
Diabetes has become one of the most challenging 
health problems worldwide. Prolonged exposure to chronic 
hyperglycemia in diabetes can lead to various short- and 
long-term complications. Approximately 463 million adults 
globally live with diabetes, and by 2045, this will rise to 
700 million International Diabetes Federation. With the 
increase in the incidence of diabetes, its complications 
have also increased accordingly, impairing quality of life 
and causing socioeconomic burdens. Poor glycemic control 
and long disease duration are significant risk factors of the 
microvascular and macrovascular complications that cause 
most of the morbidity and mortality associated with diabetes. 
Diabetic retinopathy (DR) is the most common microvascular 
complication of diabetes, and is the leading cause of blind-
ness and visual impairment affecting one-third of people with 
diabetes worldwide [1]. DR leads to vision loss through two 
main mechanisms: leakage of fluid in the macula and growth 
of new blood vessels and mechanical damage to the retina. 
Persistent hyperglycemia disrupts the microvasculature and 
neuronal functioning in the retina leading to vision loss. DR 

is a common complication in both types of diabetes, and the 
symptoms include blurred vision, floaters, difficulty seeing 
colors, and even total loss of vision. The early stages of DR 
(non-proliferative DR, NPDR) are characterized by the pres-
ence of microaneurysms, dot and blot hemorrhages, cotton 
wool spots, and venous abnormalities, depriving blood supply 
to areas of the retina. In the advanced stage of DR known 
as proliferative DR (PDR), neovascularization is seen that 
is fragile and leaky causing further damage to the retina. 
The prevalence of PDR is 50% in type 1 and 15% in type 2 
diabetics with 25 years of disease [2]. According to the World 
Health Organization (WHO), almost 32 million Indians have 
DR, and this number is estimated to increase to almost 80 
million by 2030 [3], the highest number in any country.

Multiple factors are likely to be involved in the onset 
and progression of DR. Age, duration of diabetes, lower body 
mass index, higher fasting plasma glucose, and higher HbA1c 
levels have been identified as the risk factors most strongly 
associated with the development of DR [4-7]. Studies have 
reported ethnic differences in the prevalence and severity 
of DR even after controlling for systemic risk factors. A 
cross-sectional study conducted in the United Kingdom 
(UK) showed that DR was much more prevalent in people 
of Afro-Caribbean descent and South Asians compared to 
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Purpose: Diabetic retinopathy (DR) is the most common complication of diabetes involving microvasculature and 
neuronal alterations in the retina. Previously, we reported that vitamin B12 deficiency could be an independent risk factor 
for DR in humans. However, the effect of vitamin B12 supplementation in experimental DR is unknown. Thus, in this 
study, we investigated the impact of dietary supplementation of vitamin B12 on retinal changes in diabetic rats.
Methods: Diabetes was induced in 2-month-old Sprague-Dawley rats and maintained for 4 months. One group of diabetic 
rats were fed normal levels of vitamin B12, and one group double the quantity of vitamin B12 (50 µg/kg diet). Vitamin 
B12 and homocysteine levels in the plasma were analyzed with radioimmunoassay (RIA) and high-performance liquid 
chromatography (HPLC), respectively. At the end of 4 months of experimentation, the eyeballs were collected. Retinal 
changes were analyzed with hematoxylin and eosin (H&E) staining, immunoblotting, and immunofluorescence methods.
Results: Dietary supplementation of vitamin B12 had no effect on food intake, bodyweight, fasting blood glucose, and 
plasma homocysteine levels in the diabetic rats. However, vitamin B12 supplementation prevented loss of rhodopsin, and 
overexpression of VEGF, and completely prevented overexpression of HIF1α, GFAP, and endoplasmic reticulum (ER) 
stress markers (GRP78, ATF6α, XBP1, CHOP, and caspase 12) in the diabetic rat retina. Further, vitamin B12 ameliorated 
apoptosis in the retina as shown with terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) and 
prevented retinal thinning.
Conclusions: Vitamin B12 supplementation of diabetic rats appeared to be beneficial by circumventing retinal hypoxia, 
VEGF overexpression, and ER stress-mediated cell death in the retina. The present study adds another potential thera-
peutic strategy of vitamin B12 in diabetes.
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Caucasians, and they were at higher risk for sight-threatening 
complications [8]. Studies suggested that patients with 
diabetes are at higher risk for deficiency of micronutrients 
[9-12]. Recently, we reported a high prevalence of multiple 
subclinical micronutrient deficiencies, dietary inadequacies 
(along with hyperhomocysteinemia) in apparently healthy 
adults (30–70 years old), particularly B vitamins, including 
vitamin B12 [13-15]. However, to date, only a few studies 

have evaluated the possible role of nutritional factors in the 
development of DR [11,12]. Most importantly, our previous 
studies suggested that vitamin B12 deficiency could be an 
independent risk factor for DR [11].

Vitamin B12 or cobalamin is a water-soluble vitamin that 
plays a fundamental role in DNA synthesis, optimal hemo-
poiesis, and neuronal and vascular functions. Several studies 

Figure 1. Animal general and biochemical characteristics. A: Bodyweight. B: Food intake. C: Fasting blood glucose levels. D: Plasma vitamin 
B12. E: Plasma homocysteine levels in rats (n = 8). Data are mean ± standard error of the mean (SEM). C, control; D, diabetes, D+B12, 
diabetic rats treated with vitamin B12. *Significant difference from the control group; #significant difference from the diabetes group (p<0.05).
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[11,16-19] have shown vitamin B12 deficiency in diabetes. 
A meta-analysis showed that treatment with vitamin B12 
improved nerve conduction velocity in patients with diabetic 
peripheral neuropathy [20]. Mizukami et al. reported that 
vitamin B12 supplementation improved nerve conduction 
velocity in diabetic rats by preventing impaired neural 
signaling of protein kinase C and oxidative stress-induced 
damage [21]. Another study concluded that exogenous vitamin 
B12 delayed the onset of diabetic peripheral neuropathy via 
upregulation of sciatic nerve IGF-1 gene expression [22]. 
Rathod et al. proved that fortification of foods with vitamin 
B12 helps improve brain development [23]. However, the 
effect of vitamin B12 supplementation in experimental DR 
is unknown. Therefore, in the present study, we investigated 
whether vitamin B12 supplementation could influence DR in 
diabetic rats.

METHODS

Animal experiments: Two-month-old male Sprague-Dawley 
rats with an average bodyweight of 200 g were obtained from 
the National Center for Laboratory Animal Sciences (Hyder-
abad, India). All animals were fed with the AIN-93 rodent 
diet obtained from Research Diets Inc. (New Brunswick, 
NJ). The rats were housed in individual cages with tempera-
ture (22±2.0 °C), humidity (55±5.0%), and light (12-h:12-h 
light-dark) controlled conditions. Diabetes was induced in 
rats with a single intraperitoneal injection of streptozotocin 
(STZ; 38 mg/kg) in citrate buffer (pH 4.5), whereas the 
control group of rats received vehicle alone (n = 8). The STZ-
induced diabetic rat is the most widely used animal model to 
study DR [24]. Rats with fasting blood glucose ≥150 mg/dl 
were included in the study. Half of the animals (n = 8) were 
fed a vitamin B12-supplemented diet, and the remaining half 
(n = 8) were fed a normal diet similar to that of the control 
group of rats. The vitamin B12 -supplemented diet consists 
of 50 µg/kg diet, double the vitamin B12 content compared 

Figure 2. Retinal morphology and thickness. A: Representative images of hematoxylin and eosin (H&E) staining on the rat retinal sections 
after the 4-month experimental period. Magnification = 400X. Scale bar = 50 µm. B: Graphical representation of the retinal thickness of 
the rat (n = 4). Data are mean ± standard error of the mean (SEM). C, control; D, diabetes; D+B12, diabetic rats treated with vitamin B12. 
*Significant difference from the control group; #significant difference from the diabetes group (p<0.05).
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to that of the normal diet (25 µg/kg diet). All rats had ad 
libitum access to water and food. Bodyweight and fasting 
blood glucose levels were measured weekly until the end of 
the 4-month experimentation period. Animal care protocols 
were in accordance with and approved by the Institutional 
Animal Ethics Committee (IAEC). The study adhered to the 

ARVO Statement for the Use of Animals in Ophthalmic and 
Vision Research. At the end of the experimentation period, 
overnight fasted rats were euthanized by CO2 inhalation to 
collect the eyeballs. Four eyeballs per group, each from a 
different animal, were fixed in 4% paraformaldehyde for 
immunohistochemical analysis, and the remaining were 

Figure 3. Immunofluorescence staining for rhodopsin in the rat retina. A: Representative images of immunofluorescence staining for 
rhodopsin (red), counterstained with 4′, 6-diamidino-2-phenylin-dole (DAPI; blue) for cellular nuclei. Magnification = 400X. Scale bar = 
50 µm. B: Quantification of rhodopsin staining. Data are mean ± standard error of the mean (SEM, n=3). C, control; D, diabetes; D+B12, 
diabetic rats treated with vitamin B12. **Significant difference from the control group (p<0.01).
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dissected to collect the retinas, snap-frozen in liquid nitrogen, 
and stored at −80 °C for protein analysis.

Plasma analysis for vitamin B12 and homocysteine: Plasma 
total vitamin B12 levels were analyzed using a commercially 
available solid-phase radioimmunoassay kit (MP Biomedi-
cals, Diagnostic Division, New York, NY) according to the 

manufacturer’s instructions. A gamma counter equipped 
with dual channels for determining the radioactivity of 57Co 
simultaneously was used (Perkin Elmer, Waltham, MA; 3 
wizard 1480). Plasma total homocysteine was determined 
by engaging a unique reversed phase column for separating 
the analytes, supplied in the commercially available reverse 
phase high-performance liquid chromatography (HPLC) kit 

Figure 4. Immunofluorescence staining for GFAP in the rat retina. A: Representative images of immunofluorescence staining for GFAP 
(red), counterstained with 4′, 6-diamidino-2-phenylin-dole (DAPI; blue) for cellular nuclei. Magnification = 400X. Scale bar = 50 µm. B: 
Quantification of GFAP staining. Data are mean ± standard error of the mean (SEM, n=3). C, control; D, diabetes; D+B12, diabetic rats 
treated with vitamin B12. **Significant difference from the control group; #significant difference from the diabetes group (p<0.05).
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with fluorescence detection (Recipe Chemicals and Instru-
ments. GmbH, Germany) [11].

Immunoblotting: Retinal cellular protein was extracted in 
Tris-lysis buffer (pH 7.5) with protease inhibitors (Sigma, 
St. Louis, MO), and the protein concentration was measured 
with the Lowry method. Equal amounts of protein from each 
group were separated with sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS–PAGE) and transferred to 
nitrocellulose membrane. The primary antibodies for HIF1α 
(ab187524, Abcam antibodies, Cambridge, UK), GRP78/
Bip (PA5–19503, ThermoScientific, Waltham, MA), ATF6 α 
(MA5–16172, ThermoScientific), XBP1 (ab37152, Abcam), 
CHOP (2895s, Cell Signaling Technologies, Danvers, MA), 
caspase 12 (ab62484, Abcam), BAX (2772s, CST), VEGF 
(MA1–16629, tubulin (ThermoScientific), and the respec-
tive secondary antibodies were added sequentially, and the 
protein was detected with an enhanced chemiluminescence 
reagent (Bio-Rad Laboratories, Inc., Berkeley, CA). Tubulin 
served as a loading control. Band intensity was measured 
with ImageJ software (National Institutes of Health [NIH], 
Bethesda, MD).

Immunohistochemistry: Eyeballs fixed in paraformaldehyde 
were oriented and embedded in paraffin. The eyeballs were 
sectioned sagitally, and sections passing through the optic 
nerve and center of the cornea (4 µm thickness) were stained 
with either hematoxylin and eosin (H&E) or immunofluores-
cence for Rho, GFAP, XBP1, and CHOP as reported previ-
ously [25]. Briefly, the ocular sections were dewaxed and 
rehydrated for heat-induced antigen retrieval and incubated 
overnight with primary antibodies for rhodopsin, GFAP, 
XBP1, and CHOP. The secondary antibody incubation 
with Alexa Fluor (488 and 568) was at room temperature 

for 2 h. 4′, 6-Diamidino-2-phenylin-dole (DAPI) staining 
was performed to label the cell nuclei. Labeled sections 
were visualized in a Leica fluorescence microscope (Leica 
Microsystems, Germany) at 400X. Images were analyzed 
and measured using ImageJ software (NIH). The extent of 
fluorescence intensity was measured as the mean gray value 
for rhodopsin and GFAP (as the fluorescence is prominent 
across the section area), and as the number of positive cells 
per sectional area for XBP1 and terminal deoxynucleotidyl 
transferase dUTP nick-end labeling (TUNEL) assay.

Retinal thickness: H&E-stained ocular sections were used 
to measure retinal thickness. LAS v4.8 software (Leica 
Microsystems, Wetzlar, Germany) was employed to measure 
retinal thickness on 400X magnified images, at either side of 
the optic nerve (three on each side), approximately at equal 
distance from the optic nerve, and the mean was calculated. 
Similarly, four different animals per group were measured, 
and the means of all groups were subjected to statistical 
analysis.

TUNEL labeling: TUNEL assay was performed on the ocular 
sections to investigate apoptosis in the retina. The In Situ Cell 
Death Detection Kit (Roche Diagnostics; Basel, Switzerland) 
was employed following the manufacturer’s protocol [25]. 
After the antigens were retrieved, the sections were incubated 
with the TUNEL reaction mixture for 1 h at 37 °C. The cell 
nuclei were labeled with DAPI staining. The labeled sections 
were visualized in a Leica fluorescence microscope at 400X. 
TUNEL positive cells were analyzed and quantitated using 
ImageJ software (NIH).

Statistical analysis: Values are represented as the mean 
± standard error of mean (SEM). Statistical analysis was 
performed using one-way analysis of variance (ANOVA) 

Figure 5. Immunoblotting for HIF1α and VEGF in the rat retina. A: Representative immunoblots for HIF1α and VEGF. B: Quantification 
of the corresponding densitometry data. The protein expression was normalized to the tubulin and was represented as %control. Data are 
mean ± standard error of the mean (SEM, n=3). C, control; D, diabetes; D+B12, diabetic rats treated with vitamin B12. *Significant difference 
from the control group; #significant difference from the diabetes group (p<0.05).
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with a post hoc Tukey test. A p value of less than 0.05 was 
considered statistically significant.

RESULTS

Animal bodyweight, food intake, and blood glucose levels: 
In line with previous studies [26], the food intake and fasting 
blood glucose levels of the diabetes group were higher, and the 
bodyweights were lower, than those of the normal control rats 
(Figure 1). Further, vitamin B12 supplementation of diabetic 
rats showed no influence on any of the three parameters.

Plasma vitamin B12 and homocysteine levels: Although there 
was no statistically significant change in the plasma vitamin 
B12 levels, the plasma homocysteine levels were found to be 
lower in the STZ-induced diabetic rats (Figure 1). However, 

vitamin B12 supplementation of diabetic rats for 4 months led 
to increased plasma vitamin B12 levels over and above those 
of the control rats. Although the homocysteine levels were 
slightly higher in the vitamin B12 -supplemented diabetic rats 
than in the diabetic control rats, the level was not statistically 
significant.

Retinal thickness: Systematic morphological examination 
of the H&E-stained ocular sections as shown in Figure 2 
revealed differences in retinal thickness among the groups. 
Although the inner plexiform layer was affected predomi-
nantly, the remaining layers, including the outer nuclear 
layer, were also affected significantly in the diabetic rats. 
The overall thickness of the retina in the diabetic rats was 
decreased significantly when compared with that of the 

Figure 6. Immunoblotting for ER stress and apoptotic markers in the rat retina. A: Representative immunoblots for endoplasmic reticulum 
(ER) stress markers and apoptotic markers. B: Quantification of the corresponding densitometry data. The protein expression was normalized 
to the tubulin and was represented as %control. Data are mean ± standard error of the mean (SEM, n=3). C, control; D, diabetes; D+B12, 
diabetic rats treated with vitamin B12. *Significant difference from the control group; #significant difference from the diabetes group (p<0.05). 
** and ## indicate respective statistical significance at p<0.01.
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control rats. Vitamin B12 supplementation in the diabetic rats 
partially prevented retinal thinning.

Rhodopsin and GFAP: The rod cell visual photoreceptor 
rhodopsin (Rho) mediates the transformation of light into 
vision. We analyzed Rho levels in diabetic rats with and 

without vitamin B12 supplementation after 4 months and in 
age-matched non-diabetic control rats with immunofluores-
cence staining. Figure 3 shows reduced Rho staining (red) 
in the retinas of the diabetic rats, but vitamin B12 treatment 
considerably prevented loss of Rho in the diabetic rats. GFAP 

Figure 7. Immunofluorescence staining for XBP1 in the rat retina. A: Representative images of immunofluorescence staining for XBP1 
(green, indicated by white arrows), counterstained with 4′, 6-diamidino-2-phenylin-dole (DAPI; blue) for cellular nuclei. Magnification 
= 400X. Scale bar = 50 µm. B: Quantification of XBP1 staining. Data are mean ± standard error of the mean (SEM, n=3). C, control; D, 
diabetes; D+B12, diabetic rats treated with vitamin B12. *Significant difference from the control group; #significant difference from the 
diabetes group (p<0.05).
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is an intermediate filament protein present in retinal glial 
cells. Retinal glial cells respond to retinal injury and have 
been shown to be activated in diabetes. Immunofluores-
cence staining for GFAP on the rat retinal sections showed 
minimal staining (red) in the control rats, especially in the 

ganglionic cell layer and the nerve fiber layer (Figure 4). In 
the diabetic rats, the GFAP staining spanned all the retinal 
layers indicating activation of Müller cells or gliosis. Never-
theless, vitamin B12 treatment in the diabetic rats for 4 months 
completely prevented diabetic gliosis.

Figure 8. Immunofluorescence staining for CHOP in the rat retina. A: Representative images of immunofluorescence staining for CHOP (red, 
indicated by white arrows), counterstained with 4′, 6-diamidino-2-phenylin-dole (DAPI; blue) for cellular nuclei. Magnification = 400X. Scale 
bar = 50 µm. B: Quantification of CHOP staining. Data are mean ± standard error of the mean (SEM, n=3). C, control; D, diabetes; D+B12, 
diabetic rats treated with vitamin B12. *Significant difference from the control group; #significant difference from the diabetes group (p<0.05).
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HIF1α and VEGF: HIF1α is a sub-unit of HIF1, a master 
regulator of the cellular response to hypoxia. VEGF is a 
prominent angiogenic factor that induces vascular perme-
ability. Immunoblotting for HIF1α and VEGF displayed 
higher protein levels in diabetic rats indicative of hypoxia 
and elevated vascular permeability in the diabetic rat retina 
(Figure 5). Vitamin B12 intervention in the diabetic rats 
prevented overexpression of HIF1α and VEGF.

ER stress markers: As endoplasmic reticulum (ER) stress 
has been shown to cause DR pathology [26], we examined 
ER stress markers such as GRP78, ATF6, XBP1, CHOP, and 
caspase 12 with immunoblotting (Figure 6), and XBP1 and 
CHOP with immunofluorescence (Figure 7 and Figure 8). 
The diabetic rats showed higher levels of GRP78, ATF6, and 
XBP1 proteins indicative of ER stress. Immunofluorescence 
for XBP1 and CHOP showed more staining (green and red, 
respectively) in the outer nuclear and inner nuclear layers of 

Figure 9. TUNEL labeling of rat retinal sections. A: Representative fluorescence microscopic images of terminal deoxynucleotidyl trans-
ferase dUTP nick-end labeling (TUNEL; green), counterstained with 4′, 6-diamidino-2-phenylin-dole (DAPI; blue) for cellular nuclei. White 
arrows indicate TUNEL positive cells. Magnification = 400X. Scale bar = 50 µm. B: Quantification of TUNEL positive cells. Data are mean 
± standard error of the mean (SEM, n=3). C, control; D, diabetes; D+B12, diabetic rats treated with vitamin B12. *Significant difference from 
the control group (p<0.05).
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the retina in the diabetic rats. Further, CHOP and caspase 12 
overexpression is indicative of maladaptive ER stress, as they 
trigger apoptosis. Interestingly, vitamin B12 supplementation 
of the diabetic rats prevented overexpression of ER stress 
markers in the retina (Figure 6, Figure 7, and Figure 8).

Apoptosis: After observing maladaptive ER stress, we next 
examined the retinas for apoptosis. Immunoblotting for 
BAX protein showed higher levels in diabetic rats (Figure 
6). Further, TUNEL assay was performed to confirm apop-
tosis, and the results showed increased TUNEL positive cells 
(green) as shown in Figure 9. Vitamin B12 supplementation of 
diabetic rats considerably prevented apoptosis in the retina.

DISCUSSION

Diabetic retinopathy is the most common microvascular 
complication of diabetes, and long-term complications of 
diabetes, including DR, represent the main cause of morbidity 
and mortality in diabetic patients. Nearly all individuals with 
type 1 diabetes and more than 60% of people with type 2 
diabetes show some degree of DR after 20 years of disease. 
In particular, India has a high rate of diabetes and thus, DR. 
Established risk factors for DR include glycemic control, 
duration of diabetes, hypertension, and dyslipidemia [1,27]. 
Although strict glycemic control is expected to prevent DR, 
perfect glycemic control is not always possible. Multiple 
factors are likely to be involved in predisposing patients with 
diabetes to complications, as evidenced by the fact that many 
but not all diabetic patients develop one or more microvas-
cular complications. In addition to genetic factors, nutritional 
factors (in particular, micronutrients) could play a role in the 
development of DR. Previously, we reported that vitamin B12 
deficiency could be an independent risk factor for DR [11]. 
Therefore, we investigated the effect of vitamin B12 supple-
mentation on DR using the STZ-induced diabetic rat model.

In line with previous reports, the plasma vitamin B12 
levels in the diabetic rats showed a decreased trend with 
no statistical significance when compared with those of the 
control rats [28,29]. The diabetic rats consumed double the 
amount of food, and thus, double the vitamin B12 intake, 
when compared to the control rats. However, vitamin B12 
supplementation of the diabetic rats was reflected in higher 
plasma levels compared to those in the control rats. In agree-
ment with previous studies in humans and rodents, there 
was a decrease in the circulating homocysteine levels in the 
diabetic rats [21,27,30-35]. This is due to deficit levels of 
insulin that plays a key role in homocysteine metabolism. 
A diabetic state, characterized by reduced insulin levels, 
hyperglycemia, and elevated circulating counter-regulatory 
hormones, has been shown to be a condition that results in the 

perturbation of homocysteine and methyl group metabolism. 
For type 1 and type 2 diabetes without renal complications, 
hypohomocysteinemia has been found in humans and rats. 
This altered methyl metabolism drastically affects various 
cellular processes, including DNA methylation, an epigenetic 
mechanism to control gene expression that has been impli-
cated in many pathologies. Further, previous reports showed 
that there exists no correlation between plasma homocysteine 
and retinopathy [27].

Four months of diabetes resulted in drastic retinal thin-
ning. Interestingly, vitamin B12 supplementation prevented 
retinal thinning. Rhodopsin was decreased in the diabetic 
rats demonstrating disturbed retinoid metabolism and photo-
receptor death. This may cause visual function defects, such 
as delayed dark adaptation in early DR. Chronic deficiency 
in visual pigment formation may contribute to photoreceptor 
degeneration and irreversible retinal pathologies in advanced 
DR. The present study results suggested that restoration of 
the normal retinoid level with vitamin B12 supplementation 
may represent a potential therapeutic strategy for early DR.

Retinal Müller cells are principal macroglial cells that 
spread a considerable width of the retina and play a crucial 
role in supporting the neurons and their functions. Activation 
of these cells, as revealed by increased GFAP expression, is 
an indication of human early DR pathology. In normal condi-
tions, GFAP expression is observed only in astrocytes of the 
ganglion cell layer and the nerve fiber layer of the retina. 
GFAP levels are regulated by hormones such as insulin and 
glucocorticoids, cytokines, and growth factors which are 
greatly altered in diabetes. However, in DR due to cellular 
stress and injury, Müller cells start expressing GFAP, which 
is considered as a marker for reactive gliosis [36,37]. Glial 
activation may disturb the metabolism and functioning of 
neurons causing neurodegeneration [38]. In the present study, 
we observed that vitamin B12 supplementation in the diabetic 
rats prevented overexpression of GFAP in the retina. Vitamin 
B12 is also a good scavenger of reactive oxygen species, can 
pass through the blood–brain barrier, and is suggested to be 
a good neuroprotectant [39,40]. Previous studies showed anti-
oxidant, anti-inflammatory, antiapoptotic, and antinecrotic 
effects of vitamin B12 on neurons [41,42]. Further, studies 
suggested that vitamin B12 treatment had a preventive effect 
on peripheral nerve lesions in experimental diabetic neurop-
athy [43] and a beneficiary effect in repairing the damaged 
nerves of rats [44].

The increased expression of HIF1α in the retina of 
diabetic rats is indicative of retinal hypoxia, which is another 
contributory element in DR. As the retina is a metabolically 
active tissue, it is sensitive to hypoxic conditions. HIF1α 
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further promotes transcription of its target gene VEGF (Gene 
ID: 83785; OMIM 192240), leading to neovascularization 
and vascular hyperpermeability in the retina [45-48]. Müller 
cells are the primary source of retinal VEGF, in healthy as 
well as DR conditions [49,50]. Müller cell-derived VEGF 
protein overexpression plays a central role in DR pathology 
by causing blood–retina barrier breakdown, vascular leakage, 
acellular capillaries, retinal neovascularization and vaso-
obliteration, and reduction of preretinal neovascular endo-
thelial cells. Thus, VEGF inhibitors are the most successful 
therapeutic strategies at present. Although we did not show 
the effects of VEGF in the present study rat model, we 
observed higher VEGF protein expression in diabetes that 
is partially ameliorated by vitamin B12 supplementation. The 
status of DR in the present rat model could be in between 
severe non-proliferative retinopathy and early proliferative 
retinopathy.

We and others reported ER stress-mediated cell death 
in diabetic rat retinas and implicated it as one of the major 
proteostasis factors for DR [26,51]. Studies have shown 
involvement of ER stress in neuronal and vascular abnor-
malities, such as pericyte loss and neovascularization [52,53]. 
ATF4 that is upregulated during ER stress increases VEGF 
expression in the retina. ER stress also increases inflam-
mation in the retina [51,54]. As shown in the present study, 
persistent ER stress induces apoptosis mediated by CHOP 
and caspase 12. CHOP is a key mediator of ER stress-induced 
cell death, and previous studies showed silencing of CHOP 
expression prevents ER stress-mediated cell death [55]. 
Caspase 12 is an ER resident caspase, activated explicitly 
by ER stress to facilitate apoptosis. Interestingly, vitamin 
B12 supplementation in the present study abolished adaptive 
(GRP78, ATF6, and XBP1) and maladaptive (CHOP and 
caspase 12) ER stress responses in the diabetic rat retina.

Supplementation with some antioxidants and micronutri-
ents has shown encouraging results in experimental models of 
DR and human studies [56,57]. Interestingly, a study showed 
that age-related eye disease study (AREDS)-based micro-
nutrients proven to be beneficial in ameliorating the lesions 
associated with DR in experimental rats [58]. Low levels of 
vitamin B12 have been recognized in Indians for a long time, 
and recent studies confirmed vitamin B12 deficiency and its 
implications in diabetes and cardiovascular diseases in India 
[13,15,59]. In conclusion, vitamin B12 supplementation of 
diabetic rats was shown to be beneficial by preventing retinal 
hypoxia, VEGF overexpression, and ER stress-mediated cell 
death in the retina. The present study adds another facet of 
vitamin B12 in diabetes. Considering the general prevalence 
of micronutrient deficiency, and its contribution to many 

metabolic and age-related disorders (such as diabetes) and 
cardiovascular diseases in India [59,60], the ameliorative 
effects of vitamin B12 on DR merit attention.
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