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Abstract

Motivation: HiChIP is a powerful tool to interrogate 3D chromatin organization. Current tools to analyse chromatin
looping mechanisms using HiChIP data require the identification of loop anchors to work properly. However, current
approaches to discover these anchors from HiChIP data are not satisfactory, having either a very high false discov-
ery rate or strong dependence on sequencing depth. Moreover, these tools do not allow quantitative comparison of
peaks across different samples, failing to fully exploit the information available from HiChIP datasets.

Results: We develop a new tool based on a representation of HiChIP data centred on the re-ligation sites to identify
peaks from HiChIP datasets, which can subsequently be used in other tools for loop discovery. This increases the re-
liability of these tools and improves recall rate as sequencing depth is reduced. We also provide a method to count
reads mapping to peaks across samples, which can be used for differential peak analysis using HiChIP data.

Availability and implementation: HiChIP-Peaks is freely available at https://github.com/ChenfuShi/HiChIP_peaks.

Contact: chenfu.shi@postgrad.manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The 3D conformation of the chromatin is fundamental in the regulation
of gene expression; regulatory elements such as enhancers have been
shown to act by physically interacting with their target promoters
(Bulger and Groudine, 2011; Nolis et al., 2009; Shlyueva et al., 2014;
Yao et al., 2015). These regulatory elements are highly regulated and
context specific (Alasoo et al., 2018; Kundaje et al., 2015; Simeonov
et al., 2017). However, the requirement of large number of cells (tens of
millions) to obtain chromatin interactions maps at sufficient resolution
and the high cost associated with widely used chromatin conformation
techniques, such as Hi-C, have hindered the study of chromatin interac-
tions in primary and patient-derived cells (Rao et al., 2014).

HiChIP is a recently developed technique to analyse chromatin
conformation which consists of an in situ Hi-C library preparation
followed by a chromatin immunoprecipitation (ChIP) step, usually
targeting the histone modification H3K27ac or cohesin. It has many
advantages compared with traditional methods, such as Hi-C,
Chromatin Interaction Analysis by Paired-End Tag Sequencing
(ChIA-PET) and Capture Hi-C such as lower cost, higher sensitivity,
lower input requirements and reduced sequencing required
(Mumbach et al., 2016, 2017). Unfortunately, few tools exist to spe-
cifically analyse HiChIP data, with most publications relying on
tools originally developed for Hi-C. HiChIP provides a new set of
computational challenges because it combines biases introduced by

two independent techniques: ChIP and in situ Hi-C library prepar-
ation. This phenomenon is particularly evidenced by libraries
enriched for H3K27ac because this histone modification has a sig-
nificantly more specific enrichment compared with cohesin.

It is theoretically possible to extract two types of information from
HiChIP data: the position of enriched regions for the ChIP and the
long-range interactions involving these regions. The enriched regions,
also called anchors or peaks, are usually identified prior to the identifi-
cation of long-range interactions. Previous tools used either MACS2
on close range read pairs (FitHiChIP; Bhattacharyya et al., 2019) or
an adaptation of it (Hichipper; Lareau and Aryee, 2018). Vanilla
MACS2 (Zhang et al., 2008) and its implementation in FitHiChIP has
been shown to be strongly biased due to HiChIP-specific biases, pri-
marily the biotin pulldown (Lareau and Aryee, 2018; Supplementary
Fig. S1). Hichipper tries to solve this problem by modelling a corrected
background as a function of proximity to restriction sites and using
that background for MACS2 peak calling. This results in many small
peaks which then need to be merged to match the restriction frag-
ments, which causes them to lose statistical metrics, such as P-values
or scores rendering comparisons between samples infeasible. Our tests
show also that using all the reads results in poor specificity while using
only self-circle and dangling end reads results in very few reads being
retained and correspondingly reduced sensitivity.

For this reason, many recent publications used independent
ChIP-Seq as input to define anchors (Pelikan et al., 2018). However,
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that too can be a problem because the peaks definition can strongly
influence the expected signal from a region and can be extremely
variable if not done from exactly the same sample.

Here, we propose a method to extract the location of ChIP-Seq
peaks from HiChIP data that improves significantly on previous
attempts. We analysed the HiChIP protocol and library preparation
and developed an algorithm and a data representation that takes
in consideration how the libraries are generated and Hi-C and
HiChIP-specific biases, such as the biotin pulldown (Fig. 1). We
opted for a re-ligation (restriction) site centred representation and
we use short range interactions to identify the signal from the chro-
matin immune-precipitation. We then model the background signal
as a negative binomial distribution to model over-dispersion and
identify regions of enriched signal. We show that our approach is
highly reproducible when compared with reference ChIP-Seq data-
sets and we show how this can improve the performance of down-
stream tools to call chromatin loops from HiChIP data. We also
provide a method to count reads mapping to peaks across samples,
which can be used to analyse differentially bound regions from
HiChIP data and show that this can identify biologically significant
differences.

The software is available as a Python 3 package on GitHub and
PyPi along with code to reproduce the results presented here.

2 Materials and methods

2.1 A novel representation for HiChIP data
Hi-C maps have typically been analysed using a fixed size bin matrix
format. This can introduce significant biases because the expected
number of reads depends on the number of restriction sites included

within each bin. Moreover, reads are not uniformly distributed in
the genome but are strongly biased around restriction sites because
of the on-bead library preparation (Fig. 2 and Supplementary Fig.
S1). This causes sparsity and non-uniformity in the data, which can
bias methods based on genomic position alone. An alternative ap-
proach is to analyse maps at a restriction fragment resolution.
Analysing the raw data from Mumbach et al. (2017), we find that a
significant number of reads contain uncut restriction sites
(Supplementary Table S1). This suggests that the cutting frequency
is low and that especially for libraries prepared using frequently cut-
ting enzymes (four cutters), such as MboI, the read assignment to
the restriction fragment can be misleading. Moreover, traditional
pair classifications, such as dangling end and self-circle, can be mis-
leading since they can be wrongly classified as valid pairs (Fig. 1B)
with significant biases due to fragment size (Fig. 1C). Importantly,
the low frequency of cutting implies that the detectable signal is dir-
ectly correlated to the number of restriction sites and only indirectly
to the effective genomic size.

Approaching the problem in a novel way, we develop a data
structure that focuses on the re-ligation site. This is the location
from which reads are generated during the library preparation
(Fig. 1A) and this data structure maximizes our detection power
while at the same time minimizing biases introduced by the Hi-C li-
brary preparation. Reads are assigned based on the direction of the
read to the nearest restriction site to which they point. This method
significantly reduces the previously mentioned biases and maximizes
information at the highest meaningful resolution. Miss-assignment
of the reads due to small fragment size would be automatically cor-
rected in a logical way (Fig. 1C). We implement this data structure
as a sparse matrix in which the diagonal contains all the re-ligation
pairs and the diagonal þ1 contains pairs traditionally classified as

Fig. 1. Justification for re-ligation site based data structure. (A) The Hi-C protocol creates reads that are centred on the re-ligation site. Mapping reads at a higher resolution is

not biologically relevant and only creates sparsity. (B) Example of how traditional self-circle classifications are not reliable with libraries generated using frequently cutting

enzymes. (C) Example of how a data representation based on the restriction fragment can heavily bias the read counts depending on the size of the fragment while basing the

data representation on the re-ligation site can reduce the bias by compensating each read assigned incorrectly with another one
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self-circle and dangling ends. Starting from this data structure, we

develop our peak calling algorithm.

2.2 Peak calling
To limit the bias in the definition of self-circles and dangling

ends and increase sensitivity, we decided to also include reads that
map to close range interactions. By default, we include interactions
that are within two sites of the re-ligation pairs. We perform a mov-

ing integration as a smoothing function over three restriction sites
to reduce noise. This allows us to use more significant reads in the

successive steps and to regulate these settings depending on the input
data. For example, libraries generated using the commercially avail-
able Arima-HiC kit, which uses two restriction enzymes, generate

next to no reported self-circle and dangling ends reads
(Supplementary Fig. S2) but our method can be easily tuned by
changing the previous parameters.

Visual inspection of the distribution of the background signal
suggests that it closely matches a negative binomial distribution

(Supplementary Fig. S3), similar to what has been found with ChIP-
seq data (Diaz et al., 2012). In order to model the distribution of the

background, it is important to note that a large majority of reads
will locate in peaks (up to 80%) and inclusion of these reads would
highly bias parameter estimation. We, therefore, first remove the

most significant peaks using a Poisson-based model (similarly to
MACS2; Zhang et al., 2008) with a very stringent setting (P-value

<1 � 10�8) and a genomic background. We then estimate the nega-
tive binomial mean and over-dispersion parameters using the
residual background reads.

Most fragment-size bias is removed thanks to our novel data
structure but we still find a small amount of bias (Supplementary

Fig. S4). We correct for this by using a LOWESS fit with the residual
background and then correct the expected background level within
each region using the learned regression function.

bg � NBðk;rÞ
k ¼ kg þ lðsÞ
kg ¼ genomic background signal

r ¼ variance of background signal

s ¼ size of fragments

lðsÞ ¼ size function estimated with LOWESS fit

The fitted negative binomial model represents the data well after

fragment-size bias correction with a P-value distribution that is close
to uniform away from zero, as expected, with a spike close to zero
corresponding to data inferred to be within peaks (Supplementary

Fig. S5). We then use the Benjamini–Hochberg false discovery rate
(FDR) correction and combined contiguously significant re-ligation

sites into peaks.

2.3 Differential peak analysis
We take advantage of the data structure and the expected back-

ground model to develop an addition to our main software. To call
differentially bound regions, we first combine the peaks from all the

samples to create a list of consensus peaks. Similarly to DiffBind
(Ross-Innes et al., 2012; Stark and Brown, 2011), we then count
how many reads were assigned to those regions from each sample,

correct the values by removing the expected background based on
the negative binomial model and fragment size and then analyse the

results using DESeq2 (Love et al., 2014) to normalize the read
counts across samples and perform differential expression analysis.

signal ¼ x� k

x ¼ counts mapped to peak

The model assumptions of DESeq2 are satisfied as evidenced by
the P-value distributions shown in Supplementary Figure S20.

Unsupervised hierarchical clustering was done using Euclidean
distance on the signal from all the peaks with rlog normalization.

Motif enrichment analysis was done using differentially bound
peaks between Tregs and naı̈ve T cells and Th17 and naı̈ve T cells.
These regions were submitted to HOMER v 4.8.3 (Heinz et al.,
2010) with the findMotifsGenome.pl command and ‘–size given’
parameter.

2.4 Data pre-processing
HiChIP data from Mumbach et al. (2017) were downloaded from

SRA for naı̈ve T cells, Th17, Tregs and K562 (SRP no. SRP112520).
Reads were filtered and the adapters were removed using fastp

v0.19.4 (Chen et al., 2018). The reads were then mapped to the
GRCh38 genome with HiC-Pro v2.11.0 (Servant et al., 2015), using
default settings. Replicates were merged together as described in the

Section 3.2.

2.5 Hichipper peak calling
We called anchors using the Hichipper v 0.7.5 pipeline (Lareau and
Aryee, 2018) on the HiC-Pro results with default settings making

sure to include the modified background correction and restriction
fragment aware padding. We called peaks with the setting EACH,
SELF (for self-circle and dangling ends only) or EACH, ALL (for all

reads).

2.6 FitHiChIP (MACS2 short range) peak calling
We used the supplied tool with FitHiChIP (Bhattacharyya et al.,
2019) to call peaks from HiC-Pro results with default settings. This

tool uses all reads from dangling ends, re-ligation and self-circle
pairs and also all reads within 1 kb from the valid pairs and supplies
all the reads to MACS2 2.1.1 (Zhang et al., 2008) for peak calling.

Fig. 2. Visualization of the different methods used for peak calling from HiChIP data. Our novel restriction site centred data structure allows us to correct for the bias intro-

duced by the Hi-C library preparation. This is contrast with in contrast with methods that make use of MACS2 applied to the pile-up from short range (in this case from

Hichipper). Our method inherently simplifies the peak calling approach and allows us to have higher sensitivity and lower false positive rate compared with the methods imple-

mented in Hichipper and FitHiChIP. Data shown are from GM12878 cells
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2.7 Peak calling comparison
We downloaded reference H3K27ac tracks for GM12878 cells from
the Encode website (accession no. ENCSR000AKC), replicated peak
set (accession no. ENCFF367KIF).

For the naı̈ve T cells, we used the processed peaks from the road-
map project (Sample E038; Kundaje et al., 2015). We used the tool
LiftOver to convert the genomic coordinates from hg19 to hg38.

All comparisons were done using bedtools v2.27.1 (Quinlan and
Hall, 2010) annotate function and then analysed in python. No ex-
tension of the peaks was done. Peaks on X and Y chromosomes
were excluded from the comparison. For HiChIP-Peaks plots are
presented as lines that result in cumulative sum of the results with
the peaks sorted by P-value.

2.8 Subsampling analysis
We created subsampled datasets from the GM12878 HiChIP data
(Mumbach et al., 2017) by subsampling the raw reads creating data-
sets with 500, 250, 125 and 62.5 million reads. For the naı̈ve T cells
dataset, we used the combined data, the two biological replicates
with the two technical combined or the four technical replicates as
individual samples.

We compared how many of the peaks called using the full data-
set could be recovered from the subsampled datasets for Hichipper
and HiChIP-Peaks. We calculated precision and recall rates using
bedtools v2.27 annotate.

For loop calling, we used Hichipper with default settings. We ei-
ther used the default peak calling algorithm from Hichipper or we
supplied the peaks called using HiChIP-Peaks from the respective
dataset. In the former case, we used the skip-resfrag-pad setting to
avoid Hichipper expanding the peaks. Overlaps were calculated
using bedtools pair-to-pair.

To compare the loops called, we first filtered the loops by FDR
< 0.10 as reported by Mango (Phanstiel et al., 2015). We then
checked if the loops called in the full dataset could be found in the
subsampled datasets and calculated the recall rate. A loop was con-
sidered recalled if both ends overlapped both ends of a loop in the
subsampled dataset.

2.9 Loops comparison with reference datasets
We compared the results from the loops called from Hichipper using
default settings or using the peaks generated from HiChIP-Peaks
with a matched reference. We sourced promoter capture Hi-C data
for the GM12878 from Javierre et al. (2016). For the naı̈ve T cells,
we used data generated from Mifsud et al. (2015) but we down-
loaded the CHiCAGO loop calls from Bhattacharyya et al. (2019).
We also downloaded H3K27ac ChIA-PET data from Heidari et al.
(2014).

We filtered the loops reported by Hichipper by FDR <0.01 and
overlaps were then calculated using bedtools pair-to-pair. The
results were then analysed and processed in Python.

Loops were also called with FitHiChIP (Bhattacharyya et al.,
2019) using the following settings: coverage normalization, stringent
background with merging enabled and 5 kb bin size, with either
HiChIP-Peaks peaks or peaks generated using the included tool as
described in Section 3.

3 Results

3.1 HiChIP-Peaks improves reference peak recovery
To evaluate the performance of our peak calling algorithm, we
chose two of the cell lines reported by Mumbach et al. (2017) for
which a reference ChIP-seq track was available either from
ENCODE or Roadmap project. We combined all the reads from dif-
ferent replicates from naı̈ve T cells and from GM12878 cells, re-
spectively. Using different metrics, we show that our method is
superior to previous attempts at calling peaks and allows for scoring
of the peaks identified.

Specifically, our method is able to recover more peaks from the
reference with significantly lower FDR (Fig. 3A and B) and calling

fewer peaks (Supplementary Fig. S6) than Hichipper or FitHiChIP
(note real FDR cannot be zero because the reference ChIP-Seq does
not come from the same sample as the HiChIP). In particular, we
note that both Hichipper with all reads and FitHiChIP present sig-
nificant FDR problems with >70% of peaks called not observed in
the reference. The reason for these differences can be explained by
looking at the results of the various methods (Fig. 2 and
Supplementary Fig. S1B and C). We see how the bias introduced by
the library preparation can bias other methods and how our method
significantly reduces this effect. In particular, we notice how other
methods based on MACS2 tend to call many small peaks around
restriction sites and have also false positive problems created by the
non-uniform background that the library preparation method intro-
duces. Although our method identifies on average larger peaks than
Hichipper, our method is still superior when comparing the total
amount of genome covered with the recalled peaks at an FDR of
0.01 or 0.001 (Supplementary Fig. S7). FitHiChIP performs well on
this metric but the comparison cannot be considered comparable be-
cause the peaks called from FitHiChIP are small but dispersed along
the genome (Fig. 2 and Supplementary Fig. S1B and C).

Moreover, we note that with Hichipper it is not possible to
change the sensitivity: changing the q-value setting does not produce
any difference in number of peaks called or genome covered.

3.2 HiChIP-Peaks is more stable than Hichipper when

read depth is reduced
Using the best settings for Hichipper (SELF reads) we compared the
stability of the results when the number of reads in the dataset is
reduced. We analysed the individual technical replicates of the naı̈ve
T cells that contain about 100 million reads per sample. We show
that our method is consistently able to maintain accuracy and

Fig. 3. Precision versus recall from reference in (A) T cells and (B) GM12878 cells.

For our software, we sort peaks in ascending P-value order and show the true posi-

tive rate as the number of peaks recovered increases. We provide three different

FDR settings as the FDR setting changes the size of the peaks themselves and the

lines do not overlap perfectly. We show results for Hichipper and FitHiChIP (de-

fault settings) for comparison. Hichipper in (ALL) mode fails to run with the

GM12878 dataset
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sensitivity, while Hichipper suffers greatly when the number of reads
is less than optimal (Fig. 4). We then tested how a reduced dataset
would affect peak calling using the peaks identified from the full
dataset as the reference. We used progressively subsampled datasets
for the GM12878 dataset and we tested technical replicates and bio-
logical replicates from the naı̈ve T-cell dataset. HiChIP-Peaks dem-
onstrates a much higher recall rate at a higher precision compared

with Hichipper in both of these cell types when the read count is
reduced (Fig. 5A, C and Supplementary Fig. S8).

3.3 Increasing the stability of loop calling in Hichipper
We decided to test whether our improved peak calling would affect
loop calling results from Hichipper. Because the biggest differences
in peak calling were found when lowering the number of reads,
we decided to test Hichipper’s stability using progressively sub-
sampled datasets from the GM12878 dataset and by combining
fewer technical replicates from the naı̈ve T cells datasets. We note
that, using peaks from our algorithm, Hichipper is able to recall
loops identified using the full dataset at a higher recall rate at the
same level of precision compared with using its own peaks (Fig. 5B,
D and Supplementary Figs S9 and S10). This shows that stability
and accuracy of the peaks called significantly impacts the loop call-
ing results and our algorithm can greatly improve the stability of the
results, especially when number of reads available is limited.

Additionally, because of the higher accuracy of the peaks, we
note that the anchors of the loops identified using our peaks overlap
more the reference ChIP-seq. The percentage of loops overlapping a
peak in at least 1 anchor goes from 84.2% to 92.3%, and the loops
overlapping a peak at both anchors goes from 40.9% to 58.6% in
GM12878 cells. In T cells, the values go from 96.8% to 99.2% and
62.3% to 76.8%.

Next, we wanted to test how the loops identified from these
methods overlapped with loops identified with other techniques.
To do this, we sourced matched promoter capture Hi-C and ChIA-
PET data from publicly available sources. Supplying our peaks to

Fig. 4. Effect of reduced read depth on peak calling performance. Precision versus

recall from reference (naı̈ve T cells dataset). We show that our software maintains

high consistency while Hichipper’s sensitivity goes down rapidly when read count

goes down. Our software is set at a FDR of 0.01

Fig. 5. Effect of subsampled datasets on peak and loop calling. (A) Recall rate of peaks from full dataset using subsampled datasets from GM12878 dataset. (B) Recall rate of

loops called (chr22) from full dataset using GM12878 datasets. (C) Same as (A) but with naı̈ve T cells dataset. We merged the technical replicates for each biological replicates

for half and we used each technical replicate individually for one-fourth. (D) Same as (B) but with naı̈ve T cells datasets
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Hichipper seems to allow the recovery of a higher fraction of refer-
ence loops for the same number of loops called (Supplementary
Figs S11–S13). Because the size of the loop anchors could form a
bias in the datasets, we wanted to test how much of the effect was
due to covering more base pairs of the genome. To do this, we com-
pared the recall rate with the genomic coverage (in base pairs) of the
loop anchors used. The difference between the two techniques is
greatly reduced, but we still see a small improvement using peaks
generated by our method (Supplementary Figs S14 and S15).

We noted however in our comparisons that the overlaps between
the different techniques are very low, ranging from 5% to 15% re-
call and precision rates in all tested conditions. This can be partly
explained by looking at the overlaps of the loops with reference
H3K27ac ChIP-seq peaks which was very poor for all datasets
including the K562 ChIA-PET reference. For promoter capture
Hi-C, only 18.6% (GM12878) and 23.9% (CD4 naı̈ve T cells) of
the loops overlapped a reference peak at both anchors, which is par-
ticularly low considering that the captured regions are promoters
which are highly overlapping with this histone modification. For the
K562 ChIA-PET dataset, the overlaps were even lower with only
7.7% of the loops overlapping a reference peak at both loop
anchors. This seems to indicate that these techniques are identifying
different classes of loops than the HiChIP methods considered here.

We also tested the effects of the peak calling in FitHiChIP
(Bhattacharyya et al., 2019), but the loop calling was not signifi-
cantly affected compared with the effects seen in Hichipper
(Supplementary Figs S16–S19). About 80% of the loops are repli-
cated between the two settings, and the number of loops overlapping
reference loops is also unaffected. This is likely due to how
FitHiChIP bins the data and in the way it removes ChIP bias before
calling loops.

3.4 Novel data representation allows accurate

differential peak calling from HiChIP data alone
Using the novel data representation, we provide an interface to ana-
lyse differentially bound regions in HiChIP datasets, fully exploiting
the information contained in them.

We carried out a proof-of-concept study by analysing the four
technical replicates of the naı̈ve T cells individually. Our results
show that the sensitivity and reproducibility of our software is suffi-
ciently good that we can easily differentiate between technical and
biological replicates of the same cell type (Fig. 6A). We find almost
3000 peaks (more than 10% of all peaks) differentially bound
(FDR<0.10, log2FoldChange>0.5) between biological replicates
of the same cell type further affirming the importance of peak calling
on individual HiChIP datasets instead of using combined or external
ChIP-seq datasets.

We then analysed data from the two other T-cell types, Th17
and Tregs. We merged the technical replicates into biological repli-
cates. Although the read depth is very different between the different
samples (37–60 m reads used in the peak calling) our software per-
forms remarkably consistently, producing similar number of peaks
with high overlap. In Tregs, e.g. biological replicate 3 (R3) contains
1.54 times the number of reads in biological replicate 2 (R2). Our
software identified 25 771 peaks in R2 versus 27 105 peaks in R3.
Moreover, 88.4% of the peaks in R2 were also called in R3, and
81.2% of the peaks in R3 were also called in R2. Biological differen-
ces vastly outweigh technical differences and samples cluster by cell
type (Fig. 6B and C). We identify thousands of peaks that are signifi-
cantly differentially bound between the different cell types. As
expected the differences between Th17 and Tregs are smaller than
between Th17 and naı̈ve T cells. To test whether the differentially
bound peaks have biological significance, we ran motif enrichment
analysis with HOMER on the peaks from Th17 versus naı̈ve T cells
and Tregs versus naı̈ve T cells contrasts. The results clearly indicate
enrichment in binding sites for transcription factors involved in
the interferon pathway, ETS-RUNX and others (Supplementary
Table S2), consistent with models of T-cell activation (Christie and
Zhu, 2014) and confirming the accuracy of our differential peak
calling method.

4 Discussion

HiChIP is quickly gaining importance, especially in studies involving
primary cells of various tissue types thanks to the lower input and
sequencing requirements. Previously ChIP-seq tracks were used to
identify peak regions as the quality of peak calling from HiChIP was
deemed insufficient. This either added a significant cost and sample
requirement to the experiment design or often researchers relied on
data not generated from the same sample.

Fig. 6. Differential peak analysis. (A) Unsupervised hierarchical clustering using

Euclidean distance of scores from the four technical replicates of naı̈ve T cells. (B)

Unsupervised hierarchical clustering of the three different T-cell related cell lines.

(C) Principal component analysis (PCA) of the three different cell lines
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We show that our software can reliably and efficiently identify
enriched regions using only HiChIP datasets, even when read depth
is relatively low, and that using HiChIP-Peaks significantly improves
the reliability of Hichipper’s loop calling. This shows also how good
peak calling is of fundamental importance for Hichipper’s function-
ality. Our results also demonstrate that accurate peak calling from
each sample is important because each biological replicate can have
different peaks, which can affect the identified loops, especially
when studying more transient and regulated regions.

As the popularity of chromatin conformation methods increase,
commercial kits, such as the Arima HiChIP kit, are starting to
be developed. The kit is highly efficient thanks to its dual restriction
enzyme protocol, but this results in the absence of reported dangling
ends and self-circles (Supplementary Fig. S2). This impacts the per-
formance of Hichipper using the SELF setting, which, according to
our analysis, is the best of the currently available methods.
Therefore, our method, HiChIP-Peaks, has the potential to be the
only method of choice when using commercially available kits such
as the Arima HiChIP to generate HiChIP libraries.

Our results show that our alternative data structure for repre-
senting Hi-C reads limits biases due to how reads are generated in
this protocol and maximizes resolution within the constraints of the
technology. This data structure can also be used for other kinds of
analysis with simple generalizations.
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