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Cnidarians are early-branching animals in the eukaryotic tree of life. The phylum Cnidaria

are divided into five classes: Scyphozoa (true jellyfish), Cubozoa (box jellyfish), Hydrozoa

(species, Hydra and Hydractinia), Anthozoa (sea anemone, corals, and sea pen), and

Staurozoa (stalked jellyfish). Peptides play important roles as signaling molecules in

development and differentiation in cnidaria. For example, cnidaria use peptides for

cell-to cell communication. Recent discoveries show that Hydra neuropeptides control

several biological processes including muscle contraction, neuron differentiation, and

metamorphosis. Here, I describe the structure and functions of neuropeptides in Hydra

and other cnidarian species. I also discuss that so-called primitive nervous system of

Hydra is in more complex than generally believed. I also discuss how cnidaria use

peptides for communication among cells rather than in higher animals.

Keywords:Hydra, Cnidaria, neuropeptide, metamorphosis, myoactivity, interstitial stem cell, neuron differentiation

INTRODUCTION

Molecular phylogenetic studies show that Cnidaria are the sister group of Bilateria. Ancestral
Cnidarians diverged over 500 million years ago in animal evolution. Despite the long course
of evolution, the nervous systems of cnidarians are differentiated (1). Cnidarian species are
also mainly classified into two groups according to the unique life cycle, the anthozoans and
medusozoans (1). Anthozoa lives exclusively as polyps. Among medusozoans, Cubozoa and
Scyphozoa predominantly live as medusae. On the other hand, Hydrozoa usually follows a life cycle
where the species alternate between these two forms except for Hydra and Hydractinia. Staurozoa
lives exclusively as polyps.

Cnidaria such as Hydra are composed of multiple cell types that represent the fundamental
architecture of multicellular organisms.Hydra exhibits a simple body plan with a head and tentacles
on one end and a foot on the opposite end of a hypostome. The gastric region is located between the
head and foot. The body is composed of two layers, ectoderm and endoderm, which are separated
by an extracellular matrix, the mesoglea. The cells of both epithelial layers also function as muscle
cells. Hydra also have multipotent interstitial stem cells, which differentiate into nerve cells (2),
nematocytes (2), gland cells (3), and germ cells (4). Hydra as a member of cnidaria represents an
attractive model to understand axial pattern formation into head- and foot-specific tissues.

The nervous system of Hydra is simple and is composed of a nerve net that extends throughout
the animal. The cnidarian nervous system is mainly peptidergic (5). Classical molecules such as
acetylcholine also contribute to the Hydra nervous system (6).

Peptides play important roles as hormones and neurotransmitters and they are involved in the
maintenance of a variety of developmental stages. However, little is known about whether they

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2020.00339
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2020.00339&domain=pdf&date_stamp=2020-05-27
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:takahashi@sunbor.or.jp
https://doi.org/10.3389/fendo.2020.00339
https://www.frontiersin.org/articles/10.3389/fendo.2020.00339/full
http://loop.frontiersin.org/people/266572/overview


Takahashi Hydra Neuropeptides Contribute to Cnidarian Homeostasis

are involved in differentiation and development. In Hydra,
theoretical model suggests that small molecules such as peptides
are transported to establish morphogenetic gradients that
regulate patterning processes. To systematically identify and
characterize peptide signaling molecules, we started the Hydra
Peptide Project (7). By using the strategy illustrated in Figure 1,
many peptides were extracted and purified with successive steps
of high performance liquid chromatography (HPLC). Signaling
peptides were identified by their effect on the gene expression
profile of Hydra by using differential display (DD)-PCR. Positive
peptides were chemically synthesized, the synthetic peptides
were used for biological assays including behavioral (muscle
contraction), neuron differentiation, and others. Furthermore,
introduction of theHydra Expressed Sequence Tag (EST) Project
has enabled us to identify transcripts for novel peptides even
more efficiently (Figure 1) (8).

The primary aim of the present review is to describe the
structures and functions of peptide signaling molecules such as
neuropeptides in cnidarians, especially in Hydra.

CNIDARIAN NEUROPEPTIDES

FMRFamide-Like Peptides (FLPs)
The peptide FMRFamide was originally purified from the
cerebral ganglion of the clam Macrocallista nimbosa (9, 10).
Other mollusks and members of most other phyla express
peptides with a similar sequence. FMRFamides are categorized
into two groups depending on the structural similarity with
FMRFamide. The first category consists of FMRFamide-related
peptides (FaRPs), which include encode for multiple peptides
with the C-terminal FMRFamide or FLRFamide (11). The second
category of FMRFamides includes FLPs, which are peptides that
have only the RFamide sequence at C-termini (12). Therefore,

FIGURE 1 | Strategy to identify Hydra neuropeptides. DD-PCR, differential display PCR; HPLC, high performance liquid chromatography.

FaRPs and all other RFamide peptides are considered FLPs.
Krajniak (13) excellently reviewed FaRPs in invertebrates. This
overview primarily focuses on cnidarian FLPs.

A variety of FLPs are expressed in the evolutionarily
ancient nervous system of cnidarians (Table 1). Peptides with
GRFamide at the C-terminus have been found in a scyphozoan
(the jellyfish Cyanea lamarckii) (15), three hydrozoans (Hydra
magnipapillata, the hydromedusa Polyorchis penicillatus, and
Hydractinia echinata) (16–21), and an anthozoan (the sea
anemone Anthopleura elegantissima) (14), whereas peptides with
TRFamide and/or RRFamide at the C-terminus have been
described in another anthozoan (the sea anemone Nematostella
vectensis) (22). All mature neuropeptides are controlled by
highly regulated secretion pathways. Usually, a precursor
of a neuropeptide is incorporated as a preprohormone in
the endoplasmic reticulum, where it is converted into a
prohormone. Next, prohormones move to the Golgi apparatus
for endoproteolysis and/or amidation at the C-terminus, which
results in the final active peptide. FLPs have been identified in
numerous cnidarians. A Calliactis parasitica cDNA includes 19
copies of Antho-RFamide (Table 1), two copies of FQGRFamide,
and one copy of YVPGRYamide (24). Two cDNAs have been
isolated from Anthopleura elegantissima; one cDNA includes
13 copies of Antho-RFamide (Table 1) and nine other FLPs;
the second cDNA includes 14 copies of Antho-RFamide and
eight other FLPs (25). Renilla koellikeri has 36 copies of Antho-
RFamide (26). A Polyorchis penicillatus cDNA includes one copy
of Pol-RFamide I (Table 1) and 11 copies of Pol-RFamide II
(Table 1), in addition to another predicted FLP (27). In Hydra,
RFamides are spliced from three different preprohormones
called A, B, and C (Figure 2A). Preprohormone-A includes six
Hydra-RFamides (Hydra-RFamide I-VI) (Figure 2A) (Table 1)
(19). Preprohormone-B has one copy of Hydra-RFamide I and
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TABLE 1 | FLPs in cnidarians.

Name Peptide sequence Species Reference

Antho-RFamide pQGRFamide Anthopleura

elegantissima

(14)

Cyanea-RFamide I pQWLRGRFamide Cyanea

lamarckii

(15)

Cyanea-RFamide II pQPLWSGRFamide

Cyanea-RFamide III GRFamide

Pol-RFamide I pQLLGGRFamide Polyorchis

penicillatus

(16)

Pol-RFamide II pQWLKGRFamide (17)

Hydra-RFamide I pQWLGGRFamide Hydra

magnipapillata

(18)

Hydra-RFamide II pQWFNGRFamide

Hydra-RFamide III KPHLRGRFamide

Hydra-RFamide IV HLRGRFamide

Hydra-RFamide V pQLMSGRFamide Hydra

magnipapillata

(19)

Hydra-RFamide VI pQLMRGRFamide

Hydra-RFamide VII pQLLRGRFamide

Hydra-RFamide VIII KPHYRGRFamide

Hydra-RFamide IX HYRGRFamide

Hydra-RFamide X KPHLIGRFamide Hydra

magnipapillata

(20)

Hydra-RFamide XI pQLMTGRFamide

He-RFamide pQWLKGRFamide Hydractinia

echinata

(21)

Nv-RFamide I pQITRFamide Nematostella

vectensis

(22)

Nv-RFamide II VVPRRFamide

RFamide (ID:17) pQGRFGREDQGRFamide (23)

pQ, pyroglutamate.

Hydra-RFamide II and three probable Hydra-RFamides (Hydra-
RFamide V, VII, and VIII) (Figure 2A) (19). Preprohormone-C
has one copy of Hydra-RFamide I and seven copies of additional
neuropeptide sequences (one copy of pQWFSGRFamide and six
copies of pQWLSGRFamide) (Figure 2A) (19). In Hydractinia
echinata, one copy of He-RFamide is present (Table 1) (21).
In Nematostella vectensis, three FLPs [Nv-RFamide I and
II and RFamide (ID:17)] are present (Table 1) (22, 23).
Collectively, precursor-encoding cnidarian FLP cDNAs yield
many neuropeptides with great structural diversity, indicating
that they have great functional diversity as well.

Cnidarian FLPs control several functions, such as muscle
contraction, feeding, sensation, reproduction, metamorphosis,
and movement of larvae. Treatment of the sea anemone
Calliactis parasitica with Antho-RFamide increases muscle tone,
contraction amplitude, and contraction of slow muscles (28). In
individual autozooid polyps of Renilla koellikeri, Antho-RFamide
also leads to tonic contractions in the rachis and peduncle (29).
InHydra, Hydra-RFamide III mediates pumping of the peduncle
in a dose-dependent manner (30).

FMRFamide activates a Na+ channel identified in snails
(31, 32). Three cation channel subunits of the degenerin
(DEG)/epithelial Na+ channel (ENaC) gene family were cloned
from the freshwater polyp Hydra magnipapillata and designated
Hydra Na+ channel (HyNaC)2–4 (33). Subsequently, a novel
subunit, designated HyNaC5, was cloned, and expression of
the gene was shown to be co-localized with HyNaC2 and
HyNaC3 at the base of the tentacles (34). Co-injection of
HyNaC5 with HyNaC2 and HyNaC3 genes in Xenopus oocytes
strongly enhances the current amplitude after peptide application
and increases the affinity of the channel for Hydra-RFamide
I and II (34). HyNaC2/3/5 is assembled into a functional
heterotrimeric channel that is activated by Hydra-RFamide I
with high affinity. The experimental data of HyNaCs suggested
that secretion of Hydra-RFamide I and/or II induces tentacle
contraction, perhaps during feeding (33, 34). Seven additional
HyNaC subunits, HyNaC6-HyNaC12, were cloned, and all
belong to the DEG/ENaC gene family (35). These subunits and
the four originally identified subunits self-assemble in Xenopus
oocytes to create 13 different ion channels that show high-affinity
binding of Hydra-RFamide I and II. The HyNaC inhibitor,
diminazene, slows tentacle movement in Hydra. Because Hydra
express multiple peptide-gated ion channels with a restricted
number of FLPs as ligands (35), FLPs may be important for
fast transmission at neuro-muscular junction in cnidarians. The
function of Hydra-RFamide IV in Hydra is unknown.

Highly specialized mechanoreceptor cells, called stinging
cells or nematocytes, that are important for capturing prey
and defense are present in cnidarians (36). Two- and three-
cell synaptic pathways, including synapses between nematocytes
and nearby nerve cells, are present in the epidermis of the
sea anemone tentacles (37, 38). Cnidarian sensory function is
probably mediated by FLPs, as evidenced by anti-FMRFamide
and anti-RFamide antibody staining in the tentacles of four
classes of cnidaria. Thus, FLPs probably mediate chemosensory
regulation of cnidocyte discharge (39). The epidermal sensory
cells of the spot ocellus in Aurelia are also positive for
FMRFamide (40), which may inhibit spontaneous firing
of nematocytes.

FLPs also play a key role in cnidarian reproduction,
larval movement, and metamorphosis. Reproduction of colonial
octocorals such as Renilla koellikeri occurs via spawning and
exfoliation. Intact gamete follicles are released into the water
during spawning. These follicles rupture during exfoliation,
releasing the gametes. Antho-RFamide is present in ciliated
neurons in the epithelium of follicles of Renilla koellikeri and
induces exfoliation of the epithelium and subsequent release
of the gametes into water (41). Light enhances the potency of
Antho-RFamide (41).

The colony-forming marine hydroid, Hydractinia echinata, is
closely related to freshwater Hydra. Fertilized eggs of this species
undergo rapid cleavage divisions for about 1 day and develop
into spindle-shaped planula larvae in about 3 days (42). Planula
larvae are capable of migrating toward light (43), and they
metamorphose into adult polyps when they receive appropriate
environmental stimuli (44, 45). Hydra-RFamide I inhibits the
migration of planula larvae, thus modulating phototaxis by
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FIGURE 2 | Schematic representation of eleven preprohormones in Hydra. (A) Preprohormone-A contains unprocessed Hydra-RFamide I, II, III, IV, V, and VI.

Preprohormone-B contains unprocessed Hydra-RFamide I, II, V, VII, and VIII. Preprohormone-C contains Hydra-RFamide I and two putative neuropeptide sequences

(pQWFSGRFa and pQWLSGRFa). (B) The GLWamide precursor contains unprocessed GLWamides (Hym-53, 54, 248, 249, 331, and 370) and two putative

neuropeptide sequences (Hydra-LWamide VI and VIII). (C) The Hym-176 precursor (Hym-176A) contains one copy of unprocessed Hym-176 and Hym-357.

Hym-176B contains Hym-357 and one putative neuropeptide (KPLKVMKM). Hym-176C and Hym-176D contain one copy of Hm-176-homologous peptide

(Hym-176C and Hym-176D), respectively. Hym-176C also contains one unprocessed Hym-690. Hym-176E contains one putative neuropeptide sequence

(NPFIFKGHKH). (D) The Hym-355 precursor contains one unprocessed Hym-355. (E) The FRamide precursor contains unprocessed FRamide-1 and−2. Black box:

signal sequence, a: amide.
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TABLE 2 | GLWamide family peptides in cnidarians.

Name Peptide sequence Species Reference

MMA pQQPGLWamide Anthopleura

elegantissima

(48)

Hym-53 NPYPGLWamide Hydra

magnipapillata

(7, 49, 50)

Hym-54 GPMTGLWamide

Hym-248 EPLPIGLWamide

Hym-249 KPIPGLWamide

Hym-331 GPPPGLWamide

Hym-338 GPPhPGLWamide

Hym-370 KPNAYKGKLPIGLWamide

Hydra-LWamideVI RLPLGLWamide

Hydra-LWamide VIII pQPPIGMWamide

He-LWamide I pQRPPGLWamide Hydractinia

echinata

(51)

He-LWamide II KPPGLWamide

Ae-LWamide I pQQHGLWamide Actinia equine (51)

Ae-LWamide II pQNPGLWamide

Ae-LWamide III pQPGLWamide

Ae-LWamide IV pQKAGLWamide

Ae-LWamide V pQLGLWamide

Ae-LWamide VI RSRIGLWamide

Ae-MWamide pQDLDIGMWamide

MMA pQQPGLWamide

As-LWamide I pQQAGLWamide Anemonia

sulcata

(51)

As-LWamide II pQHPGLWamide

As-IWamide pQERIGIWamide

Ae-LWamide II pQNPGLWamide

MMA pQQPGLWamide

pQ, pyroglutamate; hP, hydroxyproline.

inhibiting myomodulation (43). Metamorphosis is also inhibited
by this peptide, leading to the suggestion that the function
of endogenous FLPs is to stabilize the larval stage (46). Thus,
FLPs may play a role in regulating the movement of planula
larvae prior to metamorphosis, possibly linking movement to
chemotactic or phototactic processes (47). Sensory neurons
that express FLPs are present in planula larvae, suggesting
that migration and metamorphosis of these animals may be
mediated by secretion of endogenous neuropeptides in response
to environmental stimuli.

GLWamides
GLWamides are characterized by certain features at their N-
and C-termini. Most GLWamides have a GLWamide motif
at the C-terminus (Table 2). Seven GLWamide peptides are
found in Hydra, and they include X-Pro or X-Pro-Pro at their
N-termini (Table 2) (7, 49). In the anthozoan Anthopleura
elegantissima, Metamorphosin A (MMA) that is a member
of the GLWamide family has an N-terminal pyroglutamine
(Table 2) (48). Both N-terminal modifications produce resistance
to aminopeptidase (52).

GLWamide cDNAs are found in other cnidarians as well.
A cDNA encoding a preprohormone with 11 immature
peptide sequences, nine of which are unique, was cloned from
Hydra magnipapillata (Figure 2B) (50). The corresponding
gene includes one copy of Hym-53 (NPYPGLWamide),
Hym-54 (GPMTGLWamide), Hym-249 (KPIPGLWamide),
and Hym-370 (KPNAYKGKLPIGLWamide); two copies
of Hym-248 (EPLPIGLWamide); and t copies of Hym-
331 (GPPPGLWamide), as well as two additional putative
GLWamides (Hydra-LWamide VI and VIII) (Table 2). Hydra-
LWamide VIII is predicted from this cDNA and probably
includes GMWamide at the C-terminus (50). A cDNA encoding
GLWamides has been cloned from Hydractinia echinata (51)
and includes one copy of He-LWamide I and 17 copies of
He-LWamide II (Table 2). Two unique cDNAs have been cloned
from the anthozoans Actinia equine and Anemonia sulcata (51).
The Actinia gene includes one copy of MMA, Ae-LWamide
IV, Ae-LWamide V, Ae-LWamide VI, and Ae-MWamide; two
copies of Ae-LWamide I and Ae-LWamide III; and four copies
of Ae-LWamide II (Table 2). In contrast, the Anemonia gene
has one copy of MMA, Ae-LWamide II, and As-IWamide; two
copies of As-LWamide II; and four copies of As-LWamide I
(Table 2) (51). The preprohormones of anthozoans but not
hydrozoans include MMA. The peptide is probably a prototype
of the family (53). Two other peptides that are possibly generated
from the preprohormones of Actinia and Anemonia are likely
processed into -GMWamide (Ae-MWamide) and -GIWamide
(As-IWamide) at their C-terminus (Table 2). Whether these two
peptides and Hydra-LWamide VIII belong to the GLWamide
family is uncertain, as substitution of the Leu residue in
GLWamide with Met or Ile results in deactivation of contractile
activity in the retractor muscle of the anthozoan Anthopleura
fuscoviridis (54).

The various species of Hydractinia generally live on hermit
crab shells. The Hydractinia life cycle includes a planula larval
stage but no medusa stage. After attaching to snail shells, planula
larvae undergo MMA-induced metamorphosis and become
polyps after about 1 week (48, 55). MMA thus works as
a neurohormone to mediate development in addition to its
roles as a neurotransmitter and neuromodulator. In Hydractinia
serrata, Hydra GLWamides also cause polyp development from
planula larvae (7, 49). A common GLWamide sequence is
required to induce metamorphosis in Hydractinia, and the
GLWamide terminus and amidation are essential and specific for
inducing metamorphosis (56). Substitution of Gly in GLWamide
with another common amino acid (except Cys) decreases or
completely inhibits potency of the peptide, and substitution
of Leu or Trp in GLWamide with another common amino
acid (except Cys) partially or completely blocks its potency
for muscle contraction in Anthopleura fuscoviridis (54). The
precise mechanism of how these peptides induce metamorphosis
remains to be determined. Bacteria in the environment produce
a chemical that can induce larvae to undergo metamorphosis
(48). This chemical signal probably affects sensory neurons
in the planula larvae that secrete endogenous GLWamides to
induce a phenotypic change in the surrounding epithelial cells.
Hydra lack a larval stage and develop directly into adults from
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embryos, and thus, how GLWamide peptides function during
early development in Hydra is unclear.

Motile planula larvae play a role in sexual reproduction
in reef-building corals. These larvae undergo complex
metamorphosis after adhering to a substrate, and a juvenile
coral colony results. In Acropora, Hym-248 induces dose-
dependent metamorphosis of nearly 100% of planula larvae into
polyps (57). However, the effect of Hym-248 on metamorphosis
is species-specific (57, 58). A Hym-248-specific receptor
appears to exist in Acropora. The receptor may serve as a
barrier to ensure specification in corals. In Hydractinia, the
peptide for their receptors is loose. The possible receptors
may share certain common sequences and binding sites.
Hym-248-related peptide(s) are expected to be identified
in Acropora.

In Hydra, all GLWamide peptides serve as myoactive
peptides to activate sphincter muscle contraction and bud
detachment (7). The sphincter muscle is involved in bud
detachment. To test myoactivity in Hydra, nerve-free tissue
of epithelial hydra is typically used (59, 60). When normal
Hydra that contains nerve cells is treated with the peptides,
they exhibit the same effect as epithelial Hydra. GLWamides
are synthesized and expressed in nerve cells (49) and thus
function as neurotransmitters or neuromodulators at the neuro-
muscular junction. Hym-248, which is a Hydra GLWamide,
induces both bud detachment and body elongation (49). Muscle
tissue in Hydra runs perpendicular to the ectodermal and
endodermal epithelial cells. Hym-248 may bind to two different
types of receptors, one that binds all types of GLWamides
and one that specifically binds to Hym-248. Substance P
(SP) is a highly conserved member of the tachykinin peptide
family that is widely expressed throughout the animal kingdom
(61). It binds to tachykinin receptors [neurokinin-1, 2, and
3 receptor (NK1R, NK2R, and NK3R)] that belong to G-
protein-coupled receptors (GPCRs). SP preferentially activates
NK1R. This difference of specificity against other tachykinin
peptides can be accounted for the conformational flexibility of
the short and linear peptides and ligand binding affinity for the
receptors (62). Probably, the features of both receptors for Hym-
248 may depend on the ligand structure and binding affinity
for receptors.

All GLWamide family peptides enhance retractor muscle
contraction of Anthopleura (49). Nerve cells in the sea anemone
retractor muscle stain strongly with a GLWamide motif-specific
antibody, similar to the nervous system of Hydra (49).

In Hydractinia echinata, GLWamide and RFamide
neuropeptides modulate planula larva migration. He-LWamide
II, which is a GLWamide, induces migration by extending
the active period (43). GLWamides and FLPs antagonize
one another to modulate migration of Hydractinia echinata
planula larvae.

In hydrozoan jellyfish, maturation of oocytes and spawning
are initiated by light-dark cycles in natural conditions within
1 second (63). Exposure to Hym-53 for < 2min is sufficient
for oocyte maturation and spawning (64). Thus, neuropeptides
function as hormones that modulate the first step that determines
whether oocytes undergo irreversiblemeiosis after light exposure.

TABLE 3 | Hym-176, Hym-357, and their related peptides in Hydra.

Name Peptide sequence Species Reference

Hym-176 APFIFPGPKVamide Hydra magnipapillata (65)

Hym-176C YPFYNQNPKVamide (66)

Hym-176D NPKNKNFMIFVGPKVamide (66)

Hym-357 KPAFLFKGYKPamide Hydra magnipapillata (20, 66)

Hym-690 KPLYLFKGYKPamide (20, 66)

Hym-176 (APFIFPGPKVamide)
Hym-176 was a newly identified as a neuropeptide (Table 3)
(7, 65). The gene that encodes Hym-176 is strongly expressed
in the neurons of the lower peduncle and weakly expressed
in the gastric region (67). This peptide induces contraction
of the ectodermal muscle in Hydra (65). This region-specific
neuron subset correlates with the myoactivity of the peptide.
Hym-176 has no effects on muscle contraction in Anhtopleura,
metamorphosis in Hydractinia, and oocyte maturation and
spawning in Cytaeis. And also, the gene encoding the peptide
(Hym-176A) is just isolated from Hydra (Figure 2C) (66, 67).
Thus, the peptide is species-specific.

The gene that encodes Hym-176 also encodes a second
peptide, Hym-357 (KPAFLFKGYKPamide) (Figure 2C)
(Table 3). This neuropeptide was identified in a screen
for myoactive peptides (20). Detailed observations suggest
that Hym-357 neurons activate other neurons to release
neurotransmitters for induction of muscle contraction.

To identify the homologous gene that encodes Hym-176,
Noro and coworkers found four candidate genes in the freshwater
polyp Hydra magnipapillata (66). No authentic Hym-176 is
present in the four paralogues (Figure 2C) (66). The cDNAs,
Hym-176C and Hym-176D, encode one copy of a Hym-176-
homologous peptide (Figure 2C) (Table 3). Hym-357 is encoded
in both the gene that encodes Hym-176 and the gene that
encodes Hym-176B (Figure 2C) (66). Hym-176C encodes Hym-
690 (KPLYLFKGYKPamide), which is closely related toHym-357
(Figure 2C) (Table 3) (20).Hym-176E appears not to have Hym-
176- and Hym-357-related peptides (Figure 2C). The function of
Hym-176C and D and Hym-690 has not yet been characterized
in Hydra.

Hym-355 (FPQSFLPRGamide)
Hym-355 is a member of the PRXamide family of peptides that
have PRXamide at their C-terminal region (Figure 2D) (Table 4)
(68) and are subdivided into three groups in invertebrates:
(a) neuropeptides that induce pheromone biosynthesis (70)
and similar molecules, (b) small cardioactive peptides (71–
73), and (c) antho-RPamide (52) and similar molecules.
Antho-RPamide (LPPGPLPRPamide) is located in neurons
of sea anemones and induces tentacle contraction. Thus,
the peptide is involved in neurotransmission. PRXamide
peptides have been identified in many invertebrates. Hym-
355 is homologous to members of sub-group (c), including
LPPGPLPRPamide (Anthopleura elegantissima) (Table 4),
AAPLPRLamide (Urechis unicinctus) (74), QPPLPRYamide
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(Helix pomatia), and pQPPLPRYamide (Helix pomatia) (75).
GPRGGRATEFGPRGamide and GPRGGREVNLEGPRGamide
both have PRGamide at their C-termini and are expressed in
the sea anemone Nematostella vectensis (Table 4) (23). The gene
encoding the PRGamides is expressed in neurons (23), indicating
that the PRGamides are neuropeptides.

Oxytocin-vasopressin superfamily peptides are neuropeptides
synthesized in the hypothalamus and secreted from the
posterior pituitary gland in mammals. Whether cnidarians
express oxytocin/vasopressin superfamily peptides remains
an open question in the field of comparative physiology

TABLE 4 | PRXamide peptides in cnidarians.

Name Peptide sequence Species Reference

Hym-355 FPQSFLPRGamide Hydra

magnipapillata

(68)

PRGamide (ID:11) GPRGGRATEFGPRGamide Nematostella

vectensis

(23)

PRGamide (ID:12) GPRGGREVNLEGPRGamide

Antho-RPamide LPPGPLPRPamide Anthopleura

elegantissima

(52)

MIHs WPRPamide Clytia

hemisphaerica

(69)

WPRAamide Cladonema

pacificum

RPRPamide

RPRAamide

RPRGamide

RPRYamide

MIHs, maturation-inducing hormones.

of nervous systems. Immunohistochemical staining suggests
that oxytocin/vasopressin superfamily peptides exist in the
Hydra nervous system (76, 77). Morishita and coworkers (78)
purified two peptides, Hym-355 and SFLPRGamide, from Hydra
magnipapillata using HPLC fractionation and immunologic
assays. They demonstrated that the antigen for vasopressin-like
immunoreactivity is Hym-355 in the Hydra nervous system.
The C-terminal region of Hym-355 (PRGamide) is identical to
that of vasopressin. Neither antibody against the two peptides
discriminates one peptide from the other. Thus, Koizumi et al.
(79) performed immunohistochemistry with an anti–Hym-355
antibody and demonstrated immunoreactivity in the nerve rings
of Cladonema radiatum and Turritopsis nutricula. However,
whether Hym-355 functions as a neurohypophysial hormone is
not well-understood.

The tissue of Hydra undergoes continuous renewal
(Figure 3A). The number of neurons remains constant.
Two groups of peptides, Hym-355 and PW family peptides,
regulate this state (7, 68, 80). PW family peptides share the same
sequence of Pro-Trp and are identified as epitheliopeptides (81).

Hym-355 increases early neuron differentiation, and
Hym-33H (AALPW) blocks neuron differentiation (68, 80).
Simultaneous treatment with Hym-355 and Hym-33H results
in a normal level of neuron differentiation. Taken together,
the observations are consistent with a feedback model that
modulates the homeostasis of neuronal differentiation in Hydra
(Figure 3B) (68). This model suggests that Hym-355, which is
synthesized by neurons, enhances early neuronal differentiation.
To balance differentiation, epithelial cells produce PW peptides.
A third factor termed as X in Figure 3B may control synthesis
and secretion of PW family peptides. Hym-355, PW peptides,
and the putative third factor may work together to maintain a
constant neuronal density inHydra. Hym-355 induces interstitial

FIGURE 3 | Hydra stem cell system. (A) Cell differentiation in Hydra. (B) A feedback model for the control of neuron differentiation that involves the antagonistic action

of Hym-355 and the PW peptide, Hym-33H.
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stem cells to undergo neuron differentiation and also induces
retractor muscle contraction in the sea anemone Anthopleura
fuscoviridis (68).

A member of the GLWamide family, Hym-53
(NPYPGLWamide) (Table 2), and Hym-355 induce oocyte
maturation and spawning, but the effect of Hym-53 is stronger
than that of Hym-355. Hym-355-like immunoreactivity is
observed in neurons in Cytaeis (63). Possibly, neurons expressing
Hym-53- and Hym-355-like peptides contribute downstream
of light receptors in oocyte maturation and spawning in
Cytaeis. Takeda and coworkers demonstrated that endogenous
peptides including W/RPRPamide peptides are involved in
oocyte maturation (Table 4) (69). RPRYamide, RPRGamide,
WPRAamide, and RPRAamide may act as maturation-inducing
hormones (MIHs) (Table 4) (69). Takeda et al. (69) also
demonstrated that MIH peptides are synthesized by neurons in
the gonad, and probably act on the oocyte surface. They propose
that hydrozoan MIHs and neuropeptides are evolutionally

TABLE 5 | FRamide family peptides in Hydra.

Name Peptide sequence Species Reference

FRamide-1 IPTGTLIFRamide Hydra magnipapillata (82)

FRamide-2 APGSLLFRamide

linked to regulate reproduction upstream of MIHs in bilaterian
species (69).

FRamide Family
During research aimed at systematic identification of
peptide signaling molecules in Hydra (7), two novel
neuropeptides, FRamide-1 (IPTGTLIFRamide) and FRamide-2
(APGSLLFRamide), were identified (Table 5) (82). Among
Hydra EST and genome databases (8), we can rapidly identify
peptide transcripts and their genes. The two peptides and the
single gene encoding both peptides were identified using this
exact approach (Figure 2E).

FRamide-1 (IPTGTLIFRamide) and FRamide-2
(APGSLLFRamide) exhibit opposing effects even though
they are encoded by the same gene. The former peptide evokes
body column elongation due to endodermal muscle contraction,
whereas the latter peptide evokes body column contraction due
to ectodermal muscle contraction (82). Two explanations for
these seemingly contradictory observations are possible. One
possibility is that the release of each peptide is differentially
regulated (83, 84), and the other possibility is that each peptide
is processed in a different type of neuron (85). Additionally,
the opposing effects of FRamide family peptides may be ligand
binding affinity for one receptor (62). In higher animals,
most neuropeptides bind to GPCRs that are localized at the

FIGURE 4 | Summary of roles for neuropeptides in the control of behavior, reproduction, metamorphosis, and tissue maintenance. Cnidarian peptide signaling

molecules function together and/or separately to maintain the organism’s lifestyle in response to stress stimulation, light reception, mechanical stimulation, and

chemical stimulation.
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target cell. To understand the opposite effects, identification of
FRamide-specific receptors on the target cells is important.

CONCLUSION

Neuropeptides released from nerve cells in response to a
variety of stimuli are mandatory for fine-tuned regulation of
behavior, reproduction, metamorphosis, and tissue maintenance
(Figure 4). Here, I described 57 types of neuropeptides so far
identified in cnidarians. However, the study of neuropeptides is
still in its infancy. Additional novel peptides will likely be found
(86), including neuropeptides, thus enabling elucidation of the
mechanisms that regulate the physiology and development of
cnidarians and increasing our understanding of peptide function
in other species.

It is important to elucidate functional interaction between
neuropeptides and receptors for the verification of their
biological roles and evolutionary processes. However, no
receptors for the neuropeptides remain to be identified in Hydra
and cnidarians. Recently, Shiraishi and coworkers developed the
machine-learning-assisted strategy for the identification of novel
peptide–receptor pairs (87). As they indicate the multiplicity
of use of the strategy, it is worth to use the strategy for
increasing the receptor (especially GPCR) repertoire as many
as possible on Hydra and cnidarians. When neuropeptide-
GPCR pairs are efficiently and systematically elucidated in a

phylogenetically critical Hydrozoa Hydra magnipapillata, Hydra
provides cnidarian perspectives into evolution of GPCRs.

The cells of Hydra are well-characterized and belong
to the epithelial cell lineage and the interstitial stem cell
lineage (Figure 3A). However, knowledge of the molecules and
biochemical mechanisms of the cells remains limited. The single-
cell RNA sequencing technique sheds light on the complete
molecular diversity of the cells in Hydra. Siebert and coworkers
(88) applied this approach to the homeostatic adult Hydra.
They drew a molecular map of the Hydra nervous system and
unlocked the door toward understanding the molecular basis of
morphogenesis and regeneration in Hydra.
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