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Abstract

There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other
cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be
purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing
to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in
certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to
modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less
immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of
human tumour formation in other contexts. However, such observations have not been replicated in the clinic.
Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing
powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term
safety for patients.

Introduction
There has been an explosion of literature in the field of
mesenchymal stem cells (MSCs) in the past 10 years.
Many researchers have sought to exploit their potential
as a source of reparative cells for clinical use in a variety
of contexts. There are, however, several pitfalls that it
would be useful to avoid, as MSCs have some awkward
properties that may make their use for tissue repair or
tissue engineering somewhat risky. In this review, we
highlight some recent advances in the understanding of
the cell biology of MSCs, and how these may integrate
into strategies for more clinical applications.
Adult MSCs are generally thought of as an autologous

source of reparative cells, in contrast to the totipotent,
and allogeneic embryonic stem cells (ESCs). A major
source of adult stem cells is the bone marrow (BM),
from which two main populations derive: haematopoie-
tic stem cells (HSCs), which produce the blood-cell
lineages, and MSCs, which provide the bone-marrow
stromal niche and have the potential to produce several
cell lineages, including adipogenic, osteogenic and chon-
drogenic lineages. BM also contains endothelial

precursor cells (EPCs) and probably a common precur-
sor of all three stem-cell types, which remains somewhat
less well defined. Recent reports suggest that MSCs may
differentiate into endothelial cells [1,2], an outcome that
may depend on the cytokine context. MSCs can also be
obtained from the stromal fraction of lipoaspirates of
adipose tissue [3], and these possess similar properties
to BM-derived MSCs. Further sources of human MSCs
include the intestinal [4], limbal [5], knee-joint [6-9] and
prostate [10] stroma, trachea [11], nasal mucosa [12],
Wharton’s jelly (WJ) [13,14], cord blood [15] and pla-
centa [16]. MSCs-like cells have also been extracted
from tumour stroma [17], and may have an important
role in the fibrotic responses, as reported for the rat kid-
ney [18] and rat heart [19]. Thus, these cells are becom-
ing almost ubiquitous residents in many tissues and
organs. A very recent finding may even cast doubt on
the utility of MSCs themselves; Medici and colleagues
[20] reported that endothelial cells treated with either
bone morphogenetic protein (BMP)4 or transforming
growth factor (TGF)b2 reverted to a multipotent cell
with some characteristics of MSCs, and could be differ-
entiated into several endodermal cell types. The degree
to which such cells or ‘true’ MSCs can be used in tissue
repair, gene or cancer therapy may have a bearing on
many clinical outcomes.
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Characteristics of MSCs from different tissues
The features of several sources of MSCs are shown in
Table 1. There is considerable overlap in their gene
expression patterns, as expected, but a few notable dif-
ferences. The general conclusion is that MSCs or their
closely related cousins can reside in or pass through
most tissues, and that such cells may be isolated and/or
cultured by conventional methods such as fluorescence-
activated cell sorting (FACS) or plastic adherence, and
can be shown to possess multipotency. It is of interest
to see that MSCs also express cell-surface epidermal
growth factor receptor (EGFR)-1 (Her-1, ErbB-1) and
respond to the ligand heparin-binding epidermal growth
factor (HB-EGF) with dose-dependent proliferation,
which reversibly impairs their trilineage differentiation
ability until the stimulus is removed [21]. As shown in
Table 1 there is no consistent subset of surface mole-
cules that are a definition of the MSCs phenotype; thus
it is possible that many slightly different subtypes exist,
and that their output phenotypes could be conditional
upon local and systemic signalling.
There are many protocols used to determine the phe-

notype of MSCs. The essential characteristic is their
multipotentiality, which is usually established in vitro by
retrospective analysis of their ability to differentiate into
at least three cell types: typically adipocytes, osteocytes
and chondrocytes, and these potencies may vary
between mouse strains [22]. Other cell types may be
included, depending on the purpose of the study, such
as muscle or tendon cells [23]. A few researchers have
used single-cell clones as a source of trilineage-potent

MSCs [24], whereas others have shown their potential
by in vivo analysis in xenografts [25].
The original characteristic of MSCs - their ability to

form fibroblastic colonies in vitro from BM or other tis-
sues plated onto tissue-culture plastic [26] - has been
widely exploited, and there is a vast literature on their
many phenotypical characteristics [27-29]. As briefly
illustrated in Tables 1 and 2, there are many combina-
tions of cell-surface markers that can be used to select
MSCs from mixtures of cells, which are often performed
by cell sorting using FACS [30] or immunomagnetic
[31] methods, although many studies use plastic-adher-
ent stromal cells that are subsequently classified using
immunofluorescent phenotyping or flow cytometry
[5,32]. The exact equivalence of these phenotypes may
be questioned, but most studies have shown that the
selected cells possess similar multipotentialities. A
recent study [10] found by FACS analysis that some
murine prostate cancer xenograft MSCs possessed a
Hoechst 33342 ‘side population (SP)’, similar to that
observed more commonly for HSCs [33] and for some
epithelial stem cells such as keratinocytes [34] or
tumour cells in the colon [35], although perhaps not all
SP cells from colon-cancer cell lines are stem cells [36].
It is possible that the murine stromal SP cells resemble
those described as human adipose tissue-derived MSC-
and EPC-like cells (CD34+, CD90+) that could differ-
entiate into adipocytes and endothelial cells [37] and
that may be more like multipotent adult progenitor cells
(MAPCs), which show some overlaps with MSCs and
mesangioblasts. However, these are essentially three cell

Table 1 Human tissue MSCa phenotypes

Tissue MSCs Phenotypic expression Trilineage
potent

Positive Negative

Bone marrowb [118] CD29, CD44, CD105, CD166 CD34, CD45 Yes

Umbilical-cord
perivascular cells [118]

CD146, NG2, PDGF-Rb, ALP, SSEA4, Runx1, Oct4 CD34, CD45, CD144,
vWF

Yes

Wharton’s jelly [13,14] CD44, CD90, CD105, HLA G6, IL-1A/B, IL-6, IL-8, IL-14, BMP1, CSF3, FAMC3, GDF15,
PDGF-B, TNF-4, TNF-11b, TNF-12, VEGF

CD34, CD40, CD45,
CD80, CD86

Yes

Nasal mucosa [12] CD29, CD44, CD73, CD90, CD105, TLR4 ligand Yes

Intestinal stroma [4] CD29, CD44, CD73, CD105, CD117, CD166 CD14, CD34, CD45 Yes

Intestinal mucosa [4] CD117, plus as listed for stroma Yes

Eye limbal stroma [5] CD105, CD106, CD54, CD166, CD90, CD29, CD71, pax-6/p75, SSEA1, Tra-1-61, Tra-1-81,
CD31, CD34, CD45, CD11a, CD11c, CD14, CD138, Flk1, Flt1

Vascular endothelial
cadherin

Adipo,
Osteo

Osteosarcoma stroma
[120]

CD44, CD73, CD90, CD105, CD166, HLA class I CD14, CD19, CD31,
CD34, CD45, HLA-DR

Yes

aAbbreviations: ALP, alkaline phosphatase; BMP, bone morphogenetic protein; CSF, colony-stimulating factor; GDF, growth differentiation factor; HLA, human
leukocyte antigen; IL, interleukin; PDGF, platelet-derived growth factor; MSC, mesenchymal stem cell; SSEA, stage-specific embryonic antigen; TLR, Toll-like
receptor; TNF, tumour necrosis factor; VEGF, vascular endothelial growth factor; vWF, von Willebrand factor.
bBM MSCs have been reviewed in depth many times, and interested readers are referred to several recent papers on them [28,121-125].
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types that differ from each other in their expression pro-
files, and differ again from ESCs [2,38]. It has been
reported that murine MSCs and MAPCs possess similar
immunomodulatory abilities in vivo and in vitro by sup-
pressing alloreactive T-cell proliferation [39].

MSCs as reparative cells
Liver repair
It is in the context of the liver that the relationships
between MSCs, fibroblasts and stellate cells (activated as
myofibroblasts) become important, because the clinical
presentations of hepatic fibrosis are severe. Some of
these inter-relationships have been explored elsewhere
[40], and it is possible that the sources of fibrosis are

several: fibroblastic, stellate cell or MSCs, or combina-
tions of these. One less-supported hypothesis suggests
that hepatocytes may undergo epithelial to mesenchymal
transition (EMT) during injury and that the resolution
to fibrosis or a healthy outcome depends on the reverse
process (MET) [41]. Although it is certain that most
fibrotic cells are mesenchymal, fibrosis need not invoke
the BM; recent evidence suggests that hepatocytes in a
fibrotic liver have a reduced ability to sustain a progeni-
tor cell response, due in the main to a failure to remo-
del the extracellular matrix laminin, and that this failure
was not affected by wild-type (WT) BM transplantation
(BMT) into mice that had resistant collagen I (r/r) [42].
In another model of liver fibrosis, using bile-duct

Table 2 Recent clinical use of MSCsa in phase I/II trials

Patients,
number

Source of
MSCs

Phenotype Culture Cells
infused

Dosage Adverse
effects

MSC
survival

Follow-
up

Outcome 5-year
patient
survival

Reference

Stroke, 16 Autologous
iliac crest

> 90% SH2 DMEM,
10% FCS,
Cryo

5 × 107

twice
2 doses, 2-
week
interval

None ND To 5
years

HR for MSCs
= 0.344

Con
34%
MSCs
72%

[114]

MI, 10 Autologous
iliac crest

CD73+
CD90+
CD105+

DMEM,
10%FCS

7.5 × 106

MSCs +
EPCs

1 dose None ND 6
months

LVEF 12% up – [115]

MI, 53 Allogeneic
unmatched
‘prochymal’

CD105+
CD166+
CD45-

Cryob 0.5 to 5 ×
106/kg

1 dose,
intravenous

MSCs 5 pt
Placebo 7

ND 6
months

FEV1 up, LVEF
up, arrhythmia
down

– [126]

ALS, 10 Autologous
iliac crest

CD29+
CD44+
CD90+
CD105+
CD166+

Cambrex
MSC
medium
10% FCS

11.4 to 120
× 106

1 dose,
thoracic
spine

None ND 4 years MSCs
tolerated, SC
scars

– [116]

ALS, 19
MS, 15

Autologous
iliac crest

CD29+
CD73+
CD90+
CD105+
CD166+

DMEM,
10% FCS

ALS 5 × 107

MS 6 × 107

+/-
ferumoxide

1 dose,
intrathecal;
1 dose,
intravenous

None;
CD4/25
Treg cells
up

Possible 6-25
months

ALSFRS stable,
EDSS better

– [32]

Refractory
Crohn’s
Disease, 10

Autologous
iliac crest

CD73+
CD90+
CD105+

DMEM,
10% FCS,
Cryo

1 to 2 ×
106/kg
[mean wt 57
kg, range
46-113 kg

2 doses, 1-
week
interval

Headache
(3
patients)
Allergy (1
patient)

ND 14
weeks

CDAI fall (5
patients; > 70
in 3
patients);3
patients
worse

– [117]

Paediatric
acute
leukaemia
8

Haploid
parent BM

Adherent
CD
phenotype
ND

Cryob 6 × 104 to
107/kg MSCs
+ UCBT

1 or 2
doses, 3-
week
interval

None None 6.8
years,
no
chronic
GVHD

All patients
PMN+ at 9 to
28 days

63% [109]

Leukaemia
12c

HLA match
opposite
gender HCT

CD44+
CD73+
CD90+
CD103+

ND ND 1 dose ND None 0.9-138
months

HCT success,
no MSCs took

ND [110]

aAbbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS, ALS Functional Rating Scale; BM, bone marrow; CDAI, Crohn’s disease activity index; Con, control; Cryo,
cryogenic mesenchymal stem-cell preservation using dimethylsulphoxide; DMEM, Dulbecco’s modified Eagle medium; EDSS, Expanded Disability Status Scale;
EPC, endothelial precursor cell; FCS, foetal calf serum; FEV1, forced expiratory volume in 1 second; GVHD, graft-versus-host disease; HCT, haematopoietic cell
transplant. HR, hazard ratio; LVEF, left ventricular ejection fraction; ND, not determined; PMN, polymorphonuclear leukocyte (surrogate for HSC engraftment); SC,
spinal cord; UCBT, umbilical-cord blood transplant (unrelated).
bOsiris Therapeutics.
cNote this study did not infuse MSCs, but analysed cultured recipient BM MSCs after sex-mismatched BM transplant for presence of donor MSCs.
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ligation, Bridle et al. [43] reported that rapamycin inhib-
ited EMT, the activation of stellate cells, and the synth-
esis of procollagen I, cytokeratin 19 and a-smooth
muscle actin (a-SMA) in treated rats. These results
strongly suggest an additional role for EMT in fibrosis.
In contrast to these data, a carbon tetrachloride model

of acute liver inflammation showed that many of its det-
rimental effects could be reversed or attenuated by infu-
sion of sex-mismatched isogenic MSCs, but not HSCs.
Thus fibrosis, infiltration of polymorphonuclear lympho-
cytes, synthesis of collagen I and a-SMA, and expres-
sion of inflammatory were all reduced by infusion of
MSCs [44]. It is possible that these responses were
partly due to the upregulation of cytoglobin expression
by hepatic stellate cells, which overcomes much of the
oxidative stress caused by toxic agents and at the same
time inhibits the activation of those cells to become
myofibroblasts [45].
In a model of sclerosing cholangitis in the Abc-b4-/-

mouse [46], it was reported that two components of the
fibrotic response arose: one from the transformation of
BM-derived cells into CD34-positive and desmin-posi-
tive fibrocytes, and one from hepatic stellate cell activa-
tion, in which a-SMA was expressed. Such BM-derived
cells may be producing significant quantities of para-
crine cytokines; in a model of acute rat liver injury after
D-galactosamine administration, infusion of conditioned
medium from cultured MSCs was able to inhibit hepa-
tocyte apoptosis and the release of markers of liver
injury, and to promote the proliferation of the parenchy-
mal cells [47]. A further mechanism of fibroblastic acti-
vation after injury may occur via the local release of
platelet-derived growth factor (PDGF), which activates
local fibroblasts that in turn then express basic fibroblast
growth factor and chemokine (C-X-C motif) ligand
(CXCL)5, which attracts MSCs into the liver where they
can differentiate into myofibroblasts [48].
Kidney repair
The search continues for a putative kidney stem cell,
and this field has been reviewed recently [49,50], as has
the general field of MSCs in kidney repair [51-55].
There are reports of both HSCs and MSCs repopulating
the damaged kidney, with varying degrees of signifi-
cance. For humans receiving sex-mismatched kidney
transplants, Grimm and colleagues reported male stro-
mal myofibroblasts in men receiving a female kidney
graft [56]. Fang and colleagues found that male cloned
BM MSCs did not contribute to the nephron regenera-
tion of female recipient mice after mercuric chloride
tubular damage [57]. Although some MSCs became resi-
dent in the damaged kidneys, the fibrotic response of
kidney stromal fibroblasts following unilateral ureteric
obstruction was not augmented by the infusion of sex-
mismatched MSCs into transgenic mice expressing both

b-galactosidase and luciferase under the control of the
a2 chain promoter and enhancer of collagen I [58].
These reports contrast with those of Morigi and co-
workers [59], who found that human BM MSCs were
associated with decreased acute proximal tubular injury
after cisplatin administration in mice. Kidney function
improved, as did the lifespan of the treated mice, possi-
bly connected with the reduced levels of apoptosis and
leukocyte infiltration, and the raised tubular prolifera-
tion. A further study of female mice that received male
whole BM found that tubular injury after mercuric
chloride was ameliorated by erythropoietin treatment,
and that up to about 4% of tubular cells in these mice
possessed the Y chromosome, compared with only 1.3%
of those cells in control mice [60]. This suggested that
there was a small but significant engraftment of BM-
derived cells into the regenerating kidney. A possible
mechanism for such activity may derive from insulin-
like growth factor (IGF)-1, which is secreted by MSCs.
Thus, mice that received cisplatin and were infused with
MSCs that were silenced for IGF-1 had enhanced kidney
damage compared with mice infused with untreated
MSCs [61]. These in vitro experiments showed that
small interfering RNA or antibody directed against IGF-
1 were able to inhibit the proliferation and increase the
apoptosis of proximal tubular cells, lending credence to
a tubular effect of MSCs in those in vivo studies. How-
ever, such effects may have been paracrine rather than
due to the possible differentiation of MSCs into tubular
cells, as implied by some other studies. This conclusion
was shared by Kunter et al., who infused MSCs into rats
with glomerulonephritis induced by anti-Thy1.1 anti-
serum. Arterial, but not tail-vein, injections of MSCs
reduced the necrosis, improved kidney function, and
increased the proliferation of mesangial cells and their
expression of a-SMA, yet no incorporation of MSCs
into kidney structures was seen [62]. The MSCs
expressed TGF-b and vascular endothelial growth factor
(VEGF), but not PDGF, in these studies.
How much kidney repair is the result of bi- (or multi-)

potent parietal cells at the boundary of the Bowman’s
capsule and the proximal tubule is still under study.
Some recent data suggest that resident stem cells, rather
than BM-derived cells, play a significant part in renal
repair, and involve key precursors in the Bowman’s cap-
sule and proximal tubule, which express high levels of
aldehyde dehydrogenase (ALDH), CD24, CD133, keratin
(KRT)7, KRT19, B-cell lymphoma (BCL)2 and vimentin
[63]. A similar population of cells has been reported to
respond to several inflammatory cytokines (interleukin
(IL)-6, IL-8, monocyte chemotactic protein-1) by the
activation of the Toll-like receptor-2 pathway, which
results in their increased proliferation in kidney damage
[64]. These cells may affect the mortality of patients;

Otto and Wright Fibrogenesis & Tissue Repair 2011, 4:20
http://www.fibrogenesis.com/content/4/1/20

Page 4 of 14



immunohistochemical evidence of kidneys after acute
tubular necrosis suggested that patients who survived
possessed more proximal tubule or parietal cells that
became Ki67-positive, and expressed CD133 and paired
box gene-2 [65]. These authors suggested there were
other cortical and medullary stem-cell populations
within the tubules that assisted kidney repair and that
were also Ki67-positive after damage.
The evidence remains equivocal on the ability of

MSCs to do more than act as paracrine ameliorators of
kidney damage. Where evidence exists for their active
differentiation into kidney tubular or interstitial cells,
these effects have to date been minor. Nonetheless, the
secretory activities of a few cells might have a significant
local healing effect.
Heart repair
Myocardial infarction (MI) results in much morbidity
and mortality in the human population, and methods to
alleviate these problems and improve outcomes are
urgently needed. Coronary-artery grafting (CAG) is
commonly used to bypass diseased blood conduits.
Since the publication of reports suggesting that BM-
derived cells may engraft into cardiac tissue, there have
been numerous attempts to exploit such a possibility,
and the literature has been well reviewed recently
[66,67].
We highlight a few key observations that exemplify

the contradictions in the literature. That MSCs can be
found in both normal and diseased hearts is no surprise.
Whether they engraft and transdifferentiate into cardio-
myocytes after infarcts is still a moot point. In a model
of rejection, Wu and colleagues [68] showed migration
of MSCs to the sites of allogeneic cardiac rejection by
determining expression of transduced b-galactosidase in
morphologically typical fibroblasts, and also identified a
minor population of apparent myocardial cells expres-
sing the transgene and desmin. A different approach to
look at heart repair used cryo-burn injury to rat cardiac
tissue, which was treated with intra-cardiac injections of
cloned green fluorescent protein (GFP)-expressing
MSCs. The authors did not find engraftment of MSCs
into cardiomyocytes or a general neovascularisation, but
they did observe reduced scarring after the MSC treat-
ment [69]. In contrast to these results, Zhang and co-
workers [70] infused cloned MSCs expressing cardiac
markers into rats bearing MI, and found that these cells
were associated with improved vessel density in the
ischaemic ventricle and stronger ejection fraction com-
pared with unpurified MSCs or peripheral blood mono-
cytes. Transdifferentiation into myocytes was not
reported, so these effects may have been paracrine.
Another study reported that rats with MI had

increased apparent differentiation of MSCs into cardio-
myocytes when they were accompanied by hyperbaric

oxygen (HBO) treatment, given for 2 hours daily for 2
weeks [71]. In that study, superparamagnetic iron oxide
was used to label MSCs, which were revealed by staining
with Prussian blue for iron. The authors found increases
in the number of positive cells within the myocardium,
the thickness of the left ventricular wall, the ejection
fraction and other cardiac signs, compared with rats
treated with MSCs alone. Local expression of VEGF,
connexin-43 and troponin-T were all increased in HBO-
treated rats also, and the authors concluded that if
patients were to react in a similar manner, the treatment
was a potentially clinically useful adjunct to current
therapies.
Two recent papers have shed light on possible

mechanisms of MSC-enhanced cardiac repair. Jiang and
colleagues adenovirally transduced Fischer rat MSCs
with Akt and Ang-1 vectors, which resulted in protec-
tion of the MSCs from anoxia in vitro, and enhanced
their cardiac engraftment after intramyocardial injection
into MI recipients [72]. The authors found better clini-
cal signs, such as ejection fraction, blood-vessel density
and echocardiography in treated rats, and concluded
that the pro-angiogenic nature of the transduced MSCs
contributed significantly to these effects. A further
development in the understanding of cardiac repair
came from Shabbir and colleagues [73], who described
evidence that a mechanism of cardiac repair involving
MSCs may depend on paracrine Janus kinase (JAK) and
signal transducer and activator of transcription (STAT)
signalling. In their study, injection of MSCs into ham-
ster hamstring skeletal muscles caused cardiac improve-
ment via IL-6 secretion and JAK-STAT activation (that
is, increased secretion of hepatocyte growth factor and
VEGF), and these effects were reduced by the adminis-
tration of the pathway inhibitor WP1066, which subse-
quently reversed the benefits of MSCs in the failing
hamster hearts.
A tamoxifen-inducible GFP-conjugated b-galactosidase

switch model of murine cardiac infarction was used to
assess the contribution of exogenous cells to cardiac
repair [74]. Cardiomyocytes were rendered GFP-positive
by tamoxifen, and the female mice were given coronary
ligations followed by infarct border injections of BM-
derived lineage-negative c-kit+ cells obtained from WT
male mice. After 8 weeks, the mouse hearts were har-
vested for histology and immunohistochemistry for GFP
or b-galactosidase. MI mice had dilution of their GFP+
cardiomyocytes, which were further diluted by the c-kit
+ cells, and the latter cells were positive for b-galactosi-
dase. These results persisted when MSCs were infused
into the MI mice. There was no evidence of cell fusion
between MSCs and myocytes. The authors concluded
that MSCs do not partake in direct healing of the myo-
cardium in this model, but rather that a significant
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proportion of new myocytes derive from the BM c-kit+
population, even when exogenous SDF1 was used to sti-
mulate angiogenesis.
Such results have encouraged clinical applications of

MSCs, as noted above (Table 2). Chin and co-workers
[75] used intramyocardial injections of cryopreserved
autologous MSCs at the time of CAG, and they reported
better heart function, less scarring, improved wall thick-
ness and fewer arrythmias than with CAG alone.
Colon repair
Recent work has suggested that MSCs in the colonic
environment can aid or hinder tissue repair. Thus, on
the positive side, Tanaka and colleagues [76] used cul-
tured MSCs, which were injected via the tail vein into
male Lewis rats that had been treated with 4% dextran
sodium sulphate (DSS); they found that the MSCs ame-
liorated the colitis by exerting an anti-inflammatory
effect. This was in part assayed by ELISA for tumour
necrosis factor (TNF)-a after co-culture of lipopolysac-
charide-stimulated MSCs and a monocyte cell line. Sev-
eral colonic inflammatory cytokine mRNAs and other
mRNAs, such as Tnf-a, Il-1b and cyclooxygenase 2, were
reduced by MSC infusions. Unfortunately no in situ
hybridisation was performed to confirm which cells
were involved in these reactions. Nevertheless, the over-
all effects of the MSCs on the clinical and biochemical
effects of DSS were positive. In a similar DSS colitis
model, Yabana et al [77] infused male enhanced (e)
GFP-MSCs into female rats treated with the BM hypo-
plastic reagent busulphan. The colitis was worse in the
BM-depleted animals, and in large part rescued by
MSCs, which strongly stimulated induction of synthesis
of tight junction proteins to alleviate the loss of barrier
function in the epithelium. These authors found occa-
sional Y-chromosome-positive CD45-negative cells
within the epithelial monolayer of rats treated with DSS
and MSCs, suggesting that some MSC-like cells might
have entered this compartment, but it was not certain
which phenotype these cells possessed.
Similarly, Grisendi et al [78] used adipose tissue-

derived MSCs that were transduced with TNF-related
apoptosis-inducing ligand (TRAIL) to target several
xenograft models of cancer, including cervical, pancrea-
tic and colon cancer. Raised levels of apoptosis were
found in all cases, in particular in TRAIL-resistant
breast-cancer cells. Cancer cell caspase 8 activity was
raised, with little apparent normal tissue toxicity. These
results suggest that it could be possible to direct MSCs
therapeutically towards tumour cells.
By contrast, Wu and co-workers reported a model of

fibromatosis (desmoid tumour) in the intestines of the
mutant Adenomatous polyposis coli (ApcMin) mouse
[79]. The number of intestinal desmoids was propor-
tional to the number of MSCs present, and the MSCs

were held in a less differentiated state than in WT mice.
The authors found that when Sca1-/- mice, which have
fewer MSCs, were crossed with ApcMin mice, the result-
ing offspring developed fewer desmoids, but there was
no effect on the number or severity of the epithelial
polyps. The authors concluded that b-catenin has local
effects on both the epithelium and the MSC popula-
tions, and maintains MSCs in an immature state, which
promotes the aggressive fibromatosis. Such an outcome
would not augur well for the clinical use of MSCs if
human colon adult progenitor cell status is similar.

Fibroblastic differentiation
Lee and colleagues [80] reported that human MSCs could
differentiate into stromal fibroblasts in vitro after stimu-
lation by connective tissue growth factor, during which
they secreted collagen I and tenascin-C. MSCs were initi-
ally a-SMA-negative, but could express this protein on
stimulation with TGFb. Sarraf and co-workers [24]
reported that murine MSCs could differentiate into fibro-
blasts and myofibroblasts when embedded in a collagen
type I matrix and placed under tension, either self-gener-
ated or externally applied. The cells secreted both col-
lagenous and elastic fibres. It thus seems likely that BM-
derived myofibroblasts and fibroblasts in unsorted BMT
experiments have come from the MSC population.
Several publications have reported a flux of BM-derived

stromal myofibroblasts and fibroblasts into many tissues
[81,82], and that damage increases their numbers. Direkze
and colleagues [82] found that lung tissue damaged by
paracetamol contained 41% BM cells, compared with 17%
in control lungs. A similar pattern was found in full-thick-
ness wounded skin, but with only 4% of BM-derived myo-
fibroblasts. Interestingly, the proportion of kidney-derived
myofibroblasts did not rise significantly with injury, but
remained at around 20 to 24%. This group also reported
BM-derived tumour-associated myofibroblasts and fibro-
blasts in a mouse model of insulinoma [83].
Zhao and colleagues reported that the marker CD90

was raised in both MSCs and in prostate cancer stromal
fibroblasts, which the authors analysed by quantitative
PCR after isolating them from tissues by FACS, using
CD90 as a discriminator [30]. The authors concluded
that the CD90-hi cells were not true MSCs, but that
they expressed several proteins associated with tumour
promotion, such as Sonic hedgehog and TGF-b, as well
as pro-angiogenic factors. A further report on lung
MSCs suggested that these also respond to TGFb by dif-
ferentiating into myofibroblasts [11].

Variability between MSCs
Immunogenicity
In general MSCs are thought to be immunosuppressive,
with some impressive reports supporting this [14], but
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there are also reports that suggest that this may not
always apply [84]. On the positive side, an animal study
of BM engraftment compared syngeneic and allogeneic
MSCs with allogeneic fibroblasts in a model of exci-
sional skin wounding. The allogeneic fibroblasts set up a
CD45, CD3 and CD8-positive leukocytic response that
was far greater than those to either of the MSC sources,
both of which healed wounds faster.
Human MSCs obtained from WJ were found to be

somewhat benign in their effects [14]: lack of splenocyte
proliferation in an allogeneic mixed lymphocyte reaction
after Concanavalin A stimulus; lack of surface expres-
sion of the co-stimulatory molecules CD40, CD80 and
CD86 and of the expression of IL-6 and VEGF, generally
held to be immunomodulatory when found on MSCs.
The authors concluded that this source of MSCs was a
possible option for allogeneic transplantation.
Hsieh and colleagues [13] reported gene-array com-

parisons using BM MSCs and WJ MSCs. The BM MSCs
showed upregulation of antigen-presentation genes and
genes of cytokine pathways; WJ MSCs expressed more
neurogenic, angiogenic, proliferation and nuclear factor
kappa B-related genes. Multidimensional scaling analysis
suggested a closer relationship of WJ cells to ESC,
whereas BM MSCs were more related to fibroblasts and
adipocytes. It was also noted that the gene profiles of
BM MSCs were more sensitive to the culture growth
media, whereas the genes expressed by WJ MSCs were
more similar in the two media tested (either MesenCult
or Dulbecco’s modified Eagle’s medium with 10% FCS).
The authors concluded that WJ cells may constitute
cells that are less likely to be rejected and more versatile
in their differentiation potential than BM MSCs.
In contrast to the above results, Sbano and colleagues

reported on an allogeneic skin-transplant model in
which Sprague-Dawley rats were immunosuppressed
with cyclosporin A (CsA) and given Wistar donor MSCs
[85]. The allogeneic MSCs promoted skin rejection in
the non-immunosuppressed rats compared with the
CsA-treated rats, and this was associated with higher
levels of inflammatory cytokines such as IL-2, TNF-a
and interferon (IFN)-b.
Tumour promotion
Houghton and co-workers [86] reported that MSCs
transfected with mutant p53 and injected into ApcMin

mice resulted in enhanced mammary tumour load, in
contrast with WT mice, from which live cells could be
harvested up to 1 year later from the BM, and in which
no tumours occurred. The mutant p53 MSCs homed to
the breast stroma, and were permissive for carcinoma
development. These tumours were also responsive to
exogenous anti-TNF-a treatment or to the infusion of
regulatory CD4 T cells obtained from WT donors.

A report from Johann and colleagues [17] suggested
that paediatric tumour stromal cells may possess similar
immunophenotypical and lineage properties to BM-
derived MSCs, and might also suppress proliferation of
peripheral blood monocytes in vitro, as well as the cyto-
toxicity of natural killer cells in co-culture assays. It was
suggested that these properties of the tumour stroma
enhance the ability of a tumour population to evade
immune surveillance, with augmented patient risk.
Maas and colleagues reported recently [87] that the

protein Artemis is crucial in the repair of double-strand
breaks in the DNA of MSCs through the non-homolo-
gous end-joining pathway (NHEJ), and that if knocked
out, it may predispose MSCs to sarcoma formation. The
authors tested this theory in p53-delta/+ heterozygote
mice cross-bred with Artemis-null mice, and found that
6% of the mice developed sarcomas in cartilage, bone
and skeletal muscle. MSCs from Artemis-deficient mice
exhibited more frequent double-strand breaks, transloca-
tions and fragmentations than did their WT littermates,
yet retained a normal growth rate and ability to differ-
entiate along the usual trilineage pathways. The radio-
sensitivity of Artemis-null and WT cultured MSCs was
greater than that of mouse embryo fibroblasts up to 5
Gy, and there were significant changes in the expression
of the BMP and Wnt pathway, stress-response and pro-
liferation/differentiation genes in the defective MSCs.
Unfortunately, the authors did not show that the sarco-
mas in their mice were MSCs-derived. Nevertheless,
these alterations led to the conclusion that MSCs need
careful monitoring for genetic stability, particularly of
DNA checkpoint machinery, if they are to be useful in
regenerative medicine.
A study using a model of human prostate cancer,

PAC-120 xenografting [10], suggested that there is an
SP (Hoechst 33258-pumping) of murine host stromal
cells that can be sorted by flow cytometry and differ-
entiated in vitro into adipocytic and osteocytic
lineages. The cloned SP cells had characteristics of
MSCs, as shown further by their positivity for Sca-1
and CD81. A problem with these results is that no
immunohistochemistry was used to show the presence
of MSC cells within the stroma of the tumours. The
cells obtained by flow cytometry of crude enzymatic
digests of the xenografts were by definition heteroge-
neous, and the authors identified a broad SP that was
not well controlled by verapamil. The sorted MSC-like
cells may have been closely associated with the epithe-
lial fractions being subjected to the SP sorting, so
although it seems true to suggest that the stromal frac-
tion contained MSC-like cells, it is unusual for such
cells to possess an SP, unlike their BM-derived neigh-
bours, the HSCs.
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Xenotransplantation
MSCs are common to all mammals tested to date, and
have been viewed as essentially benign because of their
frequent lack or suppression of immune effects on
hosts. However, an increasing body of literature has
reported unfortunate or even malign effects that may
result from xenogeneic MSC infusions.
Early work on MSC infusions used human MSCs in

foetal sheep [25,88], which suggested that this immune-
privileged site is permissive for tolerance of foreign cells,
which can engraft, differentiate in situ, and function in a
normal way for that cell type for extended periods; in
those studies, up to a year. MSCs were detected in carti-
lage, fat, muscle, heart, BM stroma and thymic stroma.
Much of the clinical literature to date on infusion or

injection of MSCs in human disease has failed to show
significant adverse effects (AEs) on the recipients [89],
particularly for their use in HSC transplantation [90].
This is encouraging for possible therapeutic uses of
MSCs in tissue repair and regenerative medicine. How-
ever, there are reports of human MSCs in xenograft
models of disease suggesting that some caution is
needed regarding the absolute benevolence of these
cells. These reports may reflect differences in the cell
biology of the species involved, and need not predict
that the same pathologies will occur in people, but
nevertheless indicate that the precautionary principle
should apply. Some recent examples are presented
below.
Teng and colleagues reported that human MSCs could

be rendered tumourigenic by the hypermethylation
silencing of two tumour suppressor genes that activate
p53: Hypermethylated in cancer (HIC)1 and RassF1A
[91]. These cells were transformed, grew as anchorage-
independent colonies in agar, and formed sarcoma-like
tumours when injected subcutaneously into nude mice.
Several reports now suggest a strong possibility that

MSCs may be permissive for the proliferation and disse-
mination of breast-cancer stem cells. For example, Yan
and colleagues extracted MSCs from breast tumours
that possessed trilineage potential and augmented the
growth of mammary tumours when co-infused into ani-
mals. The MSCs also stimulated ‘mammosphere’ forma-
tion in vitro, which was EGF-dependent [92]. Similar
effects on mammosphere formation were found by
Klopp et al [93], who found reduced E-cadherin expres-
sion in normal and breast-cancer epithelial cells, and the
MSCs augmented tumour development when co-
injected into mice.
It may be that MSCs can differentiate into fibroblastic

cells by the action of breast tumour-secreted osteopon-
tin, and by so doing enhance the tumourigenic and
metastatic potential of the MDA-MB231 cancer cell ine
[94]. Human MSC cultures possess a subpopulation of

ALDH-positive cells that stimulate the induction of can-
cer stem cells (also ALDH+) in the human breast line
SUM159 in vitro [95]. When non-obese diabetic/severe
combined immunodeficiency (NOD/SCID) mice bearing
such tumour xenografts were given intratibial injections
of human MSCs, the MSCs homed to the tumours,
which grew faster and possessed more cancer stem cells
than did control tumours. It was inferred from microar-
ray analyses of tumour cell-MSC co-cultures that several
cytokines may be expressed in the tumour cells that act
to promote these effects: CXCL1, CXCL5 and CXCL6,
IL-6 and IL-8. Antibodies to CXCL7, itself a product of
MSCs, blocked the secretion of these cytokines. The
regulation was further controlled by breast-tumour cell-
derived IL-6 stimulating both the secretion of CXCR7
and the chemotaxis of MSCs to the tumour cells. The
MSCs then increased the population of ALDH+ epithe-
lial cancer stem cells. These authors also reported simi-
lar juxtapositions of ALDH+ MSCs and breast-cancer
cells in sections of human breast tumours.
In a similar study, Zimmerlin and colleagues studied

adipose-derived MSCs, and reported the ability of these
cells to enhance the growth of breast-tumour pleural
effusions from patients in both in vitro and in vivo set-
tings [96]. The authors separated the metastatic breast-
tumour cells into active and resting phenotypes based
on CD90 positivity, with high or low scatter respectively.
When co-injected with the adipose-derived MSCs into
mice, only the active effusion cells were tumourigenic.
Park and co-workers reported the migration of human

umbilical-cord MSCs towards human glioma cells in
vitro, and that overexpression of CXCR4 increased this
trait. Further, in a xenograft model of glioma in nude
mice, these cells displayed enhanced migration into the
tumours [97]. In an experiment in mice using transplan-
tation of GFP-tagged BM, GFP-positive MSCs migrated
into the prostate of castrated mice, and these cells were
increased by testosterone in a Wnt-dependent manner.
These findings were also seen in a human prostate
tumour xenograft, in which MSCs expressing an exo-
genous Wnt antagonist, secreted Frizzled-related protein
(SFRP)-2, induced tumour shrinkage by necrosis and
apoptosis [98].
Kucerova and colleagues reported that adipose-tissue

MSCs could promote growth in nude mice of tumours
of the xenografted human melanoma cell line A375
[99]. This was achieved by suppression of apoptosis and
an increase in proliferation. Another melanoma line,
8MGBA, did not share this attribute; instead, MSCs
were inhibitory.
Two recent reports suggest that MSCs may give rise

directly to mesenchymal tumours. Using a comparison
of infused normal MSCs, in vitro spontaneously trans-
formed MSCs, and osteosarcoma murine cells, Mohseny
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and co-workers [100] concluded that aneuploidy, chro-
mosomal translocations and the homozygous loss of the
Cdkn2A (p16) locus on chromosome 4 were implicated
in tumour progression. The genetic changes seemed to
occur around MSC passages 5 to 9 in culture, during
which time the cells went into ‘crisis’, and thereafter
they possessed the ability to grow in soft agar indepen-
dently of substrate. The authors showed a series of 88
human osteosarcomas that possessed similar defects in
the homologous cyclin-dependent kinase inhibitor
(CDKN)2A locus on chromosome 9. Kaplan-Meier ana-
lyses of these patients with osteosarcoma showed very
poor survival for patients negative for this locus (zero
survival at 50 months follow-up versus 70% survival if
positive for more than one allele). Although this study
did formally prove the origins of these human osteosar-
comas to be MSCs, it warrants a cautious approach
when using these cells in the clinic.
A further report of tumours arising from genetically

defective MSCs has recently appeared [101]. These
authors deleted p53, Rb or both genes in adipose tissue-
derived murine MSCs that underwent Cre-LoxP exci-
sion. Wild-type and Rb-negative MSCs were phenotypi-
cally normal, whereas the p53-negative and p53-
negative/Rb-negative MSCs were transformed, and
could initiate leiomyosarcomas in half the animals when
injected into the flanks of NOD-SCID/IL-2Rg-/- mice.
The transformed MSCs approached tetraploidy, and
were deficient in the ability to differentiate into adipo-
cytes, yet had increased ability to become osteocytic.
The authors noted that human leiomyosarcomas fre-
quently display loss of p53 or Rb.
These examples indicate the possibility that MSCs

could be involved in the growth of carcinomas, melano-
mas and sarcomas, and thus their use as repair agents
for normal tissues or organs needs to be seen in this
light. In addition, MSCs may also be exploited precisely
for their homing attribute; by modifying them appropri-
ately, infused MSCs may home in on tumours and deli-
ver therapeutic reagents. Such experiments have been
reported for an anti-tumour viral vector Delta-24-RGD
transfected into MSCs, which homed to breast and ovar-
ian tumours in mice and reduced systemic viral toxicity
to negligible levels compared with virus-alone infusions
[102]. A different strategy was used by Sato and collea-
gues, who transfected MSCs with EGFR; these cells
homed to both B16 murine melanoma and GL261
glioma tumours [103]. When the MSCs were co-trans-
fected with IFN-a, there was significantly increased sur-
vival of GL261-bearing mice. Secchiero and colleagues
[104] reported recently that BM MSCs could affect the
outcome of Epstein-Barr virus (EBV)-positive or EBV-
negative metastatic non-Hodgkin’s lymphomas in nude-
SCID mice. Mice receiving MSCs survived for longer

periods than those without (40 and 59 d median survi-
val, respectively).
Human MSCs have been used as a model for tumour

therapy after transduction with IFN-b [105]. Two mur-
ine pulmonary metastatic xenograft models were used:
A375SM melanoma and MDA 231 breast carcinoma. In
both models, the IFN-b MSC infusions resulted in MSC
engraftment within the tumour stroma, and significantly
prolonged survival of the mice compared with IFN-b
injections alone. These results encourage research into
the personalising of such treatments for suitable
patients.

Clinical use of MSCs
Clinical trials using MSCs are being carried out for a
variety of important diseases such as stroke, MI, multi-
ple sclerosis (MS), amyotrophic lateral sclerosis (ALS),
and leukaemia (Table 2). In general, MSCs appear to be
well-tolerated, with most trials reporting lack of AEs in
the medium term, although a few showed mild and
transient peri-injection effects. There are no agreed phe-
notypic MSC markers that should be used, so the exact
clinical effects of such sorted cells may be uncertain, as
the cell populations used could differ. In addition, clini-
cal outcomes are variable, and generally show small
improvements, but to date few studies have reported
either a long period of observation, the outcomes of
more than one MSC infusion, or whether MSCs survive
engraftment. That human MSCs circulate in the blood-
stream has been reported [106,107], and immortalized
MSC lines have been produced from similar cells [108].
There may be a direct effect of the infused cells, but
long-term clinical MSC engraftment is not yet routinely
investigated by methods such as paramagnetic iron
nanoparticles. Where this test has been performed, it
has shown only possible survival of MSCs [32], or none
at all [109]. It was found that the BM engraftment of
donor MSCs in patients with leukaemia receiving
whole-body irradiation and HSC rescue did not occur,
but this did not influence the HSC engraftment
[110,111]. However, those data are in contrast to studies
in which sex-mismatched BMT resulted in donor-
derived stromal cells in several organs including liver
[112], and endothelial cells in the BM of patients with
chronic myeloid leukaemia [113]. It is possible that
some major influences of transplanted MSCs are sys-
temic or paracrine via the release of cytokines or other
molecules that affect responses in the target organ. Such
influences are exemplified by a recent study on a rat
model of hepatic failure, in which anti-apoptotic effects
were seen after infusion of cultured MSC-conditioned
medium [47].
Autologous MSC infusions were performed in 16

patients with severe middle cerebral artery stroke, who
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were successfully followed up for up to 5 years, during
which 58% of controls but only 25% of MSC-infused
patients died [114]. All patient MSCs were cultured in
the presence of 10% FCS, and harvested to achieve 108

cells/person, then delivered in two intravenous infusions
of 5 × 107 cells, 2 weeks apart. No side effects were
noted, and similar levels of other disease parameters
(vascular problem, seizure) were seen in both groups of
patients. There was an association between MSC infu-
sion and the levels of serum stromal cell-derived factor-
1.
In a phase I trial, Lasala and co-workers [115] infused

a mixture of fresh peripheral mononuclear cells (a
source of EPCs) and cultured BM MSCs (7.5 × 106

each) into the ischaemic myocardium of patients with
angina pectoris who had over 70% stenosis in one or
both coronary arteries. Left ventricular ejection fraction
was increased by 12% at 1 month, and remained with an
11% increase at 6 months after the infusions, and car-
diac ischaemia was decreased by 1.8-fold at 6 months
only. The patients reported increased quality of life, and
no AEs were seen. This is encouraging because the
MSCs were cultured in bovine serum during their
expansion in vitro.
Another phase I trial used cultured autologous MSCs

in patients with ALS [116]. The cells were infused in
cerebrospinal fluid into the thoracic spinal canal, and
patients were monitored by MRI for 4 years, during
which no AEs were noted locally or systemically. No
attempt was made to track the survival of the MSCs.
There was little change in the disease progression.
In a similar study, Karusis et al [32] studied patients

with MS and patients with ALS, who also had no AEs
after a single intrathecal infusion of autologous MSCs.
In some patients, the MSCs were labelled with superpar-
amagnetic iron-oxide nanoparticles, and there was evi-
dence of their retention in the occipital horns of the
ventricles, the meninges of the spinal cord, the parench-
yma and the nerve roots for up to 3 months. In short-
term (24 hours) immunological analyses of circulating
blood cells, there were 72% more regulator T cells
(CD4/CD25+) in both patient groups, and reductions of
30 to 60% in the proportions of myeloid dendritic cells
positive for CD83, CD86 and human leukocyte antigen
(HLA)-DR. Phytohaemagglutinin-stimulated lympho-
cytes were also 63% less reactive than before infusions.
These data strongly suggest a decrease in the activation
status of the host lymphocytic cells and antigen-present-
ing cells after MSC treatment.
A phase I trial of autologous MSCs (1 to 2 × 106 cells/

kg twice) for refractory Crohn’s disease (CD) has been
reported [117]. CD MSCs were similar to normal MSCs
in immunomodulatory effects and phenotype, and did
not cause side effects. Five common drugs used in the

treatment of CD (adalimumab, methotrexate, azathiopr-
ine, dexamethasone, 6-mercaptopurine) all allowed
MSCs to inhibit the proliferation of peripheral bone-
marrow cells in in vitro tests, whereas infliximab had a
similar but non-significant trend. Three of the ten
patients improved their Crohn’s Disease Activity Index,
but three were worse by 6 weeks after treatment, and
required surgery. The authors concluded that the meth-
ods were safe, but warranted further longer-term
investigations.
A report was recently published which detailed a study

involving patients with paediatric leukaemia who
received a transplant of unmatched umbilical-cord
blood with parental haploidentical BM-derived cultured
MSCs on one or two occasions [109]. Any graft-versus-
host disease (GVHD) reaction that occurred was acute
and responded to steroid therapy, and no episodes of
chronic GVHD were noted in the 6.8 year study. Using
blood analyses, all patients were found to be chimaeric
with regard to all HSC-derived blood-cell lineages
within 3 months of transplant (positive for polymorpho-
nuclear leukocytes by 9 to 28 days and platelets by 36
to 98 days), which was comparable with historical con-
trol patients who had received no MSC treatment. All
patients were analysed by BM sampling for surviving
donor MSCs and the degree of BM white blood-cell chi-
maerism at varying times after engraftment. At no time
were any donor MSCs found, despite full haematopoie-
tic chimaerism. This is of considerable interest because
many of the putative benefits of MSCs treatment pre-
sume long-term engraftment of the cells, which may not
have occurred here. It remains possible that some MSCs
had engrafted into unsampled organs and exerted a sys-
temic effect from those locations. This possibility would
apply to another leukaemia study [110], in which 12
patients with leukaemia were given sex-mismatched but
HLA-matched BMT, and their BM was analysed up to
11 years later for evidence of donor-derived MSCs. In
all cases, the BMT resulted in full blood-cell chimaer-
ism, but in no case was there any evidence of donor BM
MSC survival. This was true for each of three different
conditioning regimens before BMT. Again, other body
sites were unsampled. It is possible that the haplotyping
was not sufficiently close to prevent a host response
against the infused MSCs.

Conclusions
Over the past decade, there have been a large number of
publications on MSCs from several tissue sources. A
number of animal models of human diseases have
shown encouraging results for the use of MSCs in terms
of repair and restoration of functional tissue, as have a
fewer but growing number of human studies. The pro-
portion of transplanted cells taking part in these repairs
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remains low, and it is unclear how many cells survive
the grafting events and what proportion of their effects
are due to systemic signalling or direct cell-cell
communication.
We urge caution about use of MSCs, for several rea-

sons. Xenotransplantation of animal MSCs seems
inherently unattractive from the recipient’s viewpoint,
not least for the possibility both of rejection and of
viral or other disease transmission. Use of allogeneic
human MSCs may have some utility if it can be
unequivocally shown that no possibility exists for
tumour growth in the longer term, either of the MSCs
themselves (possibly as transdifferentiated sarcomas),
or by enhancing the growth of epithelial tissues prone
to such events by the stimulation of blood vessel
ingrowth. These strictures will also apply to autologous
MSCs for the specific repair of certain conditions. Use
of MSCs in patients with cardiac infarcts could be
helpful as adjuncts to CAG, and it is likely that their
use will progressively expand into several other disease
states as safety profiles improve, and the sourcing and
purification or culture methods become less expensive,
allowing more routine use.
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