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Explainable machine learning 
can outperform Cox regression 
predictions and provide insights 
in breast cancer survival
Arturo Moncada‑Torres1*, Marissa C. van Maaren1,2, Mathijs P. Hendriks1,3, 
Sabine Siesling1,2 & Gijs Geleijnse1 

Cox Proportional Hazards (CPH) analysis is the standard for survival analysis in oncology. Recently, 
several machine learning (ML) techniques have been adapted for this task. Although they have shown 
to yield results at least as good as classical methods, they are often disregarded because of their lack 
of transparency and little to no explainability, which are key for their adoption in clinical settings. 
In this paper, we used data from the Netherlands Cancer Registry of 36,658 non‑metastatic breast 
cancer patients to compare the performance of CPH with ML techniques (Random Survival Forests, 
Survival Support Vector Machines, and Extreme Gradient Boosting [XGB]) in predicting survival using 
the c‑index. We demonstrated that in our dataset, ML‑based models can perform at least as good 
as the classical CPH regression ( c‑index ∼ 0.63 ), and in the case of XGB even better ( c‑index ∼ 0.73 ). 
Furthermore, we used Shapley Additive Explanation (SHAP) values to explain the models’ predictions. 
We concluded that the difference in performance can be attributed to XGB’s ability to model 
nonlinearities and complex interactions. We also investigated the impact of specific features on the 
models’ predictions as well as their corresponding insights. Lastly, we showed that explainable ML can 
generate explicit knowledge of how models make their predictions, which is crucial in increasing the 
trust and adoption of innovative ML techniques in oncology and healthcare overall.

The Cox Proportional Hazards (CPH)  model1 is the most frequently used approach for survival analysis in a 
wide variety of  fields2. In oncology, it is mainly used to identify the prognostic factors that have an impact on 
patients’ recurrence or  survival3,4.

Although the CPH model has been widely adopted by the scientific  community2,4 due to its ease of use, 
fast computation, and—most importantly—meaningful output, it inherently presents a few shortcomings. For 
instance, it is an inadequate model for high dimensional settings (i.e., when the number of features exceeds the 
number of data instances). Moreover, CPH regression relies on a few other restrictive assumptions, such as pro-
portionality of the hazard functions for any two patients (i.e., their ratio is constant over time) and uncorrelated 
features. Last but foremost, it is unable to properly model nonlinearities and interaction effects (which are often 
present in data) out-of-the-box.

In the last years, machine learning (ML) has proven to be a great complement to traditional statistical meth-
ods for improving cancer diagnosis, detection, prediction, and  prognosis5–10. To alleviate the aforementioned 
problems of CPH-based modelling, several ML techniques capable of accounting for interaction effects and 
nonlinearities have been successfully adapted to handle censored data, spreading its use for survival analysis of a 
wide variety of  tumors2. Actually, several studies have consistently found that ML-based approaches are capable 
of performing at least as good as conventional CPH analysis in predicting patient  survival11–17. Unfortunately, 
these studies often treat ML models as black-boxes. This is undesirable, since it makes it difficult to understand 
how a model obtained its predictions. More importantly, this limits the trust that patients and clinicians have 
on the models’  predictions18.

ML explainability techniques aim to provide an explanation of how a ML model reached its output in under-
standable  terms19. Moreover, they can help verify certain traits that are important to a (ML) model, such as 
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robustness, fairness, and agreement with human (clinical)  intuition20. ML explainability is especially important 
in healthcare: if decisions need to be made that are (at least partially) based on predictions made by ML algo-
rithms, users need to be able to understand how the algorithm came up with that decision to trust and, more 
importantly, adopt the model.

In this paper, we compared the performance of the classical CPH model with several ML techniques in pre-
dicting breast cancer survival. We evaluated the models’ performance using Harrell’s concordance index. More 
importantly, we used Shapley Additive exPlanation (SHAP) values to shine some light on the performance of the 
classical CPH regression and of the best-performing ML technique, facilitating their interpretation.

Methods
Data. Data were obtained following the standard data usage request process from the Netherlands Cancer 
Registry (NCR). The NCR is a nationwide population-based registry including all newly diagnosed malignan-
cies from 1989 on. Patient-, tumor-, and treatment-related characteristics are directly registered from patient 
files by trained data managers. Since this study had a national, non-interventional retrospective design and all 
data were analyzed anonymously, individual informed consent was waived by the NCR Supervisory Committee. 
After ethical approval of the proposed methods also by the NCR Supervisory Committee, the data were granted 
under request K18.999. All methods in this study were carried out in accordance with relevant guidelines and 
regulations.

We selected all female patients in the Netherlands diagnosed between 2005 and 2008 with primary invasive 
non-metastatic breast cancer who underwent curative surgery (breast-conserving surgery or mastectomy). Fea-
tures included age, tumor characteristics, (hormonal) receptor statuses, clinical and pathological TNM-staging 
(as defined by the 6th edition of the Union for International Cancer Control TNM Classification), and number 
of removed and positive lymph nodes.

Pre‑processing. We used the same steps of pre-processing and cleaning the data used in our previous 
 work21. First, we performed imputation of the input features using a multivariate single approach, since it proved 
to be a sound method with a good performance and acceptable computational time (the latter which is especially 
important when dealing with a large number of patient records, as in the dataset at hand). We used the Python 
package DataWig (v. 0.10)22 to train a neural network to predict the missing values of each feature using informa-
tion from other features that were at least correlated moderately (i.e., absolute correlation value ≥ 0.5)23. These 
networks were parameterized with a number of nodes of 100, batch size of 16, epoch number of 100, patience of 5,  
and use relu as an activation function. In the case of continuous variables, they had one hidden layer and used a 
squared loss function. In the categorical case, they had as many hidden layers as labels of the imputed variable 
and used a cross-entropy loss function. All networks used Adam as an optimizer with a η of 0.004, β1 of 0.9, 
β2 of 0.999, and ǫ of 1× 10−8 . In the instances where this approach failed (e.g., if there were not enough cor-
related features to train the neural network), we used k-Nearest Neighbor. In the case of continuous/categorical 
variables, we used an euclidean/jaccard distance metric and looked at the k = 10 nearest neighbors of a data 
point. If at least three of them were not missing values, we performed the imputation using their mean/mode24,25. 
Otherwise, the overall mean/mode was used. In all cases, the imputation was performed using exclusively the 
original data available. In other words, we did not use imputed data to impute other features. The output vari-
ables (i.e., censorship status and time to event) were complete and required no imputation whatsoever.

Next, we engineered three new features that make sense for clinical practice and thus we thought would 
be relevant for the task at hand: the ratio between positive and removed lymph nodes (continuous, with a 
range between 0 and 1), a summary of ER, PR, and HER2 statuses (i.e., triple positive [ER+, PR+, HER2+], 
hormone-receptor positive [ER+ and/or PR+], hormone-receptor negative [ER−, PR−, HER2+], triple-negative 
[ER−, PR−, HER2−]; categorical), and an indicator of whether all receptor statuses were negative or not (i.e., triple 
negative; categorical dichotomous). Since these features were engineered from the complete data, they presented 
no missing values.

Lastly, we performed feature selection by combining the results of two different approaches: one based on 
algorithms and one based on clinical expertise. On the one hand, for the algorithm-based approach, we used a 
combination of 21 feature selection methods. Each of them yielded a ranking of feature predictiveness. Then, we 
calculated the median and chose the six best ranked features, since in our previous  work21 we found that for this 
particular dataset, going above that number did not improve the model’s accuracy. On the other hand, we defined 
an additional set of six features (in no particular order) that were deemed to be the most predictive according to 
clinical experts. The union of both sets resulted on the final dataset, consisting of 9 features of 36,658 patients.

Table 1 shows a summary of the data. For continuous variables, we report their mean and standard devia-
tion; for categorical variables, we report their absolute and relative numbers (as a percentage). Moreover, we 
also show the completeness of the original features (i.e., before imputation). Lastly, we also show which features 
were obtained from the algorithm-based approach (including their ranking) and which were included by sug-
gestion of clinical experts. These data are not publicly available due to privacy restrictions, but are available on 
reasonable request.

Models. Cox proportional hazards. We performed a conventional multiple CPH regression. The CPH mod-
el is a semiparametric approach that computes the impact of a set of given covariates (i.e., features) on the hazard 
(i.e., risk) of an event occurring (in our case, death)26. In this case, the hazard of a patient is a linear function of a 
population baseline hazard (that changes over time) and of his/her static predictor covariates (multiplied by their 
corresponding coefficients). It makes no assumptions of the underlying hazard function.

We also used the CPH model to predict patient ranking using risk scores.
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Machine learning models. There is a growing number of ML models for survival  analysis2,27. Similarly to the 
CPH case, we predicted patient survival ranking using three of them: Random Survival Forests (due to their 
frequent use in literature relevant to this  study11,13–15), Survival Support Vector Machines (given that their use of 
kernels to map survival in high-dimensional spaces makes them an attractive  option16,28), and Extreme Gradient 
Boosting (since in addition to its execution speed and  performance29, its use for survival analysis remains largely 
unexplored). These are described as follows.

Random survival forests.  Random survival forests (RSFs) are based on the original random forest  method30. 
Actually, their implementation follows the same principles. The base trees are grown (usually quite deeply) using 
bootstrapped data. The tree nodes are split using random feature selection. Lastly, the random forest output is 
calculated as the average of the individual tree predictors.

RSFs extend this concept by incorporating censoring information into the splitting rules when growing the 
trees. In other words, RSFs aim to split the tree nodes into branches with dissimilar  survival17,31. Several splitting 
criterion have been proposed (e.g., conservation-of-events, log-rank score, log-rank approximation)32. However, 
the most widespread used rule (and therefore the one we chose) is the log-rank splitting rule. In this case, the rule 
splits the node by maximizing the log-rank test statistic. The larger the value, the greater the different between 
the two groups (i.e., branches) and the better the split is.

Table 1.  General overview of the data used for this study. Features marked with an asterisk were engineered 
(see text for more details). The number in parenthesis in the Algorithm column corresponds to the feature’s 
ranking given by the feature selection. SD standard deviation, HR + hormone receptor positive, HR - hormone 
receptor negative.

Feature Mean (SD) N (%)

Completeness Feature selection

[%] Algorithm Clinical

age

Age at diagnosis (years) 60.25 (13.96) 100 ✓(1) ✓

ratly*

Ratio between positive and removed lymph nodes 0.11 (0.22) 100 ✓(2)

rly

No. of removed lymph nodes 8.13 (7.84) 98.7 ✓(3)

ptmm

Tumor size [mm] 20.32 (13.79) 87.1 ✓(4) ✓

pts

Pathological tumor stage 100 ✓(5)

 I 15,412 (42.04)

 IIA 10,848 (29.59)

 IIB 4766 (13.00)

 IIIA 3145 (8.57)

 IIIB 782 (2.13)

 IIIC 1705 (4.65)

grd

Tumor grade 89.8 ✓(6) ✓

 1 (well differentiated) 7563 (20.63)

 2 (moderately differentiated) 17,926 (48.89)

 3 (poorly differentiated) 11,169 (30.46)

mor

Tumor morphology 100 ✓

 Ductal 29,473 (80.39)

 Lobular 4109 (11.20)

 Mixed 1464 (3.99)

 Other 1612 (4.40)

ply

No. of positive lymph nodes 1.53 (3.53) 97.6 ✓

rec*

Receptor status 100 ✓

 Triple+ 1983 (5.40)

 HR+ 28,170 (76.84)

 HR− 2048 (5.58)

 Triple− 4457 (12.16)
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Survival support vector machines.  The aim of the original support vector machines (SVMs) is to find the 
hyperplane in the feature space that maximizes the margin between classes (i.e., maximum-margin hyperplane). 
They do so by mapping and transforming the instance space. The data instances that are closest to this hyper-
plane (i.e., the ones with the minimum distance to it) are the so-called support  vectors33.

SVMs have been extended into RankSVMs, which are able to handle right-censored survival data. They cast 
survival analysis as a classification problem with an ordinal target variable. Instead of estimating survival times, 
they aim to predict risk ranks between  patients34–36. Unfortunately, the objective function of ranking-based 
techniques depends quadratically on the number of instances, making them unfeasible for larger datasets. Sur-
vival SVMs (SSVMs) improve on them by efficiently modeling through the use of kernel  functions16,28, allowing 
analyzing datasets of much larger size.

Extreme gradient boosting.  Gradient boosting machines (GBMs) are frameworks where the learning task is 
posed as a numerical optimization problem. Their objective is to minimize a loss function by adding weak learn-
ers (i.e., a learner whose performance is at least slightly better than random chance). The type of loss function 
depends on the problem. However, it must be differentiable, since it is optimized using a gradient-descent-like 
approach.

Extreme Gradient Boosting (XGBoost or XGB for short) is an optimized implementation of a  GBM37. It uses 
decision (regression) trees as weak learners. In order to perform the gradient descent procedure, it calculates 
the loss and adds a tree to the model (always one at a time) that reduces it (i.e., follows the gradient). This is 
done by parameterizing the tree and modifying these parameters to move in the right direction by reducing the 
loss. The existing trees in the model are not changed. Trees are added until a fixed number is reached, until the 
loss reaches an acceptable level, or until no more improvement is achieved. XGB’s final output is given by the 
(weighted) sum of all the predictions made by all the individual trees.

In order to control over-fitting, XGB uses different regularization methods that penalize different parts of the 
algorithm, such as constraining the trees (e.g., number of trees, tree depth), weighting the updates (i.e., apply-
ing a learning rate), and using subsets of the data for generating each  tree29. XGB is extremely popular in the 
ML community due to its high computational efficiency and great performance.

In all cases, the models’ parameters were optimized using randomized search of 25 different parameter set-
tings. These were tested using a 10-fold cross validation targeted to maximize the c-index. Table 2 shows the 
parameter space explored for each model, aw well as the final parameter combination for each of them used 
for the rest of the analyses. For the CPH, RSFs, and SSVMs algorithms, we used the Python implementation 
available in scikit-survival (v. 0.12)38, while for XGB we used the Python implementation provided by Chen and 
Guestrin (v. 1.0.2)37.

Evaluation. These survival models output risk scores: a higher risk score means that there is a higher chance 
of the event of interest occurring early (in this case, death). These scores encompass the models’ target variable 
(time since diagnosis) together with its corresponding censorship indicator. However, they are given in an arbi-
trary scale. This means that the models are able to predict the sequence of events (i.e., which patients are more 
likely to pass away). Therefore, we evaluated the models using a metric suitable for such predicted risk scores 
while at the same time having a simple yet clinically meaningful interpretation: Harrell’s concordance index  
( c-index or c for short).

Concordance index ( c-index). The c-index is a measure of rank correlation between the models’ predicted risk 
scores and the observed time points (in the test data)39–41. It can be thought as a generalization of Kendall’s corre-
lation τ tailored specifically for right-censored survival  data42,43. In other words, the c-index quantifies how well a 

Table 2.  Models’ parameters. Each model was parametrized using a randomized search of 25 different 
parameter settings with a 10-fold cross validation to maximize the c-index.* γ is only relevant for the rbf 
kernel. It was ignored for the rest.

Model Parameter Parameter space Chosen value

RSFs

No. trees {25, 50, 75, 100, 250, 500, 750, 1000, 1500} 500

Max. depth {1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 250, 500} 250

Min. samples split {5, 10, 15, 20, 25, 50} 15

Min. samples leaf {1, 2, 3, 4, 5, 10, 25} 1

SSVMs

Kernel linear, rbf, sigmoid rbf

α Logarithmic space ranging from 0.00001 to 10 0.113

γ ∗ Logarithmic space ranging from 0.001 to 1 0.717

Booster gbtree gbtree

XGB

No. trees {25, 50, 75, 100, 250, 500, 750, 1000, 1500} 50

Max. depth {1, 2, 3, 4, 5, 10, 15, 25, 50, 100, 250, 500} 5

Learning rate Logarithmic space ranging from 0.01 to 1 0.05

Subsamples {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} 0.6
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model predicts the ordering of patients’ death times. Furthermore, it is easy to interpret: the c-index estimates the 
probability that for a random pair of patients, the one having the lower risk score is the one who survives longer. 
A value of c = 0.5 corresponds to the average performance of a random model (i.e., no predictive discrimina-
tion), while c = 1 corresponds to a model capable of perfectly separating patients with different  outcomes39,40.

Using 10-fold cross validation, we calculated the mean c-index (and corresponding 95% confidence intervals) 
of each model. Lastly, we compared the obtained c-index values using a paired Student t-test44 with Bonferroni 
correction for multiple comparisons.

Explainability. Finally, we were interested in understanding how the models yielded their predictions. 
From the wide variety of explainability techniques  available45, we decided to use SHapley Additive exPlanations 
(SHAP) values as proposed by Lundberg and  Lee46, since they present several characteristics advantageous to our 
study. First and most importantly, SHAP values are model-agnostic. This means that they are not bound to any 
particular type of model (such as tree-based feature  importance47), which was crucial to our analysis. Moreover, 
SHAP values present properties of local accuracy, missingness, and consistency, which are not found simultane-
ously in other  methods46,48. Lastly, their implementation is easy to use, properly documented, and actively sup-
ported by an open-source community.

In order to understand how SHAP values work, we first need to explain the concept of Shapley value. Origi-
nally, Shapley proposed a game theory method for assigning fair payouts to players depending on their contribu-
tion to the total  gain49. In a model prediction task, this translates to assigning a (quantitative) importance value 
to features depending on their contribution to a prediction. Thus, in our context, a Shapley value is defined as 
the average marginal contribution of a feature value across all possible feature coalitions. Under this definition, 
a Shapley value for a given feature value can be interpreted as the difference between the actual prediction and 
the average prediction for the whole dataset. It is worth noting that a Shapley value is not the difference of the 
predicted valued after removing its corresponding  feature19.

The SHAP method computes the Shapley values and represents them as a linear model of feature  coalitions46,50. 
Moreover, SHAP values make use of game theory’s Shapley interaction index, which allows to allocate payouts 
(i.e., importance) not just to individual players (i.e., features), but also among all pairs of them. This way, SHAP 
values are able to explain the modelling of local interaction effects, which could go unnoticed otherwise. This 
property is particularly important, since it allows the possibility of providing new insights into the model’s vari-
ables and the relations between  them51.

Given the low variability of the evaluation metrics when using different folds of the data, we chose a random 
test data partition to compute the SHAP values of the CPH (as a reference) and of the best performing ML-based 
model using the Python implementation provided by Lundberg and Lee (v. 0.35)46. We used the SHAP values to 
obtain a visualization of the overall feature importance for the models. Then, we generated SHAP dependence 
plots for each model and compared how the features contributed to the corresponding models’ output. Lastly, 
we analyzed the most important interaction effects across features and their corresponding insights.

Results
Table 3 shows the results of the traditional CPH analysis. On the one hand, according to this model and based 
on the z and p values of each feature, age, pts, and ptmm, were the three most important covariates. On the other 
hand, based on the obtained p-values, the features rly and mor had no significant impact on overall survival.

Figure 1 depicts the bar plot of the quantitative evaluation of the models’ ranked survival predictions using 
the c-index. It shows its mean and 95% confidence intervals deviation obtained using 10-fold cross-validation 
for the different models. We can see that CPH, RSFs, and SSVMs yielded comparable values of ∼ 0.63 to 0.64. 
However, XGB outperformed these methods with a c value of 0.73. This was confirmed by the paired Student 
t-test44 (with Bonferroni correction), which showed that the c value of XGB was significantly higher than the 
rest of the methods. All the comparisons between the other models were not significant.

We computed the SHAP values of the CPH model (as a reference) and of XGB (the best performing ML-based 
model) for a given random partition of the data. Figure 2 shows their corresponding summary plots. Each point 
corresponds to an instance of the dataset (i.e., a single patient). Their position along the x axis (i.e., the actual 
SHAP value) represents the impact that feature had on the model’s output for that specific patient. Mathemati-
cally, for the task at hand (survival ranked predictions), this corresponds to the (logarithm of the) mortality risk 
relative across patients. In other words, a patient with a higher SHAP value has a higher mortality risk relative to 
a patient with a lower SHAP value. Moreover, features are arranged along the y axis based on their importance, 
which is given by the mean of their absolute Shapley values (higher position means higher importance). The 
color represents the features’ value.

Figure 3 compares the dependence plots of both models for all 9 features. These plots show the effect that a 
single feature has on the models predictions. Similarly to the previous plots, each point corresponds to an indi-
vidual patient. In this case, a point’s position in the x axis corresponds to the value of the feature at hand. It is 
worth mentioning that in the case of categorical variables, artificial jitter was added along the x axis to each pos-
sible value to better show the density of the data points. A point’s position in the y axis corresponds to the SHAP 
value for that feature (i.e., how much does a value affect the model output for the prediction of that instance). 
In this case, the scale of all plots is the same to give a proper feeling of SHAP values magnitudes of each feature. 
On one hand, the data points in light color correspond to the CPH case. Notice how this approach is only able 
to model a linear effect between the features and their corresponding SHAP values. On the other hand, the dark 
color corresponds to the XGB model. In this case, we can see nonlinear behaviours, as well as the presence of 
interaction effects, which are represented by the vertical dispersion of SHAP values for a single feature value.
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Table 3.  Results of the CPH model. HR hazard ration, CI confidence interval, HR + hormone receptor 
positive, HR - hormone receptor negative.

Feature HR 95% CI z p

age 1.055 1.054 1.057 80.191 0.000

ratly 1.604 1.434 1.794 8.269 0.000

rly 0.999 0.996 1.002 -0.672 0.501

ptmm 1.008 1.007 1.010 13.604 0.000

ply 1.021 1.012 1.031 4.456 0.000

pts

I 1.000 – – – –

IIA 1.096 1.045 1.149 3.801 0.000

IIB 1.352 1.265 1.446 8.804 0.000

IIIA 1.579 1.448 1.722 10.344 0.000

IIIB 2.250 2.034 2.490 15.707 0.000

IIIC 1.862 1.614 2.148 8.526 0.000

grd

1 1.000 – – – –

2 1.132 1.081 1.187 5.213 0.000

3 1.368 1.296 1.443 11.472 0.000

mor

Ductal 1.000 – – – –

Lobular 0.956 0.908 1.007 1.680 0.093

Mixed 1.043 0.961 1.133 1.843 0.313

Other 0.927 0.854 1.006 -0.655 0.071

rec

Triple+ 1.000 – – – –

HR+ 1.006 0.930 1.089 0.150 0.881

HR– 1.168 1.055 1.292 3.005 0.003

Triple– 1.473 1.348 1.609 8.577 0.000

****

****
****

Figure 1.  Average c-index of the different models using 10-fold cross-validation. Error bars represent 95% 
confidence intervals across folds. ∗ ∗ ∗ ∗ p < 0.0001 . All other comparisons were non-significant ( p > 0.05 ) and 
are not shown for the sake of clarity.



7

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6968  | https://doi.org/10.1038/s41598-021-86327-7

www.nature.com/scientificreports/

Speaking of interaction effects, we looked at them more in detail as modelled by the XGB approach and 
represented by the SHAP interaction values. Figure 4 shows the pairwise SHAP interaction values across all 
features. Here, the features’ main effects are seen in the main diagonal, while the interaction effects with other 
features are shown off-diagonal. It is worth mentioning that said effects are actually captured by the tails of the 
distributions (since at the center they have a SHAP value of zero). Notice that the overall model’s output is given 
by the sum of the whole interaction matrix. Therefore, the actual interaction effects (i.e., off-diagonal values) are 
divided in half (since there are two of each).

For each feature, we selected the case where the interaction effect with another one was the largest and plotted 
it as a SHAP dependence plot in Fig. 5. Here, the color represents the value of the interacting feature. We can 
see that age has the largest interaction effects in four cases (pts, grd, ratly, and mor), reaffirming the importance 
of its contribution to the model. It is followed by ply in three others cases (ptmm, rec, and rly). However, please 
note that in this figure, the scale of the y axis is not the same for all plots. This was set to better appreciate the 
interaction effects of all features, even of those that are relatively unimportant to the global model (such as those 
between mor and age).

Discussion
In this study, we used a conventional multiple CPH regression and three different ML-based methods (RSFs, 
SSVMs, and XGB) to predict ranked survival in a relatively large population of 36,658 non-metastatic breast can-
cer patients. We compared the models’ performance using the c-index. We also computed SHAP values to explain 
the predictions of the reference model (CPH) and of the best performing ML model (XGB with a c-index∼ 0.73).

Figure 2.  Summary plots for SHAP values. For each feature, one point corresponds to a single patient. A point’s 
position along the x axis (i.e., the actual SHAP value) represents the impact that feature had on the model’s 
output for that specific patient. Mathematically, this corresponds to the (logarithm of the) mortality risk relative 
across patients (i.e., a patient with a higher SHAP value has a higher mortality risk relative to a patient with 
a lower SHAP value). Features are arranged along the y axis based on their importance, which is given by the 
mean of their absolute Shapley values. The higher the feature is positioned in the plot, the more important it is 
for the model.
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The first objective of this study was to compare the performance of the conventional CPH with that of differ-
ent ML-based methods. The c-index of the CPH, RSFs, and SSVMs models yielded a value of ∼ 0.63 . The XGB 
model had a significantly higher performance with a c-index of 0.73 (Fig. 1).

These results show that in our case, ML-based models can perform at least as good (and in the case of XGB, 
even better) as the classical CPH approach on survival prediction tasks. They support similar findings from other 
oncological studies in literature. For example, Kim et al.11 compared the performance of CPH against RSFs and 
deep learning-based survival model in a set of 255 oral cancer patients, yielding c-index values of 0.69, 0.76, 
and 0.78, respectively. Datema et al.14 compared the performance of a CPH regression against RSFs using four 
different split criterion in a set of 1371 patients diagnosed with head and neck cancer between 1981 and 1998. 

Figure 3.  SHAP feature dependence plots. In the case of categorical variables, artificial jitter was added along 
the x axis to better show the density of the points. The scale of the y axis is the same for all plots in order to give 
a proper feeling of the magnitudes of the SHAP values for each feature (and therefore of their impact on the 
models’ output). In the case of the XGB model, the dispersion for each possible feature value along the y axis is 
due to interaction effects (which the CPH model is unable to capture).
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They obtained a c-index value of 0.71 for the CPH regression and between 0.69 and 0.71 for the different RSF 
approaches. In the more specific case of breast cancer, Nicolo et al.15 tried to predict metastatic relapse after surgi-
cal intervention in 642 patients with early stage breast cancer. Their CPH and RSFs models yielded c-index values 
of 0.62–0.67 and 0.66–0.69, respectively. Moreover, they proposed a mechanistic model based on processes of 
metastatic progression, which yielded c-index values of 0.60–0.71. Omurlu et al.13 compared the performance 
of CPH against different variations of RSFs in a set of 279 breast cancer patients. Although they found that the 
approximate log-rank-based RSF approach yielded slightly higher c-index values (of 0.71), they concluded that 
the performance of all methods was very similar. Nevertheless, the performance of these novel ML-based meth-
ods (such as XGB) can (and should) be further confirmed with more studies that use large number of records, 
that are focused on different patient subpopulations and/or different types of cancer.

It could be alleged that the performance of the CPH regression model could be improved by extending  it52–54. 
For example, nonlinear effects could be distinguished using ad hoc approaches (e.g., stepwise regression) and 
modelled using covariate transformations or specialized functions. Interactions between the model’s variables 
could be identified in an exhaustive manner (e.g., by examining all two-/three-way interactions) or based on 
subjective expertise to narrow the  search11,17. Unfortunately, these alternatives have drawbacks of their own. 
Firstly, they are very resource-consuming tasks. More importantly, they are very likely to be overfitted to the 
task at hand, reducing the model’s generalizability and making it harder to compare against other previously 
published models.

The second objective was to provide better insights into why the models performed the way they did. Figure 2 
shows the differences between the conventional CPH (which can be seen as a reference) and the best performing 
ML model (i.e., XGB) using SHAP values. The first thing to note is that the feature importance of both models 
is very similar. On the one hand, features age, pts, and ptmm were the most important for the models in general. 
On the other hand, features mor and rly were ranked at the bottom (although in a different order). The rest of 
the features were somewhere in between. Interestingly, this SHAP-value-based feature importance is consistent 
with the (implicit) feature importance given by the p-values of the traditional CPH analysis (Table 3).

SHAP values represent (the logarithm of) the relative risk of mortality: the higher the SHAP value, the more 
it contributes to predicted patient mortality. Figure 2 shows that in both CPH and XGB models, features tend to 
have long right tails. This suggests that there are more possible feature values that contribute to large risk scores 
(and therefore, higher chances of death), which intuitively makes sense.

SHAP feature dependence plots (Fig. 3) provide insights into global patterns of the model, as well as into 
single-patient variability. These plots reveal a few interesting observations worth discussing. In the first place, 
we can see why features age, pts, and ptmm were the most important ones: they yielded SHAP values with a large 
range, which dominated the models’ behavior. Secondly, we can also see why features mor and rly were the least 
important for the model: changes on their values had very little impact on their corresponding SHAP values, 
which were actually very close to zero.

Figure 4.  SHAP interaction values. The main effect of each feature is shown in the diagonal, while interaction 
effects are shown off-diagonal.
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Interestingly, SHAP feature dependence plots can also help us identify important turning points for the differ-
ent features. For example, Fig. 3a shows that the CPH model considers ∼ 58 years old as the turning point when 
age pushes its predictions from favoring a low to a high chance of mortality. In the case of the XGB model, this 
turning point is found at ∼ 65 . For ptmm (Fig. 3c), the CPH model considers that the mortality risk increases 
indefinitely as a function of the tumor size. However, for the XGB model this increase is relevant until ∼ 45mm . 
After that, it reaches a  plateau55–57. This demonstrates the model’s capability of capturing nonlinearities present 
in the data. In the case of ply (Fig. 3e), the CPH model also assumes that the number of positive lymph nodes 
contribute proportionally to a higher mortality risk (including the case when the number of positive lymph nodes 
is zero). The XGB model shows something different. When there are no positive lymph nodes, ply contributes 
to a lower risk score, which aligns with clinical intuition and staging. It is only when the number of positive 
lymph nodes is ≥ 1 that ply starts contributing to a higher risk score. The fact that SHAP values also allow us to 
investigate the impact of specific features on the model predictions is be very valuable, since it has been shown 
that this can be a complicated task even for experts due to high feature  heterogeneity58.

Going more into the details of each approach, on the one hand Fig. 3 clearly shows the assumptions that the 
CPH model makes: it presumes that the features are completely independent and models their contributions 
linearly. This is reflected on the CPH model’s straight lines, where each feature value yields a single SHAP value. 

Figure 5.  SHAP feature dependence plots of the XGB model showing the largest interaction effect for each 
feature. In the case of categorical variables, artificial jitter was added along the x axis to better show the density 
of the points. In this case, the scale of the y axis is not the same for all plots in order to better appreciate the 
interaction effects.
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On the other hand, the XGB model is capable of capturing interaction effects between the features, which are 
shown as vertical dispersion for each feature value.

The (pairwise) interaction effects captured by the XGB model are shown exhaustively in Fig. 4. There are a few 
interesting instances worth discussing. The clearest (and largest) interaction effect occurs between the variables 
age and pts. Figure 5a,b show that patients that are between 20 and ∼ 60 years old with low pts (I and IIA) have a 
lower mortality risk than patients of the same age range with higher pts (IIB, IIIA, IIIB, and IIIC), which clinically 
makes sense. However, this difference is reduced considerably when patients are older than 60 years old. In the 
case of grd, Fig. 5d shows that for patients with grd 1, younger patients have lower mortality risk. This effect is lost 
in patients with grd 2 and 3. Figure 5e shows that when the number of ply is low (0 or 1), having a large number 
of rly ( ≥ 5 ) slightly increases the patient’s mortality risk. Lastly, in the case of mor, Fig. 5i shows that for ductal 
cancer, younger patients have a higher mortality risk. The effect of age on lobular and mixed tumors is unclear, 
but for all other morphologies, younger patients have a lower mortality risk. However, it should be noted that the 
effect of mor overall is quite small (actually, its importance was ranked the lowest). It is worth emphasizing that 
SHAP values allow elucidating the interaction effects modelled by the XGB model in a simple and straightforward 
manner, without needing to select arbitrary thresholds or any a priori knowledge of the  data51. Considering the 
increasing complexity and volume of oncological data, it is crucial to have predictive models capable of capturing 
and providing an intuitive interpretation of interaction effects out-of-the-box with little effort of the researcher. 
This could be very valuable for clinical practice, since these models could, for example, provide crucial insights 
for identifying risk factors in patients or for evaluating new treatments.

As mentioned earlier, SHAP values present several advantages. First of all, they are model-agnostic, which 
means that they are not attached to any specific model and thus make a clear distinction between a model’s pre-
dictions and the explanations they  provide59. This allows them to be used in combination with any ML approach 
(which was indispensable for our intent of comparing different models of a different type). Additionally, keep-
ing the model separate can provide different degrees of interpretability and completeness for each (type of) 
explanation. Moreover, if a model needs to be updated or changed in a ML pipeline (which is not uncommon), 
it requires very little to no effort to adapt the explainability component, since the way in which the explanations 
are presented is kept the  same60. SHAP values also present three key desirable properties not found simultane-
ously in other  methods46,48: (1) local accuracy (correctly capturing the difference between the expected model 
output and the output of a given instance), (2) missingness (a missing feature receives an attribution value of 
zero), and (3) consistency (if changing a model increases the contribution of a feature value, its corresponding 
SHAP value should not decrease).

These advantages made SHAP an ideal choice for the purpose of this study. However, SHAP values should not 
be treated as a silver bullet. Although their implementation has been optimized for a few model  architectures50,61,62 
(which was beneficial for the XGB model), computing SHAP values for “generic” models can still be a very slow 
process (as was the case for the CPH model). This is especially important when the number of patients is very 
large and can limit their use in real-life use cases. Lastly, there are other emerging explainability techniques that 
could potentially be a more suitable choice depending on the application at  hand45,63–65.

Outlook and conclusion
In this study, we compared the performance of a conventional multiple CPH regression against three differ-
ent ML methods (RSFs, SSVMs, and XGB) in a ranked survival prediction task using a dataset consisting of 
36,658 Dutch non-metastatic breast cancer patients. Furthermore, we used SHAP values to open the models’ 
black-box and explain the difference in performance between a reference model (CPH) and the best performing 
ML model (XGB).

Our results showed that in the data at hand, ML-based approaches are capable of performing as good as a 
conventional CPH model or, in the case of the XGB model, even better. However, this comes at the cost of an 
increase in complexity/opacity. ML explainability techniques have arised as a solution for this issue. They can 
help us generate an explicit knowledge representation of how the model makes its predictions. In our case, SHAP 
values showed that the key difference between CPH’s and XGB’s performance can be attributed, at least partially, 
to the latter’s ability to capture data nonlinearities and interactions between features, which can have important 
contributions to the outputs. Moreover, it does so automatically and without any additional effort required by 
the researcher. Furthermore, SHAP values also allowed us to investigate the impact of specific features on the 
model predictions, which can be a complex task even for experts. This type of modelling frameworks could 
speed up the process of generating and testing new hypothesis on new (NCR) data, which could contribute to 
a rapid learning health system.

There is a growing body of literature that shows how cancer patients, clinicians, epidemiologists, and research-
ers in general can benefit from ML techniques. However, in order to bring these solutions closer to the clinic, 
users need to be able to trust these novel approaches. We believe that ML explainability techniques, especially 
those with a solid theoretical background behind them (like SHAP values), are key to bridging the gap between 
everyday clinical practice and ML-based algorithms.
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