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ABSTRACT: Identification of enzyme-bound intermediates via their
spectroscopic signatures, which then allows direct monitoring of the kinetic
fate of these intermediates, poses a continuing challenge. As an electrophilic
covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a
number of noncovalent and covalent intermediates along its reaction
pathways, and multiple UV−vis and circular dichroism (CD) bands have
been identified at Rutgers pertinent to several among them. These
electronic transitions fall into two classes: those for which the conjugated
system provides a reasonable guide to the observed λmax and others in
which there is no corresponding conjugated system and the observed CD
bands are best ascribed to charge transfer (CT) transitions. Herein is
reported the reaction of four ThDP enzymes with alternate substrates: (a)
acetyl pyruvate, its methyl ester, and fluoropyruvate, these providing the shortest side chains attached at the thiazolium C2 atom
and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated systems (estimated λmax
values of <330 nm), and (b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid displaying both a conjugated enamine (430 nm) and
a CT transition (480 nm). We suggest that the CT transitions result from an interaction of the π bond on the ThDP C2 side
chain as a donor, and the positively charged thiazolium ring as an acceptor, and correspond to covalent ThDP-bound
intermediates. Time resolution of these bands allows the rate constants for individual steps to be determined. These CD methods
can be applied to the entire ThDP superfamily of enzymes and should find applications with other enzymes.

Thiamin diphosphate (ThDP, the vitamin B1 coenzyme) is
a cofactor used for biological decarboxylations of 2-oxo

acids, as well as C−C bond formations resembling a benzoin
condensation, and comprises three distinct chemical moieties,
two heteroaromatic rings and a diphosphate group. Early X-ray
structural studies of three ThDP enzymes showed that the
diphosphate group is important for binding of the cofactor to
the enzymes.1−3 Seminal studies of Breslow4 revealed that the
thiazolium ring participates as an electrophilic covalent catalyst
by conversion of the weak C2-H acid to its conjugate base
(called variously a C2 carbanion, a carbene, or an ylide) to
initiate the reaction. Only relatively recently was it demon-
strated that the 4′-aminopyrimidine ring likely participates in an
intramolecular acid−base reaction, probably by assisting the
deprotonation at C2-H to generate the nucleophile.5,6 This
acid−base function of the 4′-aminopyrimidine is deemed very
important in view of the paucity of acid−base catalysts at the
active centers of several ThDP enzymes, especially (a)
glyoxylate carboligase that lacks even the highly conserved
Glu within the short hydrogen bond of the ThDP N1′ atom, or
any other potential acid−base catalyst,7 and (b) benzaldehyde
lyase, still bearing the conserved Glu side chain, but with only a
single His residue in the active center with potential acid−base

catalytic function, but too distant from the C2 atom to be
directly involved in any proton transfers.8

Typical ThDP enzymes commence the reaction sequence
with formation of a covalent nucleophilic adduct of the C2
atom of the thiazolium ring of ThDP with the carbonyl group
of the substrate. The decarboxylation of pyruvate to
acetaldehyde (Scheme 1) conducted by yeast pyruvate
decarboxylase9 (YPDC, EC 4.1.1.1) is shown as an example
in Scheme 1. Such reactions proceed by a series of ThDP-
bound covalent complexes, including the C2α-tetrahedral
predecarboxylation intermediate C2α-lactylThDP (LThDP);
the enamine, a C2α-trigonal (first) postdecarboxylation
intermediate; and the C2α-tetrahedral (second) postdecarbox-
ylation intermediate C2α-hydroxyethylThDP (HEThDP).
Given the chirality of the protein matrix, all enzyme-bound
complexes of ThDP, covalent and noncovalent, are chiral and,
in theory, can be detected by circular dichroism (CD)
spectroscopy. More than four decades ago, the group of
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Scheme 1. Mechanism of Yeast Pyruvate Decarboxylase

Figure 1. Suggested origins of CT bands formed on ThDP enzymes using (A) ACP, (B) MACP, (C) fluoropyruvate, and (D) CPB.
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Kochetov pioneered application of CD to ThDP enzymes with
experiments on transketolase,10,11 in which in the absence of
substrate a negative CD band with a maximum near 320 nm
was observed. During the past dozen years, the Rutgers group
has uncovered multiple spectral signatures for intermediates
along the ThDP-dependent enzymatic pathways. These spectral
signatures are best seen by CD, where proximal bands are often
fortuitously resolvable because they have opposite phases (a
property absent in absorption spectra). So far, the following
assignments have been made on more than 10 ThDP enzymes:
(1) a positive CD band centered near 300−315 nm pertaining
to the 1′,4′-iminopyrimidineThDP tautomer (IP form) in
either enzyme-bound ThDP12 or intermediates related to the
C2α-tetrahedral adducts LThDP and HEThDP at pH values
near or above the pKa of the 4′-aminopyrimidinium (APH+)
conjugate acid;6,13 (2) a negative CD band centered at 320 nm
pertaining to the canonical 4′-aminopyrimidine form (AP
form),6,13,14 the band observed by Kochetov and co-workers;10

(3) electronic transitions corresponding to the enamine, which
until the discovery of the IP form was the only obvious
conjugated ThDP-bound intermediate, whose λmax depends on
the group attached to the C2α atom (ranging from 295 nm for
CH3

9,15,16 to ∼380 nm for a phenyl ring17−20 to 430−440 nm
for a styryl substituent);21,22 and (4) the Michaelis complex
reported by a negative CD band centered around 330−340
nm.12,23 The λmax of the IP form in case (1) and the enamine in
case (3) observed on enzymes could be well reproduced in
chemical models.5,24 However, those of AP form (2) and
Michaelis complex (4) could not, and the band pertinent to the
AP form almost certainly originates from a charge transfer
(CT) transition between the 4′-aminopyrimidine as a donor
and the thiazolium ring as an acceptor.6,13

Additionally, we had reported CD spectroscopic detection of
ThDP-bound intermediates derived from a chromophoric
substrate, (E)-2-oxo-4-(pyridin-3-yl)-3-butenoic acid, on ben-
zaldehyde lyase at wavelengths much longer than expected on
the basis of the length of the conjugated system. In view of the
information that has been gathered at Rutgers, we were
intrigued by the report of Merski and Townsend25 of a vis
intermediate with a λmax of 430 nm on the first enzyme in
clavulanic acid biosynthesis. This was attributed to 2-
acryloylthiamin diphosphate, but that λmax could not be
achieved by any of the conjugated synthetic models created.25

Having available a battery of ThDP enzymes, we undertook a
study of four alternate 2-oxo acid substrates, acetyl pyruvate
(ACP), its methyl ester (MACP), fluoropyruvate, and (E)-4-(4-
chlorophenyl)-2-oxo-3-butenoic acid (CPB) (Figure 1). We did
this in a search for CT bands that could serve as reporters of
ThDP-bound covalent intermediates on enzymes, especially
signatures for such intermediates not previously characterized.
In addition to YPDC, we used the E1 components of the

Escherichia coli pyruvate (E1p) and 2-oxoglutarate (E1o)
dehydrogenase complexes, and benzaldehyde lyase (BAL), an
enzyme conducting a retro-benzoin condensation from (R)-
benzoin to two benzaldehyde molecules (Scheme S1 of the
Supporting Information). The four compounds listed were
used to elucidate the origin of the CD or photo diode array
bands observed at wavelengths longer than expected on the
basis of the length of the conjugated system. The compound
MACP could form only an LThDP-like predecarboxylation
complex, a model for the pre- and postdecarboxylation C2α-
tetrahedral intermediates produced by ACP. Upon decarbox-
ylation of fluoropyruvate to the enamine, subsequent fluoride

ion elimination is a source of 2-acetylThDP.26,27 Compounds
ACP, MACP, and fluoropyruvate create ThDP-bound inter-
mediates with very short conjugations in the C2 side chain,
assuring us that all observations above 320−330 nm reflect CT
transitions and/or bands, while CPB gives rise to both styryl-
type conjugation and CT transitions. The results provide new
spectroscopic signatures for ThDP intermediates, including the
very important 2-acetylThDP (in general 2-acylThDP), a likely
intermediate on the superfamily of 2-oxo acid dehydrogenase
multienzyme complexes (Scheme S2 of the Supporting
Information).

■ EXPERIMENTAL PROCEDURES

Materials. Methyl 4-hydroxy-2-oxopent-3-enoate (MACP)
and morpholinoethanesulfonic acid (MES) were purchased
from Sigma-Aldrich (St. Louis, MO). Hydrolysis of MACP to
ACP was achieved by following the procedure mentioned in the
Supporting Information. The potassium salt of (E)-4-(4-
chlorophenyl)-2-oxo-3-butenoic acid (CPB) was synthesized
as previously reported.21 ThDP was purchased from USB
(Cleveland, OH).

Circular Dichroism Experiments. All steady state CD
spectra were recorded on a Chirascan CD spectrometer from
Applied Photophysics (Leatherhead, U.K.) in 2.4 mL volume
with a 1 cm path length cell.

pH Titration of E477Q YPDC with Pyruvate Present.
E477Q (33.3 μM active centers) in a triple-pH buffer system
containing 50 mM acetic acid, 50 mM MES, 100 mM Tris, 0.5
mM ThDP, 5 mM MgCl2, and 10 mM pyruvate was titrated in
the pH range of 5.3−6.2 at 5 °C.

Titration of E477Q YPDC with ACP. E477Q YPDC (83.3
μM active centers) was titrated with ACP (0.05−10 mM) in 50
mM MES (pH 6.0) containing 0.5 mM ThDP and 2 mM
MgCl2 at 5 °C.

Titration of E477Q YPDC with MACP. E477Q YPDC
(33.3 μM active centers) was titrated with MACP (0.05−10
mM) in 50 mM MES (pH 6.0) containing 0.5 mM ThDP and
2 mM MgCl2 at 5 °C.

Titration of E1o with ACP. E1o (33.3 μM active centers)
was titrated with ACP (0.05−2 mM) in 20 mM KH2PO4 (pH
7.0) containing 0.2 mM ThDP and 2 mM MgCl2 at 5 °C.

Reaction of E1p and Its H407A and E571A Variants
with Fluoropyruvate. E1p (3.0 mg/mL, 30 μM active
centers) was reacted with 5 mM fluoropyruvate in 50 mM
KH2PO4 (pH 7.0) containing 0.2 mM ThDP and 1 mMMgCl2,
and the CD spectra were recorded after different periods of
incubation at 25 °C. Fluoropyruvate (15 mM) for the H407A
E1p variant (2.5 mg/mL, 25 μM active centers) and
fluoropyruvate (10 mM) for the E571A E1p variant (3.0 mg/
mL, 30 μM active centers) were used under conditions similar
to those used for wild-type E1p.

Titration of YPDC with CPB. YPDC (33.3 μM active
centers) was titrated with CPB (0.03−4 mM) in 50 mM MES
(pH 6.0) containing 0.5 mM ThDP and 2 mM MgCl2 at 5 °C.

Titration of BAL with CPB. BAL (25.5 μM active centers)
was titrated with CPB (0.08−10 mM) in 50 mM Tris (pH 8.0)
containing 0.2 mM ThDP and 1 mM MgCl2 at 30 °C. The Kd
value was calculated by fitting the data to a Hill function (eq 1).

= × +λ λ KCD CD [ligand] /( ) [ligand]n n nmax
d,app

H H H
(1)

where CDλ is the observed CD signal at a particular
wavelength, CDmax

λ is the maximal CD signal at saturation
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with ligand, [ligand] is the concentration of substrate, and nH is
the Hill coefficient.
Rapid-Scan Stopped-Flow Photodiode Array (PDA)

Experiments of BAL with CPB. These experiments were
conducted on an SX.18MV stopped-flow spectrophotometer
from Applied Photophysics. Experiments were performed by
mixing equal volumes of BAL (34.0 μM) and CPB (10 mM). A
slit width of 2 mm and a path length of 2 mm were used. Sigma
plot 10.0 was used to fit the data using a single-exponential
model as in eq 2

= +−A t A c( ) e k t
1

1 (2)

= − +− −A t A A c( ) e ek t k t
1 2

1 2 (3)

where k1 and k2 are the apparent rate constants and c is the
Amax

λ in the exponential rise to maximum or decay model.

■ RESULTS
Formation of the 1′,4′-Iminopyrimidinyl Tautomeric

Form of ThDP on YPDC. Previously, we had shown that
titrating the slow E477Q YPDC variant with increasing
concentrations of pyruvate forms LThDP, the predecarbox-
ylation intermediate, present in its 1′,4′-iminopyrimidylLThDP
form (positive CD band at ∼300 nm) and as a Michaelis
complex (negative band at 330 nm).28 Increasing the pH from
5.3 to 6.2 and recording the positive CD band at 305 nm
formed from pyruvate with E477Q YPDC (1′,4′-iminoLThDP)
resulted in an increase in amplitude (Figure S1 of the
Supporting Information), suggesting formation of the IP form
from the N1-protonated 4′-aminopyridinium (APH+), and
implying a pKa near 6.1 for the APH+ form.29

Circular Dichroism Band Formation with ACP and
MACP. In contrast to the result with pyruvate, CD titration of
E477Q YPDC with ACP did not provide evidence of formation
of either the IP form or the Michaelis complex; instead, it
revealed formation of a negative band at 400 nm that exhibited
saturation, a band that increased in amplitude after overnight
incubation at 4 °C, thus suggesting a slow reaction. The CD
spectrum of the protein after separation of the supernatant
confirmed that the species represented by the 400 nm CD band
is protein-bound. The negative CD band at 400 nm was
assigned to a CT transition based on the following. The 400
nm band could not correspond to the enamine because the
enamine derived from pyruvic acid has a λmax of 295 nm,15 and
even an additional double bond could not shift the λmax beyond
330 nm. The CT band (Figure 1A) is believed to correspond to
the predecarboxylation intermediate on ThDP with a Kd of 1.64

mM (Figure 2). A similar experiment conducted with E1o also
revealed the formation of a CD band at 408 nm, but in this case
with a positive phase (Figure S2 of the Supporting
Information). Next, a CD titration of E477Q YPDC was also
conducted at 5 °C with MACP, the methyl ester of
acetopyruvate, which after overnight incubation also formed a
negative CD band at 399 nm (Figure 2), at the same
wavelength as with ACP. The weak signal at 399 nm was
confirmed to be protein-bound, as it persisted in a spectrum
after the protein had been separated from supernatant and
redissolved in fresh buffer.
Formation of the intermediate appears to be very slow with

MACP (ester), while ACP undergoes slow turnover forming a
steady state level of intermediate saturating the available active
centers. These results suggest that the similar CD band
observed with both ACP and MACP (Figure 2a) pertains to
the same predecarboxylation intermediate because the ThDP−
MACP adduct could not be decarboxylated (Figure 1B).
Irrespective of whether the CD band with ACP pertains to the
pre- or postdecarboxylation C2α-tetrahedral intermediate
(these could be differentiated according to their C6′-H 1H
chemical shifts30), its wavelength excludes the enamine and
clearly demonstrates the possibility of forming ThDP
intermediates with λmax at 400 nm in the absence of significant
conjugation. This band likely corresponds to a CT transition in
origin.

Reaction of Fluoropyruvate with E1p Leads to the
Formation of a New CD Band Corresponding to 2-
AcetylThDP. It had been reported by Frey and co-workers that
fluoropyruvate is a convenient source of 2- acetylThDP on E1p
(Figure 1C). Following decarboxylation to the enamine,
fluoride ion elimination leads to the enol form of 2-
acetylThDP, which then tautomerizes to the keto form.26,27

CD spectra of E1p and some of its low-activity active center
variants revealed formation of a very broad new positive band
near 390−395 nm (Figure 3), which was assigned to the
enzyme-bound 2-acetylThDP. It has been amply demonstrated
in the literature that, in model reactions, this intermediate can
undergo rapid hydrolysis to acetate ion. Hence, its short
lifetime is not surprising, and in fact, the rate of decomposition
appears to be similar in E1p and in its slow H407A and E571A
variants (Figure S3 of the Supporting Information). This acetyl
group is the shortest side chain at the ThDP C2 position in our
list in Table 1, yet it still has a long λmax (390 nm) CT
transition. This is our closest model for the Merski−Townsend
observation attributed to 2-acryloylThDP. It is not unreason-
able that replacement of the methyl group with a vinyl group,

Figure 2. (a) Formation of a CD charge transfer band on YPDC at 5 °C: (1) E477Q YPDC enzyme, (2) E477Q with ACP, and (3) E477Q YPDC
with MACP. (b) Data from the experiment with E477Q YPDC and ACP were fit to a Hill function [eq 1 (see Experimental Procedures)].
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an extension of the π system by a CC double bond,
according to the Woodward−Fieser rules,31,32 would account
for the observed λmax of 430 nm (390 nm + 30 nm = 420 nm).
Formation of a Long Wavelength CT Band with a

Longer Conjugated Substrate, CPB. CPB was the first
conjugated 2-oxo acid giving evidence of a YPDC-bound
enamine intermediate (λmax at 440 nm)21 and is also a suicide
substrate with YPDC.33 Here we used CD to observe the
formation of the enamine on YPDC from CPB as a negative
band at 440 nm (Figure S4 of the Supporting Information).
Thus, both vis spectroscopy and CD suggest that the enamine
derived from ThDP-CPB on YPDC has a λmax of 440 nm, while
the CD experiment also confirms that the ThDP-bound
enamine is chiral, as expected. Unlike that with YPDC, reaction
of CPB with BAL at 30 °C formed a negative CT band at 488
nm and a positive one at 434 nm [Kd = 1.1 mM (Figure 4)].
These results are similar to those obtained by our groups with

(E)-2-oxo-4-(pyridin-3-yl)-3-butenoic acid. In that instance, the
band near 480 nm was assigned to the LThDP-type
predecarboxylation intermediate (Figure 1D).20 A stopped-
flow UV−vis photodiode array experiment was conducted by
mixing BAL (34 μM active centers) in one syringe with an
equal volume of 10 mM CPB placed in the second syringe at 30
°C. As with CD, time-dependent changes were observed at 480
and 430 nm (Figure 5). This provided the following rate
constants: k1 = 0.0098 ± 0.0007 s−1 (formation of the LThDP-
like intermediate), k2 = 0.0031 ± 0.0007 s−1 (formation of the
HEThDP-like intermediate from the enamine), and k1 = 0.0090
± 0.0002 s−1 (formation of the enamine) (Figure 5). The rates
indicate that conversion of the LThDP-like intermediate (488
nm) to the enamine (434 nm) is very fast compared to
depletion of the enamine to the HEThDP-like intermediate.
Both the CD and stopped-flow PDA analysis confirmed that
CPB on BAL forms a tetrahedral covalent adduct with ThDP,
leading to the appearance of a CT band. An X-ray structure of
(E)-2-oxo-4-(pyridin-3-yl)-3-butenoic acid cocrystallized with
benzoylformate decarboxylase revealed the stability of the
postdecarboxylation HEThDP-like intermediate [the C2
adduct of ThDP and (E)-3-(pyridin-3-yl)acrylaldehyde], also
confirming fast decarboxylation.20 Quantitative analysis of the
kinetic data in Figure 5 is made difficult because the LThDP-
and HEThDP-like C2α-tetrahedral intermediates derived from
(E)-2-oxo-4-(pyridin-3-yl)-3-butenoic acid have very similar
λmax values (477 and 473 nm in vis photodiode array spectra,
respectively).20

■ DISCUSSION

In this study, CD spectroscopy was used to identify the CT
signal corresponding to intermediates derived from substrates
covalently bound to ThDP on four different enzymes. A
summary of the steady state formation of ThDP-related
intermediates reflected by formation of CT bands is given in
Table 1 and Figure 1.
It was shown that the predecarboxylation intermediate upon

addition of pyruvate to E477Q YPDC is preferentially in its IP
tautomeric form and the pKa for the APH+ form is 6.1, very
near the pH of optimal activity of 6.2.34 This finding provides
the eighth example of the suggestion that at the optimal pH for
activity, all ionization states and tautomeric forms of ThDP
(APH+, IP, and AP) may be needed in the mechanism,29

ensuring that all are available for catalysis.
With the examples revealed here, we have now identified CD

spectroscopic signatures for nearly all covalent and noncovalent

Figure 3. Circular dichroism spectra of E1p in the presence of 5 mM
fluoropyruvate. The inset shows the time dependence of the CD band
at 392 nm.

Table 1. CT Bands Related to ThDP Observed by CD
Spectroscopy in This Study

enzyme substrate
CT band (nm)

(phase) assignments

E477Q
YPDC

ACP 400 (−) predecarboxylation

E1o ACP 408 (+) predecarboxylation
E477Q
YPDC

MACP 399 (−) predecarboxylation

E1p fluoropyruvate 390 (+) 2-acetyllThDP
BAL CPB 488 (−), 434 (+) predecarboxylation and

enamine

Figure 4. (a) Formation of the CT band by CD titration of BAL with CPB at 30 °C. (b) Data were fit to a Hill function [eq 1 (see Experimental
Procedures)].
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ThDP-related intermediates in Scheme 1 and Figure 1. The
substrates selected for this study helped us to assign signatures
to intermediates at wavelengths longer than 380 nm, well
beyond the spectrum of the protein. For instance, ACP and its
methyl ester MACP with E477Q formed a similar negative CD
band near ∼400 nm. Because MACP could not undergo
decarboxylation, the signal must correspond to a predecarbox-
ylation intermediate. The λmax of ∼400 nm could not
correspond to a conjugated π system (only adding an acetyl
group to pyruvate), strongly implying some other system, such
as a CT interaction. Similarly, the very broad CD band at 390
nm formed from fluoropyruvate with E1p corresponds to 2-
acetylThDP, a signature never before observed by CD
spectroscopy, which also likely represents a CT transition.
With this result, the Merski−Townsend observation25 of an
intermediate with a λmax near 430 nm on the first enzyme in
clavulanate biosynthesis can be assigned with confidence to 2-
acryloylThDP and attributed to a CT transition originating
from an interaction of the positively charged thiazolium ring
with the π bond of the ThDP C2 substituent. From the limited
number of examples available to us, we could speculate that the
Woodward−Fieser rules also apply to the shift in the λmax of the
CT bands. For example, addition of the styryl substituent of
CPB to the MACP in the conjugated system (or indeed to the
acetyl in 2-acetylThDP) leads to a shift from 390 to 400 to 488
nm.
Attribution of some of the CD bands to charge transfer

transitions is also supported by nonenzymatic models using
UV−vis spectroscopy. The negative CD band at 320 nm that
we attribute to the AP form was assigned to a CT interaction of
the 4′-aminopyrimidine ring as an electron donor with the
thiazolium ring as an acceptor. This was accomplished by
surveying many E1p variants, which indicated that there is no
need for an aromatic side chain in the vicinity of ThDP for us
to observe the AP form, in contrast to what had been previously
believed. For reasons only theory can address, the CD signals
for the CT bands are very much stronger on the enzymes than
in models. In a paper by Nemeria et al.,13 we searched for CT
bands generated by addition of a thiazolium salt to 4-
aminopyrimidine. We could indeed observe such an absorbance
with a λmax of 340 nm, but 200 mM thiazolium triflate and at
least 30 mM 4-aminopyrimidine were required to produce as
much as 30 mA. On ThDP enzymes, we could conduct entire
pH titrations of the AP form by CD at an enzyme
concentration of 30 μM. This model experiment does provide
support for assigning the CD band for the AP form to a CT
transition. We have also observed that the CD bands we

attribute to CT transitions tend to be much broader than those
originating from extended conjugation.
In conclusion, there are now characterized CT bands for

both pre- and postdecarboxylation C2α-tetrahedral ThDP-
bound intermediates, which can also be differentiated using the
NMR method invented by Tittmann and Hübner.30 The
remaining ThDP-related species needing spectral signatures are
the C2-carbanion/ylide/carbene and the APH+ form. The
presence of the APH+ form was established by solid state NMR
on three ThDP enzymes.35 Recently, Tittmann’s group
reported X-ray evidence suggestive of the existence of the
carbene on pyruvate oxidase.36 With our CD assignments in
hand, stopped-flow CD can now be exploited to provide rate
constants for individual steps on the reaction pathways. This
has been demonstrated recently on three ThDP-dependent
enzymes, E1p,37 glyoxylate carboligase,38 and 1-deoxy-D-
xylulose-5-phosphate synthase.39 It is also worth emphasizing
that with the ready availability of high-sensitivity steady state
and stopped-flow CD instrumentation, the methods here used
could indeed be applied to other enzymes, as such signatures
for intermediates are so much more readily quantified by CD
than by UV−vis spectroscopy.
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dichlorophenolindophenol; MES, 2-(N-morpholino)-
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