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Abstract. It has been reported that paclitaxel activates cell 
cycle arrest and increases caspase protein expression to 
induce apoptosis in head and neck squamous cell carcinoma 
(HNSCC) cell lines. However, the potential signaling pathway 
regulating this apoptotic phenomenon remains unclear. The 
present study used OEC‑M1 cells to investigate the under‑
lying molecular mechanism of paclitaxel‑induced apoptosis. 
Following treatment with paclitaxel, cell viability was assessed 
via the MTT assay. Necrosis, apoptosis, cell cycle and mito‑
chondrial membrane potential (∆Ψm) were analyzed via flow 
cytometric analyses, respectively. Western blot analysis was 
performed to detect the expression levels of proteins associ‑
ated with the MAPK and caspase signaling pathways. The 

results demonstrated that low‑dose paclitaxel (50 nM) induced 
apoptosis but not necrosis in HNSCC cells. In addition, pacli‑
taxel activated the c‑Jun N‑terminal kinase (JNK), but not 
extracellular signal‑regulated kinase or p38 mitogen‑activated 
protein kinase. The paclitaxel‑activated JNK contributed 
to paclitaxel‑induced apoptosis, activation of caspase‑3, ‑6, 
‑7, ‑8 and ‑9, and reduction of ∆Ψm. In addition, caspase‑8 
and ‑9 inhibitors, respectively, significantly decreased pacli‑
taxel‑induced apoptosis. Notably, Bid was truncated following 
treatment with paclitaxel. Taken together, the results of the 
present study suggest that paclitaxel‑activated JNK is required 
for caspase activation and loss of ∆Ψm, which results in apop‑
tosis of HNSCC cells. These results may provide mechanistic 
basis for designing more effective paclitaxel‑combining regi‑
mens to treat HNSCC.

Introduction

The main treatment of early stage head and neck squamous 
cell carcinoma (HNSCC) is surgery and/or radiotherapy (1). 
Chemotherapy is often used in various combinations with 
surgery and radiotherapy for patients in late stage HNSCC to 
improve poor survival rate or increase organ preservation (1‑4). 
Increasing evidence suggest that cisplatin/5‑f luoro‑
uracil (PF)‑based regimens are useful in improving the clinical 
outcomes of patients in late stage HNSCC; however, they are 
far from satisfactory (5‑8). For example, the 5‑year survival 
rate for patients with oral cancer remains at ~60% over the last 
few decades (9).

Paclitaxel (also known as taxol), a natural product 
extracted from the bark of Pacific yew Taxus brevifolia, can 
promote tubulin polymerization and inhibit microtubules 
disassembly, causing cell death by disrupting the microtu‑
bule dynamics required for cell division and vital interphase 
process (10). Paclitaxel and docetaxel are the prototypes of 
microtubule‑targeting taxane drugs, and are currently used 
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as active chemotherapeutic agents against different types 
of human cancer, including HNSCC  (3,5,11,12). Recent 
studies have demonstrated that taxane‑containing triplets 
(taxane/cisplatin/5 fluorouracil) are superior as an induction 
regimen compared with the standard cisplatin/5 fluorouracil 
regimen for locally advanced HNSCC, and may be superior as 
an induction regimen followed by chemo‑radiation compared 
with chemo‑radiation alone (13,14).

Although previous studies have investigated the molecular 
mechanism of taxanes (15‑18), only a few have focused on 
paclitaxel‑induced cell death in HNSCC (19‑21). Given that 
taxane‑induced cell death signaling pathways may be depen‑
dent on the genotype of cancer cells and may be cell‑type 
specific (22,23), understanding paclitaxel‑induced HNSCC 
cell death may be useful in designing effective taxane‑based 
regimens against HNSCC. It has been reported that paclitaxel 
can significantly induce apoptosis in most HNSCC cell lines, 
including FaDu, OC3 and OEC‑M1 cells (24). In addition, 
activation of initiator caspases (caspase‑8 and ‑9), downstream 
effector caspases (caspase‑3, ‑6 and ‑7), and poly‑ADP‑ribose 
polymerase cleavage were also observed in these HNSCC cell 
lines (24), suggesting that activation of both death receptors 
and mitochondria apoptotic pathways is a common phenom‑
enon in paclitaxel‑treated HNSCC cell death.

The mitogen‑activated protein kinase (MAPK) superfamily 
is composed of extracellular signal‑regulated kinases (ERKs), 
c‑Jun N‑terminal kinases (JNKs) and p38 MAPKs (25). ERK, 
JNK and p38 MAPK have been reported to play important roles 
in promoting the activation of pro‑apoptotic proteins (26‑29). 
For example, ERK is involved in promoting caspase‑3 activa‑
tion in cisplatin‑induced apoptosis (26). Additionally, JNK 
has been reported to be involved in promoting caspase‑9 and 
caspase‑3 activation induced by gemcitabine (27), and it also 
contributes to Bax activation, a pro‑apoptotic Bcl‑2 protein, 
following treatment with sunitinib (28). In addition, p38 MAPK 
is associated with caspase‑8 activation in TGFβ‑mediated 
apoptosis (29).

It has been reported that treatment of cancer cells with 
the anticancer drugs decreased the mitochondrial membrane 
potential (∆Ψm) (30), a phenomenon reflecting that mitochon‑
drial outer membrane permeabilization (MOMP) is induced. 
Activation of several pro‑apoptotic proteins, such as Bax, Bak 
and Bid, has been demonstrated to contribute to MOMP induc‑
tion (31,32). Once MOMP is induced, cytochrome c is released 
into the cytosol, which activates caspase‑9 (33,34). This in turn 
activates the downstream effector caspases, such as caspase‑3 
or caspase‑7, resulting in apoptosis (35). Thus, ∆Ψm may serve 
as an indicator of apoptosis.

Although our previous study demonstrated that pacli‑
taxel can activate caspases and induce apoptosis in HNSCC 
cells (24), the pivotal signaling pathway for driving caspase 
activation and apoptosis induced by paclitaxel remains unclear. 
Thus, the present study aimed to investigate the underlying 
mechanism of paclitaxel‑induced apoptosis in HNSCC cells.

Materials and methods

Reagents and antibodies. Paclitaxel (Sigma‑Aldrich; Merck 
KGaA) was solubilized in dimethyl sulfoxide (DMSO), at a 
final concentration of 1 mM. SP600125 was dissolved in DMSO 

as a 100 mM stock solution and stored at ‑20˚C. RNase A, 
propidium iodide (PI), BSA, DMSO, penicillin/streptomycin, 
phenylmethylsulfonyl fluoride (PMSF), dithiothreitol, copper 
sulfate, K+‑Na+‑tartrate and MTT reagent were purchased from 
Sigma‑Aldrich; Merck KGaA). Fetal bovine serum (FBS), 
RPMI‑1640 medium and lyophilized trypsin‑EDTA were 
purchased from Gibco (Thermo Fisher Scientific, Inc.). 
Tween‑20, sodium hydroxide and hydrochloric acid were 
purchased from Merck KGaA. SDS, acrylamide and Tris‑base 
were purchased from J.T. Baker (Avantor, Inc.). PD184352 
(Enzo Life Sciences, Inc.) was dissolved in DMSO as a 5 mM 
stock solution and stored at ‑20˚C. SB202190 (Merck KGaA) 
was dissolved in DMSO as a 10 mM stock solution and stored 
at ‑20˚C.

Antibodies against cleaved caspase‑3, cleaved caspase‑6, 
cleaved caspase‑7, cleaved caspase‑8, cleaved caspase‑9, 
phospho‑JNK, JNK, phospho‑ERK, ERK, phospho‑p38, 
p38, β‑actin and Bid were purchased from Cell Signaling 
Technology, Inc. Caspase‑8 inhibitor (Z‑IETD‑FMK) and 
caspase‑9 inhibitor (Z‑LEHD‑FMK) were purchased from 
R&D Systems, Inc. HEPES was purchased from Avantor, 
Inc. Sodium bicarbonate, sodium carbonate and sodium 
chloride were purchased from Riedel‑de Haen (Honeywell 
International, Inc.).

Cell line and cell culture. OEC‑M1 is a cell line derived from 
a surgical specimen of buccal mucosa squamous carcinoma 
from a Taiwanese, a unique oral cancer indigenous in Taiwan, 
which was generously gifted by Professor Kuo‑Wei Chang at 
National Yang‑Ming University (Taipei, Taiwan) (36). Cells 
were maintained and serially passaged in RPMI‑1640 medium 
supplemented with 10% FBS, 24  mM NaHCO3, 25  mM 
HEPES, 100 U/ml penicillin and 100 µg/ml streptomycin, 
at pH 7.4, 37˚C and in a humidified atmosphere containing 
95% air and 5% CO2.

MTT assay. Cell viability was assessed via the MTT assay, as 
previously described (20). Briefly, cells (1x104 cells/well) were 
seeded into a 96‑well plate. Following incubation for 24 h 
at 37˚C with 5% CO2, cells were treated with different concen‑
trations of paclitaxel for 48 h. Subsequently, MTT reagent was 
added to each well (0.5 mg/ml final concentration). Following 
incubation for 4 h, the medium was removed and the precipi‑
tate in each well was dissolved in DMSO. The optical density 
(OD) values were measured at a wavelength of 590 nm, using 
an ELISA reader (Dynex Opsys MR; Aspect Scientific Ltd.). 
Each experiment was performed in triplicate.

Flow cytometry. To demonstrate necrotic fractions of pacli‑
taxel‑treated cells, cells (6x105) were seeded into 6‑cm dishes 
and treated with different concentrations of paclitaxel for 24 h. 
Following treatment, cells were trypsinized, washed with PBS 
and stained with Annexin V for 15 min at room temperature 
in the dark, then resuspended in staining solution containing 
RNase A (100  µg/ml in PBS) and PI (40  µg/ml in PBS). 
Stained cells were analyzed using a FACScan flow cytometer 
(Becton‑Dickinson and Companu), using CellQuest software 
(version 5.1) (Becton‑Dickinson and Company). Cells that 
were positively stained with Annexin V and PI were consid‑
ered necrotic cells (37).
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Cell cycle analysis and DNA fragmentation were assessed 
via flow cytometry using PI staining (38). For experiments 
involving JNK inhibition, cells were treated with 50  nM 
paclitaxel for 24 h, in the presence or absence of different 
concentrations of a specific JNK inhibitor, SP600125. For 
experiments involving caspase‑8 or caspase‑9 inhibition, cells 
were treated with caspase‑8 inhibitor (Z‑IETD‑FMK) 100 µM 
or caspase‑9 inhibitor (Z‑LEHD‑FMK) 100 µM in the pres‑
ence of 50 nM paclitaxel for 24 h, respectively. Following 
treatment, cells were trypsinized, washed with PBS and fixed 
in 70% ethanol for 20 min at room temperature. The fixed cells 
were then re‑washed with PBS and resuspended in staining 
solution containing RNase  A (100  µg/ml in PBS) and PI 
(40 µg/ml in PBS) for 1 h at room temperature. The fractions 
of cells in subG1, G0/G1 and G2/M phases were analyzed using 
a FACScan flow cytometer (Becton‑Dickinson and Company), 
using CellQuest software (Becton‑Dickinson and Company). 
To assess paclitaxel‑induced ∆Ψm changes in OEC‑M1 cells, 
a fluorochrome (DiOC6, 3, 3‑dihexyloxacarbocyanine) was 
used, which exclusively emits with the spectrum of green light 
and accumulates in the mitochondrial matrix under the influ‑
ence of ∆Ψm (39). Briefly, near‑confluent cells were treated 
with or without 50 nM paclitaxel in culture media for 12, 24, 
36 or 48 h, collected and subsequently incubated with 40 nM 
DiOC6 at 37˚C for 20 min. ∆Ψm‑related DiOC6 fluorescence 
was subsequently recorded using an FL1 photomultiplier 
tube via a FACScan flow cytometer (Becton‑Dickinson and 
Company). Data from 10,000 cells were acquired for each 
sample. Analysis was performed using CellQuest software 
(Becton‑Dickinson and Company). All experiments were 
performed at least three times independently.

Western blotting. Cell lysates were harvested from adherent 
and floating cells following drug treatment and lysed in lysis 
buffer (50 mM Tris‑base, 150 mM NaCl, 1% NP‑40, 0.1% 
SDS, 0.5% deoxychloride acid and 1 mM PMSF). Protein 
concentration was determined via the Lowry assay (40), using 
BSA as standard. Proteins from each sample (40 µg/lane) 
were separated via SDS‑PAGE on a 12% gel for caspases‑8, 
‑9, phospho‑JNK, JNK, phospho‑ERK, ERK, phospho‑p38 
MAPK, p38 MAPK and Bid, or on a 15% gel for caspase‑3, 
‑6 and ‑7. Standard SDS‑PAGE running buffer (24  mM 
Tris/HCl, 0.19  M glycine, 0.5%  SDS, pH  8.3) was used 
as electrophoresis buffer to resolve proteins, which were 
subsequently transferred onto polyvinylidene difluoride 
membranes at 80 mA for 1.5 h in transfer buffer (20 mM 
Tris/HCl, 150 mM glycine, 10% methanol, 0.01% SDS). The 
membranes were blocked with 5% non‑fat milk for 1 h at room 
temperature and subsequently incubated with the following 
primary antibodies (all from Cell Signaling Technology, 
Inc.) for 16‑18  h at  4˚C: Anti‑caspase‑3 (cat.  no.  9661; 
1:1,000), anti‑cleaved caspase‑6 (cat.  no.  9761; 1:1,000), 
anti‑cleaved caspase‑7 (cat. no. 8438; 1:1,000), anti‑cleaved 
caspase‑8 (cat.  no.  9429; 1:1,000), anti‑cleaved caspase‑9 
(cat.  no. 9509; 1:1,000), anti‑phospho‑JNK (cat.  no.  9251; 
1:4,000), anti‑JNK (cat. no. 9252; 1:1,000), anti‑phospho‑ERK 
(cat. no. 9101; 1:4,000), anti‑ERK (cat. no. 9102; 1:4,000), 
anti‑phospho‑p38 (cat. no. 9215; 1:1,000), p38 (cat. no. 9212; 
1:4,000), anti‑β‑actin (cat. No. 58169; 1:5,000), and anti‑Bid 
(cat. no. 8762; 1:1,000). Following the primary incubation, 

membranes were washed with TBS with Tween 20 (0.15 M 
NaCl, 0.050 M Tris/HCl, 0.1% Tween‑20, pH 7.6), and then 
incubated with horseradish peroxidase (HRP)‑conjugated 
goat anti‑rabbit IgG (cat. no. 111‑035‑144; 1:5,000; Jackson 
ImmunoResearch, Inc.) or HRP‑conjugated goat anti‑mouse 
IgG (cat. no. 111‑035‑146; 1:5,000; Jackson ImmunoResearch, 
Inc.) secondary antibodies for 1 h at room temperature. Protein 
bands were visualized using the enhanced chemiluminescence 
detection kit (Amersham; Cytiva), and optical densities were 
quantitated using a Quantity One (ProVision Diagnostics, Inc.) 
computer‑assisted image analysis system. All experiments 
were performed at least three times independently.

ELISA. Cytokeratin 18 concentration in the cell culture 
supernatants was determined using the SimpleStep ELISA kit 
(cat. no. ab227896; Abcam), according to the manufacturer's 
instructions.

Statistical analysis. All experiments were performed in 
triplicate and data are presented as the mean ± standard error 
of the mean. The statistical analysis was performed using 
SPSS software version 17.0 (SPSS, Inc.). Unpaired Student's 
t‑test was used to compare differences between two groups, 
while one‑way ANOVA and Tukey's post‑hoc test were used 
to compare differences between multiple groups. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Paclitaxel (50 nM) induces apoptosis but not necrosis in 
OEC‑M1 cells. It has been reported that low‑dose paclitaxel 
can induce apoptosis, whereas high‑dose paclitaxel induces 
necrosis (41). To determine the optimal experimental concen‑
tration of paclitaxel used in the present study, OEC‑M1 cells 
were treated with different concentrations of paclitaxel for 
48 h and the MTT assay was performed to assess cell viability. 
As presented in Fig. 1A, different doses of paclitaxel (50 nM 
to 1 µM) significantly inhibited cell viability (P<0.05). The 
necrosis effect of these doses was analyzed via flow cytometry. 
As presented in Fig. 1B, the necrotic fraction of OEC‑M1 cells 
did not significantly increase following treatment with 50 nM 
paclitaxel. However, a dose‑dependent increase of necrotic cell 
death was observed following treatment with 250 nM or higher 
concentrations of paclitaxel (P<0.05). Given that 50 nM pacli‑
taxel induced apoptosis in OEC‑M1 cells in a time‑dependent 
manner (P<0.05; Fig. 1C) and did not significantly increase 
necrosis in cells (Fig. 1B), 50 nM paclitaxel was used as the 
standard concentration to assess the apoptosis‑inducing effect 
of paclitaxel treatment on OEC‑M1 cells.

JNK is activated in OEC‑M1 cells treated with low‑dose 
paclitaxel. The MAPK superfamily governs the ERK, JNK 
and p38 MAPK pathways, which are distinctly modulated by 
microtubule‑targeting agents, such as paclitaxel (42). Thus, the 
present study investigated which MAPK kinase pathway is more 
important in paclitaxel‑induced apoptosis of OEC‑M1 cells. 
The JNK pathway was activated (phosphorylated) following 
treatment with 50  nM paclitaxel at  12  and  24  h (P<0.05; 
Fig.  2A  and  B); the ERK pathway was stimulated (phos‑
phorylated) following treatment with 50 nM paclitaxel at 6, 
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12, 24 and 36 h (P<0.05; Fig. 2A and C); and the p38 pathway 
was induced (phosphorylated) following treatment with 50 nM 
paclitaxel at 24 h (P<0.05; Fig. 2A and D) in OEC‑M1 cells, 
respectively.

Caspase‑cleaved cytokeratin 18, a biomarker of apoptotic 
cell death, is released from epithelial cells during apop‑
tosis (43). The results of the present study demonstrated that 
paclitaxel significantly promoted the release of cytokeratin 18 
from OEC‑M1 cells compared with the control group (P<0.05; 

Fig. 2E). Treatment with JNK inhibitor, but not ERK inhibitor 
or p38 inhibitor, remarkably inhibited the paclitaxel‑induced 
release of cytokeratin 18 (P<0.05; Fig. 2E), suggesting that 
the JNK pathway is the candidate MAPK pathway mediating 
paclitaxel‑induced apoptosis in OEC‑M1 cells.

Inactivation of JNK effectively prevents paclitaxel‑induced 
apoptosis and caspase activation in OEC‑M1 cells. Our 
previous study demonstrated that paclitaxel can induce 

Figure 1. Low‑dose paclitaxel (50 nM) induces apoptosis but not necrosis in OEC‑M1 cells. Cells were treated without or with different concentrations of 
paclitaxel (5, 50, 250, 500 nM and 1 µM) for 48 h, and the percentage of (A) cell viability and (B) necrotic cell death were determined via the MTT assay 
and FACScan analysis following Annexin V and PI staining, respectively. (C) Cells were treated with or without 50 nM paclitaxel for 12, 24, 36 and 48 h. 
Following PI staining, cell cycle events were measured via FACScan analysis. Fractions of subG1 phase (apoptosis) were quantified using CellQuest software. 
*P<0.05 vs. control. PI, propidium iodide.
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apoptosis by activating caspases in the two HNSCC cell 
lines, OEC‑M1 and OC3, through the activation of initiator 
caspases (caspase‑8 and ‑9) and effector caspases (caspase‑3, 
‑6 and ‑7) (24). The results of the present study demonstrated 
that paclitaxel‑activated JNK was important for apoptosis in 
OEC‑M1 cells (Fig. 2). To determine the role of JNK activation 
in paclitaxel‑induced apoptosis, OEC‑M1 cells were treated 
with 50 nM paclitaxel, with or without different concentra‑
tions of JNK inhibitor, SP600125, for 24 h. Apoptosis was 
subsequently quantified by measuring the subG1 fraction via 

flow cytometric analysis. As presented in Fig. 3A, 10 µM 
SP600125 abolished JNK activation and cleaved caspase‑3 
expression to near background level, respectively. The expres‑
sion levels of cleaved caspase‑6 and ‑7 were also blocked 
following treatment with 10  µM SP600125, respectively 
(Fig. 3B). Inhibition of JNK activation with 10 µM SP600125 
effectively rescued paclitaxel‑induced apoptosis in OEC‑M1 
cells (P<0.05; Fig. 3C and D), suggesting that JNK activation 
plays a central role in low‑dose paclitaxel‑induced apoptosis of 
OEC‑M1 cells. JNK inhibition also significantly decreased the 

Figure 2. Activation of the MAPK pathway in low‑dose paclitaxel‑treated OEC‑M1 cells. Cells were treated with control or 50 nM paclitaxel at different time 
points. (A) Western blot analysis was performed to detect the protein expression levels of JNK, ERK and p38 MAPK pathways in OEC‑M1 cells. Activation 
of (B) JNK, (C) ERK and (D) p38 were quantified using Quantity One image analysis system. OEC‑M1 cells were treated with control or 50 nM paclitaxel, 
without or with 10 µM SP, 5 µM PD and 5 µM SB, respectively, and (E) the expression levels of cytokeratin 18 were determined via ELISA. *P<0.05 vs. control; 
#P<0.05 vs. paclitaxel alone treatment. MAPK, mitogen‑activated protein kinase; JNK, c‑Jun N‑terminal kinase; ERK, extracellular signal‑regulated kinase; 
C, control, P, paclitaxel; SP, JNK inhibitor‑SP600125; PD, ERK inhibitor‑PD184352; SB, p38 inhibitor‑SB202190.
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G0/G1 fraction (P<0.05; Fig. 3C and E), and notably increased 
the G2/M fraction (P<0.05; Fig. 3C and F) in paclitaxel‑treated 
OEC‑M1 cells.

As presented in Fig. 4, paclitaxel‑induced activation of 
initiator caspase‑8 and ‑9 was significantly inhibited to near 
background level with JNK inhibitors, respectively (P<0.05; 
Fig. 4A and B), suggesting that low‑dose paclitaxel‑induced 
activation of caspases is mediated via the JNK pathway.

Inhibition of caspase‑8 and ‑9 activation partially rescues 
paclitaxel‑induced apoptosis in OEC‑M1 cells. It has been 
demonstrated that microtubule‑targeting agents (MTA) 
preferentially activate different caspases in different types 
of cancer  (42,44‑46). Thus, the present study investigated 
whether caspase‑8 and ‑9 activation is responsible for the 
apoptosis‑inducing effect caused by low‑dose paclitaxel 
treatment in OEC‑M1 cells. Notably, addition of either 
caspase‑8 inhibitor (Z‑IETD‑FMK) or caspase‑9 inhibitor 
(Z‑LEHD‑FMK) rescued about half of the apoptotic cells 

following treatment with paclitaxel in OEC‑M1 cells (P<0.05; 
Fig. 5A and B). Neither caspase inhibitors affected the G0/G1 
fraction of paclitaxel‑treated OEC‑M1 cells (P<0.05; Fig. 5C). 
However, both caspase inhibitors increased the G2/M fraction 
of paclitaxel‑treated cells (P<0.05; Fig. 5D), suggesting that a 
significant proportion of paclitaxel‑treated cells are arrested 
in G2/M phase undergoing apoptosis through activation of 
initiator caspase‑8 and ‑9. In addition, a less than additive 
effect was observed when the two caspase inhibitors were used 
in combination (Fig. 5E and F). Taken together, these results 
suggest that other caspases, or caspase‑independent apoptotic 
mechanism, may also be involved in paclitaxel‑induced apop‑
tosis in OEC‑M1 cells.

Inactivation of JNK inhibits late‑phase (48 h) ∆Ψm loss in 
OEC‑M1 cells. The effectiveness of MTAs is a consequence 
of caspase activation through the intrinsic mitochondrial 
apoptotic pathway (42), which is closely associated with ∆Ψm 
collapse  (33). To investigate the association between JNK 

Figure 3. JNK inhibitor (SP600125) inhibits paclitaxel‑induced apoptosis and caspases effectors in OEC‑M1 cells. JNK inhibitor, SP600125, (0.1, 1, 
10 and 20 µM) inhibited paclitaxel‑induced phosphorylation of (A) JNK and cleaved caspase‑3, and (B) cleaved caspase‑6 and cleaved caspase‑7. Cells (6x105) 
were subsequently treated with 50 nM paclitaxel, with or without different concentrations of SP600125 (10 and 20 µM) for 24 h and fixed in 70% alcohol. 
(C) Following PI staining, cell cycle events were measured via FACScan analysis. Fractions of (D) subG1 phase (apoptosis), (E) G0/G1 phase and (F) G2/M phase 
were quantified using CellQuest software. In (C) red and blue dotted lines were plotted to illustrate the changes of subG1 (left to red line), G0/G1 (between red 
and blue lines) and G2/M phases (right to blue line) in the different treatment groups. *P<0.05 vs. control; #P<0.05 vs. paclitaxel alone treatment. JNK, c‑Jun 
N‑terminal kinase; PI, propidium iodide.
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activation and ∆Ψm collapse, the preset study investigated 
whether low‑dose paclitaxel can affect ∆Ψm in OEC‑M1 cells. 
As presented in Fig. 6A, 50 nM paclitaxel significantly induced 
depolarization of ∆Ψm of OEC‑M1 cells, in a time‑dependent 
manner (P<0.05). The present study also investigated whether 
the ∆Ψm loss is associated with JNK activation. Notably, 
inactivation of JNK failed to reverse the early‑phase (24 h) 
∆Ψm loss of OEC‑M1 cells, suggesting that JNK activation is 
dispensable for the early‑phase ∆Ψm loss (Fig. 6B). However, 
inactivation of JNK effectively prevented paclitaxel‑induced 
late‑phase (48 h) ∆Ψm loss (P<0.05; Fig. 6B), suggesting that 
JNK activation is responsible for the late‑phase (48 h) ∆Ψm 
collapse. The JNK‑dependent, late‑phase ∆Ψm loss may, at 
least partially, be explained by caspase‑8‑mediated trunca‑
tion of Bid occurring at 36 and 48 h following treatment with 
low‑dose paclitaxel (P<0.05; Fig. 6C).

Schematic chart of paclitaxel action on the apoptosis of 
OEC‑M1 cells. The potential signaling pathway of pacli‑
taxel‑induced apoptosis in OEC‑M1 cells is illustrated in 
Fig. 7, which shows that JNK activated by paclitaxel contrib‑
utes to caspase‑8 activation and ∆Ψm reduction. Activation 
of caspase‑8 results in Bid cleavage, which may contribute to 
∆Ψm loss (47). The reduction of ∆Ψm results in activation of 
caspase‑9 (33,34). Activation of both caspase‑8 and ‑9 promote 
activation of the downstream caspases (caspase‑3, ‑6 and 
‑7) (48), resulting in apoptosis of OEC‑M1 cells.

Discussion

The results of the present study demonstrated that most of 
the cytotoxic effect of paclitaxel was achieved at a relatively 
low concentration (50 nM) compared with high concentration 
(1 µM) of paclitaxel in OEC‑M1 cells. A similar cytotoxic 
plateau has been reported in breast cancer cells and, less 
remarkably, in OEC‑M1 cells (41,49). The cytotoxic plateau 
phenomenon observed in the present study may largely be due 
to the apoptotic plateau in OEC‑M1 cells treated with different 
concentrations of paclitaxel (50 nM to 1 µM; data not shown). 

Similar to the results of present study, an apoptotic plateau has 
also been reported in paclitaxel‑treated breast cancer cells (41), 
as well as in paclitaxel‑treated HNSCC histocultures (46). 
These results suggest that most of the apoptotic‑inducing 
effect in HNSCC cells can be achieved with a relative low 
dose of paclitaxel. In addition, the results of the present study 
demonstrated that in OEC‑M1 cells, high concentrations of 
paclitaxel (250 and 500 nM and 1 µM) induced necrosis, an 
unprogrammed form of cell death (50). It is well‑known that 
necrotic cells are able to release cellular cytoplasmic contents 
into extracellular space, which evoke inflammatory reactions 
and contribute to tumor progression  (51). Given that high 
concentrations of paclitaxel can induce necrosis and prolonged 
exposure to paclitaxel concentrations exceeding the thresholds 
of 0.05 or 0.1 µM induce side effects in patients with cancer, 
such as neutropenia and peripheral neuropathy (52), in terms 
of clinical usage, lower doses of paclitaxel are recommended 
to minimize serious side effects while retaining most of 
the apoptosis‑inducing effect of this drug. This concept is 
supported by a recent report demonstrating that, in treating 
patients with metastatic breast cancer, low‑dose weekly 
docetaxel/paclitaxel infusion schedules can achieve overall 
response rates comparable to several high dose infusion 
schedules, with fewer grade 3‑4 toxicities (53).

It has been reported that paclitaxel not only causes JNK 
activation but also causes ERK inactivation and a reduction 
of basal p38 MAPK activity concomitantly in KB‑3 human 
epidermoid carcinoma cells  (54). However, in the present 
study, JNK, ERK and p38 MAPK were activated by paclitaxel. 
This difference may be caused by the high paclitaxel concen‑
tration used in the previous study (500 nM) compared with 
the present study (50 nM). Furthermore, activation of specific 
MAPK pathways may be cell‑type specific.

The results of the present study demonstrated that pacli‑
taxel‑induced JNK activation was responsible for most of the 
apoptosis‑inducing effect in OEC‑M1 cells. JNK activation 
was also responsible for paclitaxel‑induced caspase activa‑
tion. However, the effect of inactivation of caspase‑8 and/or 
caspase‑9 in rescuing paclitaxel‑induced apoptosis was inferior 

Figure 4. JNK inhibition prevents paclitaxel‑induced activation of caspase‑8 and ‑9 initiators in OEC‑M1 cells. Cells were treated with 50 nM paclitaxel, with 
or without different concentrations of SP600125 (0.1, 1, 10 and 20 µM) for 24 h. Cleavage of initiator (A) caspase‑8 and (B) caspase‑9 were detected via western 
blotting and quantified, respectively. *P<0.05 vs. control; #P<0.05 vs. paclitaxel alone treatment. JNK, c‑Jun N‑terminal kinase.



LAN et al:  PACLITAXEL INDUCES HNSCC APOPTOSIS8

compared with the effect of JNK inhibition, suggesting that 
other caspase, such as caspase‑10 (55), or caspase‑independent 
apoptosis‑like programmed cell death (56,57), may also be 
involved in JNK‑mediated, paclitaxel‑induced apoptosis of 
HNSCC cells.

Failure of JNK inactivation to prevent early‑phase (24 h) 
depolarization of OEC‑M1 cells suggests that early‑phase ∆Ψm 
loss is not caused by JNK activation. The JNK‑dependent, 
late‑phase (48 h) ∆Ψm loss can be explained, at least partially, 
by caspase‑8‑induced truncation of Bid (a process of Bid acti‑
vation), which occurred at 36 and 48 h following treatment 
with paclitaxel. Whether paclitaxel‑induced JNK activation 
also causes activation of other pro‑apoptotic ‘BH‑3 only’ 
proteins (58,59) and contributes to the late‑phase (48 h) ∆Ψm 
loss remain unknown.

The upstream events leading to JNK activation by low‑dose 
paclitaxel treatment are yet to be investigated. Reactive 
oxygen species (ROS) production has been reported to be an 

early and crucial step for paclitaxel‑induced lung cancer cell 
death (60). ROS production has also been reported to mediate 
docetaxel‑induced apoptosis of HNSCC cells (61), and ROS 
is associated with ASK1 activation, an upstream kinase of 
JNK (62). On the other hand, paclitaxel treatment may also 
induce ceramide formation (63,64), which can subsequently 
lead to both JNK activation (65) and ∆Ψm collapse (66,67). 
It is speculated that paclitaxel may induce activation of JNK 
via the ROS‑ASK1 axis and ceramide formation. However, 
further studies are required to verify these speculations.

p53 is able to upregulate several pro‑apoptosis related 
proteins, such as Bax and PUMA (68,69), or promote activa‑
tion of Bid and caspases (70,71). Thus, p53 plays an important 
role in regulating apoptosis (72). It has been reported that JNK 
can promote apoptosis by activating p53 (73). OEC‑M1 is a 
cell line with p53 mutation, and our previous study demon‑
strated that paclitaxel can induce apoptosis and activation of 
caspases in OEC‑M1 cells  (24), suggesting that p53 is not 

Figure 5. Caspase inhibitors partially rescue paclitaxel‑induced apoptosis in OEC‑M1 cells. (A) Cells were treated with 50 nM paclitaxel with either caspase‑8 
(Z‑IETD‑FMK) and/or caspase‑9 (Z‑LEHD‑FMK) inhibitor (100 µM) for 24 h, and cell cycle events were measured via FACScan analysis following PI 
staining. Fractions of (B) subG1 phase, (C) G0/G1 phase and (D) G2/M phase were quantified using CellQuest software. (E) Combined usage of these two 
caspase inhibitors, with or without treatment with 50 nM paclitaxel for 24 h, and cell cycle events were measured via FACScan analysis following PI staining. 
(F) Fractions of subG1 phase were quantified using CellQuest software. In (A) and (E) red and blue dotted lines were plotted to illustrate the changes of subG1 
(left to red line), G0/G1 (between red and blue lines) and G2/M phases (right to blue line) in the different treatment groups. *P<0.05 vs. control; #P<0.05 vs. pacli‑
taxel alone treatment. PI, propidium iodide.
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involved in paclitaxel‑induced apoptosis. Apoptosis can be 
divided into two pathways, death receptor apoptotic pathway 
(the extrinsic pathway) and mitochondrial apoptotic pathway 
(the intrinsic pathway) (48). The former, activated by binding 
of Fas ligand to its receptor, Fas, leads to formation of 

death‑inducing signaling complex, which promotes activation 
of initiator caspase‑8 (48). The latter, activated by activation 
of several pro‑apoptotic Bcl‑2 proteins, such as Bim and Bad, 
results in formation of apoptosome, which promotes initiator 
caspase‑9 activation (48). In addition, the extrinsic pathway is 
involved in activating the intrinsic pathway through activation 
of the caspase‑8‑Bid axis (48). The results of the present study 
demonstrated that paclitaxel activated caspase‑8, Bid and 
caspase‑9, and caused ∆Ψm loss, suggesting that both path‑
ways are activated in paclitaxel‑induced apoptosis. Given that 
JNK can upregulate Fas ligand (74) and promote the activa‑
tion of Bax and Bim (58,75), it was speculated that during the 
progression of paclitaxel‑induced apoptosis, JNK may trigger 
activation of the extrinsic and the intrinsic pathways to activate 
the initiator caspases (caspase‑8 and ‑9) in OEC‑M1 cells, 
which may contribute to activation of downstream caspases 
(caspase‑3, ‑6 and ‑7). Prospective studies are required to 
investigate whether paclitaxel can upregulate Fas ligand and 
activate Bax and Bim.

In conclusion, the results of the present study demonstrated 
that paclitaxel‑activated JNK is required for caspase activa‑
tion and loss of ∆Ψm to induce apoptosis of OEC‑M1 cells. 
To the best of our knowledge, the present study was the first 
to demonstrate that JNK can activate caspases and reduce 
∆Ψm, which is important for paclitaxel‑induced apoptosis of 
OEC‑M1 cells. These results may be applied to improve or 
enhance the therapeutic efficacy of paclitaxel as a chemothera‑
peutic drug.

Figure 6. Inactivation of JNK inhibits late‑phase (48 h) ∆Ψm loss in OEC‑M1 cells. (A) Paclitaxel induced time‑dependent ∆Ψm loss in OEC‑M1 cells. 
(B) Inactivation of JNK with specific JNK inhibitor (SP600125, 10 µM) only significantly rescued the late‑phase (48 h) ∆Ψm loss. (C) Bid truncation occurred 
at 36 and 48 h following treatment with paclitaxel. *P<0.05 vs. control; #P<0.05 vs. paclitaxel alone treatment. JNK, c‑Jun N‑terminal kinase; ∆Ψm, mitochon‑
drial membrane potential; C, control, P, paclitaxel.

Figure 7. Potential signaling pathways of paclitaxel‑induced apoptosis in 
OEC‑M1 cells. Paclitaxel‑induced JNK activation plays an important role in 
promoting loss of ∆Ψm and activation of pro‑apoptotic proteins, resulting in 
apoptosis of OEC‑M1 cells. JNK, c‑Jun N‑terminal kinase; ∆Ψm, mitochon‑
drial membrane potential.
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