetes
Chromosome 6p loci for type 1 (autoimmune) diabetes

13. Problems That Remain to Be Resolved

It is unknown whether phlebotomy of all p.C282Y homozy-
gotes will increase insulin secretion if diagnosis of hemochro-
matosis and induction phlebotomy therapy are early. It
is unknown whether early identification and treatment of
p.C282Y homozygotes who also have common putative
genetic “modifiers” that increase severity of iron phenotypes
would decrease diabetes prevalence. Bone morphogenetic
proteins have been implicated in glucose metabolism [162]
and it has been proposed that BMP2 rs235756 is associated
with SF levels in p.C282Y homozygotes [163], although
we found no documentation of the relationship of BMP2
rs235756 to diabetes risk. It is unknown whether maintaining
lower SF levels in persons with HFE hemochromatosis and
diabetes than presently recommended for “maintenance”
therapy could maintain or improve insulin secretion and
diabetes control or decrease diabetes risk. The proportion
of patients with HFE hemochromatosis who develop dia-
betes after diagnosis and treatment of hemochromatosis is
unknown. The role of tumor necrosis factor (TNF; chro-
mosome 6p21.33) in hemochromatosis-associated diabetes is
unknown. The prevalence of HFE alleles and genotypes in
cohorts of patients with autoimmune diabetes is unknown.

14. Directions for Future Research

Longitudinal studies that compare the incidence rates of dia-
betes in p.C282Y homozygotes and control subjects matched
for age, sex, and race would provide greater insights into
the burden of diabetes in HFE hemochromatosis, especially
diabetes risk after hemochromatosis diagnosis. Effects of
early diagnosis and phlebotomy on diabetes incidence in
hemochromatosis could also be determined in longitudinal
studies.

Genome-wide association or whole-genome sequencing
studies of cohorts of p.C282Y homozygotes with and without
diabetes could identify alleles associated with increased
diabetes risk. It is anticipated that such studies would identify
novel loci in p.C282Y homozygotes not previously identified

in studies of participants with type 2 diabetes who were
unselected for hemochromatosis diagnoses. Comparing fre-
quencies of SNPs associated with DMT1, SLC39A14, F13A1,
RIPK2, STEAP4, and BMP2 in p.C282Y homozygotes with
and without diabetes would provide information about the
role of these genes and their corresponding proteins in
iron uptake in and inflammatory injury to beta cells. TNF
-308G→A was significantly associated with TS but not SF
levels measured in population screening [164]. Comparing
frequencies of TNF -308G→A and other TNF promoter
variants in p.C282Y homozygotes with and without diabetes
would provide insights into the role of tumor necrosis factor
in hemochromatosis-associated diabetes. PCSK7 rs236918
genotyping in p.C282Yhomozygotesmay reveal relationships
of cirrhosis risk [165] and changes in insulin sensitivity with
dietary carbohydrate intake [166]. Analysis ofHFE allele and
genotype frequencies in patients with autoimmune diabetes
and an appropriate comparator group would identify a sig-
nificant relationship of common HFE alleles to autoimmune
diabetes, if it exists.

Abbreviations
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Bermejo, and W. Ricart, “Circulating visfatin is associated with
parameters of iron metabolism in subjects with altered glucose
tolerance,” Diabetes Care, vol. 30, no. 3, pp. 616–621, 2007.

[206] M. Arredondo, D. Jorquera, E. Carrasco, C. Albala, and E. Her-
trampf, “Microsatellite polymorphism in the heme oxygenase-
1 gene promoter is associated with iron status in persons with
type 2 diabetes mellitus,”American Journal of Clinical Nutrition,
vol. 86, no. 5, pp. 1347–1353, 2007.

[207] A. Van Campenhout, C. Van Campenhout, A. R. Lagrou et al.,
“Impact of diabetes mellitus on the relationships between iron-,
inflammatory- and oxidative stress status,”Diabetes/Metabolism
Research and Reviews, vol. 22, no. 6, pp. 444–454, 2006.


