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Identification of potential novel biomarkers
to differentiate malignant thyroid nodules
with cytological indeterminate
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Abstract

Background: The fine-needle aspiration (FNA) biopsy was broadly applied to clinical diagnostics evaluation for
thyroid carcinomas nodule, while companioning with higher uncertainty rate (15~30%) to identify malignancy for
cytological indeterminate cases. It is requirement to discover novel molecular biomarkers to differentiate malignant
thyroid nodule more precise.

Methods: We employed weighted gene co-expression network analysis (WGCNA) to discover genes significantly
associated with malignant histopathology for cytological indeterminate nodules. In addition, identified significantly
genes were validated through another independently investigations of thyroid carcinomas patient’s samples via
cBioportal and Geipa. The key function pathways of significant genes involving were blast through GenClip.

Results: Twenty-four signature genes were identified significantly related to thyroid nodules malignancy.
Furthermore, five novel genes with missense mutation, FN1 (R534P), PROS1((K200I), (Q571K)), SCEL (T320S),
SLC34A2(T688M) and TENM1 (S1131F), were highlighted as potential biomarkers to rule out nodules malignancy. It
was identified that the key functional pathways involving in thyroid carcinomas.

Conclusion: These results will be helpful to better understand the mechanism of thyroid nodules malignant
transformation and characterize the potentially biomarkers for thyroid carcinomas early diagnostics.

Keywords: Papillary thyroid carcinoma, Biomarker, Thyroid nodules, Biomarker, Fine-needle aspiration biopsy,
WGCNA

Background
Thyroid cancer is a common malignant neoplasm in
worldwide. Recently, the incidence rate of thyroid cancer
is rapid raising in the world and becoming the potential
threat for public health [1, 2]. It is important to develop
early precise diagnostics method and interfere the thy-
roid neoplasm progress into malignant carcinoma. Up to
now, the Fine-needle aspiration (FNA) biopsy is the
most accurate and cost-effective tool for thyroid nodules

clinical evaluating. It has been strongly recommended by
the American Thyroid Association as standardized clin-
ical operation [3–5]. However, about 10~30% cases’
cytological results are indeterminate, and being labelled
as indeterminate or suspicious for malignancy. Among
these cytological indeterminate cases, majority of pa-
tients underwent partial or complete thyroidectomy and
checked by histological evaluation. Although the subse-
quent postsurgical evaluation results reveal only 6~30%
cytological indeterminate cases identified as malignant,
it made this clinical operation extremely low efficiency
and non-specificity while with higher costs [6, 7].
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Molecular biomarkers analysis is a powerful adjunct
approach to traditional carcinomas pathological evalu-
ation. Multiple molecular markers have been discovered
and employed in developing precise diagnostics methods
and novel strategies to properly treatment. These bio-
markers are generated from gene sequence for gene mu-
tations, gene rearrangements, RNA-based assays, gene
expression profiling and immune-histochemistry [8, 9].
As endocrine neoplasm deriving from follicular or para-
follicular thyroid cells, thyroid cancer has been reported
associated with higher frequency (about 70%) somatic al-
ternation or deletion of genes involving key signaling
pathways, such as the mutation of BRAF and RAS [6,
10], NTRK1 tyrosine kinases and key effectors mitogen-
activated protein kinase (MAPK) signaling pathway [11].
With advanced understanding of thyroid tumor forma-
tion, the researches of generic mutation-based bio-
markers discovery shifted from single mutation to
molecular signatures genes or panels of multiple muta-
tions [12]. According to the previously American Thy-
roid Association Management Guidelines, a 7-gene
molecular biomarkers panel of genetic mutation and re-
arrangement (7-gene MT), including BRAFV600E, three
isoforms of RAS point mutations and translocations of
PAX8/PPARc and RET/PTC genes [6, 13], was recom-
mended to evaluate the residual FNA sample with cyto-
logical indeterminate and estimate with high specificity
(~ about 90%) [14–16]. Especially, the mutational testing
of biomarker genes has been proposed to be a rule-in
test with reported higher specificity in clinical practice.
Recently, it was reported that the sensitivity of seven-
genes mutational panel testing showed huge variation,
from 44 to 100% [6, 17]. It is strong suggested that trad-
itional gene mutation panels analysis may not reliably
rule out nodules malignancy in some case population. In
current, there is no definitively single optimal molecular
test that 100% promised to rule-in or rule–out the ma-
lignancy in cytology-indeterminate cases [18]. It is ne-
cessary to discover novel potential molecular biomarkers
to enhance sensitivity and specificity of mutational ana-
lysis and precise to rule-in the malignance for cytology
indeterminate nodules.
Recently, lacking of long term clinical outcome track-

ing recording of using molecular markers, there are
some controversies over the benefit and limitation of
existing molecular markers testing [18]. To enhance the
efficiency of thyroid carcinomas patient’s diagnostic,
treatment and health management, it is the trend to de-
velop systemic diagnostic strategy and discover novel ap-
plicable and specific molecular biomarkers for early
diagnostics through analyzing the genetic and expression
profiling of thyroid nodules from FNA biopsy [19].
Among multiple computerization methodologies, the
Weighted Gene Co-Expression Network Analysis

(WGCNA) is considered as one of the most useful ap-
proaches to discover gene co-expression network based
functional feature through gene expression profiling ana-
lysis [20]. Recently, WGCNA is be widely applied to
screening the signature genes significantly associated
with clinical feature. It is powerful to discover candidate
biomarkers for cancer early diagnostics, cancer-
associated pathways or therapeutic targets for precise
treatment in hepatocellular carcinoma [21], lung cancer
[22], endometrial cancer [23] and melanoma [24].
In this study, we employed the WGCNA to analyze

gene expression profile of thyroid nodules with cyto-
logical indeterminate and aimed to identify the highly
connected hub and modules that genes significantly as-
sociated with histological malignant thyroid nodule. In
addition, we will explore other independently clinical
cases through the genetic database to verify the signifi-
cantly signature genes with genetic changes and discover
the key biological pathways significantly associated with
malignant thyroid cancer by Genclip pathfinder.

Methods
Gene expression data source
In this study, the dataset applied for data analysis is
available in the Gene Expression Omnibus (GEO) re-
pository (https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE34289) in NCBI, and the platform entry
number is GPL14961. This dataset came from the work
of Erik et al. (2012) and contained 172 target genes ex-
pression data [25]. The samples related information and
genes annotated probe-id were transformed into gene
symbols and related functional annotations. The related
clinical trait annotation was distracted from GSE34289
annotation dataset. Each gene expression value was nor-
malized and performed with log2 transformation. The
genes expression profiling of 364 thyroid nodules were
split into four groups and 265 samples with cytology in-
determinate were selected for further WGCNA analysis
as workflow demonstration (Fig. 1).

Clinical case samples group sorting
According to the clinical cytological / histopathological
traits, 364 thyroid nodules samples were split into four
groups: Group one (180), cytology-Indeterminate/histo-
pathology-benign; Group two (85), cytology-indeterminate/
histopathology-malignant; Group three (44), cytology-
benign/histopathology-benign; Group four (55), cytology-
malignant /histopathology-benign (Additional file Table
S1).

Construction of weighted gene co-expression network
The WGCNA package of R (version 1.63) was download
and setup by following the protocol described previously
[26]. The WGCNA package was used to perform various
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functions in weighted correlation network analysis, includ-
ing constructing network, detecting module, calculating
topological properties, simulating data, visualization, and
interfacing with external software [26]. First of all, we have
checked data to exclude the sample with excessive missing
values and identify outlier microarray samples. After data
preprocessing, we applied the principal component ana-
lysis (PCA) to double check the data quality. We observed
that tumor and normal samples were separated in the
PCA plot (Additional file Figure S1), and then we per-
formed hierarchical clustering on the samples to further
detect potential outliers. The total 265 samples were used
for next step analysis (Fig. 1). We chose the soft threshold
β = 7 to construct the co-expression network as the R2

reached the peak for the first time when β = 7. The plot of
log10(p(k)) versus log10(k) (Additional file Figure S2) indi-
cates that the network is close to a scale-free network by
using β = 7, where k is the whole network connectivity

and p(k) is the corresponding frequency distribution
(Additional file Table S2). When β = 7, the R2 is 0.98, en-
suring that the network was close to the scale-free net-
work. After the soft thresholding power β was determined,
the Topological Overlap Matrix (TOM) and dissTOM= 1
−TOM were obtained (Additional file Figure S3). After
the modules were identified, the T-test was used to calcu-
late the significant p-value of candidate genes, and the
gene significance (GS) was defined as mediated p-value of
each gene (GS = lgP). Then, the module significance (MS)
were defined as the average GS of all the genes involved in
the module. In general, the module with the highest MS
among all the selected modules will be considered as the
one associated with disease. In addition, we also calculated
the relevance between the clinical feature (histopathology)
of modules and phenotypes to identify the most relevant
module. The hierarchical clustering analysis was used to
identify gene modules and color to indicate modules,

Fig. 1 Work flow of the FNA samples with cytology indeterminate for WGCNA
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which is a cluster of densely interconnected genes in
terms of co-expression (Additional file Figure S4). For
genes that are not assigned to any of the modules,
WGCNA places them into a grey module as not co-
expressed (Additional file Table S3). The module eigen-
gene (ME) of a module is defined as the first principal
component of the module and represents the overall ex-
pression level of the module. To identify modules that
were significantly associated with the traits of histology,
age and gender status, we correlated the MEs (i.e. the first
principle component of a module) [27] with clinical traits
and searched the most significant associations. A hierarch-
ical clustering of MEs was performed to study the correla-
tions among the modules. we used the linear mixed-
effects model (eq. (4)) for testing the association of a mod-
ule to the histology determinate tumor status [26].

Exploring the clinical cancer cases databases
Genes significance associated with histology feature of
malignant thyroid nodule were blast in the cBioportal
Cancer Genomics dataset with independent cases and
verified the association of thyroid carcinoma’s patient’s
cases to public [28, 29]. In addition, we blast Gene Ex-
pression Profiling Interactive Analysis databases (http://
gepia.cancer-pku.cn) to validate the expression of these
five biomarker candidates.

Validations of signature genes expression
The validations of significant genes were performed by
comparison of expression level among the thyroid nod-
ule case groups and blast in TCGA (The Cancer Gen-
ome Atlas) database with independent cases. The case
group with cytology indeterminate/histopathology be-
nign was used as the benchmark. The individual gene
expression in each group are presented as means ±
standard error of the mean (SEM) that represent distri-
bution of group cases. The expression level comparison
was used the fold change ratio to quantitatively analyze.
The Significance of differences for the values were deter-
mined using the student t-test with the Prism software
(GraphPad Software, Inc. San Diego, CA). A P value <
0.001 was setup as significant difference standard.

GO and pathway enrichment analysis
We utilized GenCLiP 2.0 tool to collect the correlated
Gene Ontology (GO) functional clustering and pathway
enrichment analyses for the genes significance in blue
module, which is powerful to discovery the abnormal
pathway or key components related to certain diseases
[30]. The P value < 0.05 was setup as the significantly
cut-off criterion.

Results
Identified gene modules correlation with histological
traits
In this study, we applied WGCNA to investigate the re-
lationship between gene expression profiling of FNA
thyroid nodules with cytology indeterminate (265 cases,
group one and group two, Additional file Table S1) and
clinical traits-histopathology, age and gender. After using
a dynamic tree cutting algorithm, we identified 6 distinct
co-expression modules (Fig. 2a), including Blue (24),
Turquoise (66), Green (14), Brown (23), Yellow (15) and
Grey (29) modules containing with varied different num-
ber genes. There are three MEs, Blue, Green and Tur-
quoise, highly significantly correlated to histopathology
trait based on the hierarchical clustering analysis (Fig.
2b), and Blue is positive correlated with histopathology
trait. Through calculation of the linear mixed-effects
model, the turquoise module (t-value = − 0.21, P value =
0.004), blue module (t-value = 0.54, P value = 1e− 21)
and the green module (t-value = − 0.43, P value = 2e− 13)
are identified significantly associated with malignant thy-
roid nodule status (Fig. 2c). The blue module, containing
24 genes (Additional file Table S4), is the most signifi-
cant module (P value = 1e− 21) associated with thyroid
nodule malignant histopathology feature, while green
and turquoise module are negative correlated with ma-
lignant feature and do not discuss. The 29 uncorrelated
genes were assigned into a grey module, which was ig-
nored in the following analysis (Fig. 2b, and Additional
file Table S3).

Enriched genes significance related to histological feature
Compared the MS among the modules (Fig. 2c), the re-
sults showed that the Blue module is the highest relevance
and positive correlated to histopathology malignant status
(cor = 0.77, P value = 6.8e− 06). For each gene contained
in a module, we plotted the scatter figure of multiple
module memberships (MM) against the GS (Additional
file Figure S5A-E). In the WGCNA, the module member-
ship (MM): MM(i) = cor (xi, ME) is defined to measure
the importance of the gene within the module. The
greater absolute value of MM(i), gene i is more important
the in the module. The GS in the blue module is highly
correlated with MM, indicating that Gene is significantly
associated with malignant histological feature (Fig. 2d, P
value = 6.8e− 06). The genes significance is also the im-
portant element of the Blue module (P value = 3.95E-06,
Fig. 2e) and listed (Additional file Table S4). The heatmap
plot is depicted of topological overlap in the gene network
(Additional file Figure S6).

Validated significant genes through cBioPortal database
Compared with cytology-indeterminate/histopathology-
benign group as the benchmark, the 23 signature genes
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Fig. 2 (See legend on next page.)
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showed significant higher expression (Fold change > 1.0,
P value < 0.001) in the cytology-indeterminate/histopath-
ology-malignant group cases, while only PPP2R2B with
lower expression (P value = 0.0039, Fig. 3a). In the nega-
tive case group, with double cytology/histopathology be-
nign, although 12 genes were lower expression (0.92 <
FC < 0.98, P value > 0.001), 10 genes were close to equal
expression (CC2D2B, CFH, CLDN16, FBXO2, GABRB2,
KRT19, PPP2R2B, ST3GAL5, PROS1, SLC34A2, 0.98 <
FC < 1.01, P value > 0.05), and FN1 (FC = 1.0881, P value
=0.0086) and GOS2 (FC = 1.0881, P value = 0.0266) indi-
cated higher expression, there are no significantly differ-
ent expression than control. In the positive case group,
with double cytology/histopathology malignant, except
PPP2R2B with lower (FC = 0.9227, P value = 0.0042) and
CC2D2B with higher expression (FC = 1.0725, P value =
0.002), the other 22 genes were significantly higher ex-
pression (FC > 1.0, P value < 0.0001) than benchmark.
Furthermore, the identified 5 potential biomarkers were
significantly higher expression (FC > 1.15, P value <
0.0001) in both cytology-indeterminate/histopathology-
malignant group and double cytology/histopathology
malignant group (Fig. 3a&b).
Moreover, we put these 24 genes into cBioPortal Cancer

Genomics database for validation and inquired with 915
patients’ datasets in 3 independent studies as Papillary
Thyroid Carcinoma (TCGA, Cell 2014), Thyroid Carcin-
oma (TCGA Provisional) and Poorly-Differentiated and
Anaplastic Thyroid Cancer (MSKCC, JCI 2016). The ex-
ploring results indicated that 15 of 24 genes significance
were altered in 37 (4.0%) of 915 queried cases/patients as
listed in Oncoprint table (Fig. 4a). The matched genes are
listed as CC2D2B, CFH, CITED1, FN1, GOS2, GABRB2,
KRT19, TENM1, PPP2R2B, PROS1, RXRG, SCEL, SER-
GEF, SLC34A2 and STK32A. The genetic alternation types
included missense mutation, amplification and deep dele-
tion (Fig. 4a). Sixteen genes that associated with detail in-
formation of copy-number alterations were identified,
including the alternation type, altered samples number
and percent of patient’s cases (Additional file Table S5).
The exploring results contains 86 gene pairs with mutually
exclusive alterations (none significant), and 167 gene pairs
with co-occurrent alterations (non-significant) and 6
genes pairs with significant alternation (P value < 0.05).
The 6 genes pairs are identified as CFH & G0S2, CFH &

RXRG, G0S2 & RXRG, PPP2R2B & STK32A, PROS1 &
SCEL and CITED1 & TENM1 (Additional file Table S6).
It is summarized the detail of information about inquired
genes genetic alternation (Additional file Table S7). The
queried results discovered 5 genes significantly associated
with missense mutation, FN1 (R534P), PROS1((K200I),
(Q571K)), SCEL (T320S), SLC34A2(T688M) and TENM1
(S1131F), plus the key information about mutation type,
protein change sites and mutation occurrence in patient’s
case number (Fig. 4b). Furthermore, these 5 genes are also
significantly higher expression in thyroid cancer cases (P
value < 0.01) explored in TCGA database (Fig. 3c).

Functional and gene ontology pathway enrichment
analysis
The key functional pathway enrichment analysis was
performed for the significant genes in Blue module. The
significantly enriched pathways mainly concentrated in
cell adhesion, extracellular matrix and low density lipo-
protein metabolic, also included membrane-associated
biological processes and cellular components (Table 1).
There are 8 genes in Blue module and 4 clusters of sig-
nificance enriched KEGG pathways identified by Gen-
clip. The most significant top 2 cluster pathways are
resorted to associated with Thyroid Cancer, small/non-
small lung cancer or other cancers (Table 1, KEGG
Pathway Analysis, cluster1 &2, Additional file Figure S6).
The other 2 clusters pathways mainly involved in the cell
adhesion, cell junction interaction & organization, plate-
let activation & degranulation, and leukocyte transen-
dothelial migration (Table 1). The GO analysis identified
2 significant clusters functional associated with the re-
sponses to lipid, hormone, steroid hormone and organic
cyclic compound (Table 1, GO Analysis, Additional file
Figure S6A). According to previously research reports,
12 genes were involving in constructed a co-citation net-
work. Through literature profiles analysis, the significant
genes in blue module are mainly clustered in functions
related to type 2 diabetes, cell adhesion, extracellular
matrix and low density lipoprotein (Table 1, GO
Analysis).

Discussion
In this study, to discover novel biomarkers to accelerate
the precise clinical diagnostics for thyroid nodule cases

(See figure on previous page.)
Fig. 2 Gene dendrogram and module cluster for Histopathological feature. a Clustering dendrogram of genes, with dissimilarity based on
topological overlap, is merged with assigned module colors and the original module colors. b The correlation of Module-clinical traits. Each row
corresponds to a module; each column corresponds to a clinical trait feature. Each cell contains the test statistic value and its corresponding p
value from the linear mixed-effects model. Network of eigengene represents the relationships among the modules and the histological traits. c
There are total 6 Module memberships vs. gene significance cluster for histopathology trait. Module membership vs gene significance is
correlating to thyroid nodule histopathological status. Panel d shows a hierarchical clustering dendrogram of the eigengenes in which the
dissimilarity of eigengenes (EI, EJ is given by 1 − cor(EI, EJ). The heatmap in panel (e) shows the eigengene adjacency (AI J = (1 + cor (EI, EJ))/2)
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Fig. 3 Validation of the gene expression levels of novel biomarkers between histopathological benign and malignant. a Expression comparison of
24 signature genes among benign and malignant cases groups; b Validation the expression level of potential biomarkers of FN1, TENM1, SCEL,
SCL34A2, PROS1. c Validation based on TCGA data via GEPIA, including FN1, TENM1, SCEL, SCL34A2, PROS (***, represent p value < 0.0001; *,
represents p value < 0.01)
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Fig. 4 Validate Signature genes by Blast with independent cases via the cBioportal database. a Oncoprint table of significant signature genes.
Through the cBioPortal Cancer Genomics database, the genes significance (GS) in blue module were explored multidimensional cancer genomics
datasets in the context of clinical data and biologic pathways. The Oncoprint table summarizes genomic alterations in all queried genes across
samples. Each row represents a gene, and each column represents a tumor sample. Red bars indicate gene amplifications, blue bars are
homozygous deletions, and green squares are nonsynonymous mutations. b The summary Mutations table of query genes. The tabular view
provides additional information about all mutations in each query genes
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with cytology indeterminate, we designed the whole pro-
ject workflow, selected specific dataset (GSE34289) and
applied the WGCNA approach to analyze the gene ex-
pression profiling of thyroid nodule that generated from
FNA clinical samples (Fig. 1). The gene expression pro-
file contained 172 specific genes designed for promise
diagnostic assessment [8], which are mainly involving in
variously biological and cellular processes that related to
energy metabolism, cell differentiation, and cellular de-
velopment. and aimed to discover some novel bio-
markers to accelerate the precise clinical diagnostics for
thyroid cancer. It is representative to discover the signa-
ture genes significantly associated with thyroid nodules
malignancy through gene expression profiling analysis of
these cases. Furthermore, this dataset was generated
from 49 national widely clinical sites, collected from
3789 patients and evaluated 4812 thyroid nodules sam-
ples (size > 1 cm) in United States and well characterized
with higher standard. It obtained 577 cytological indeter-
minate aspirates and finally selected 265 indeterminate

nodules for further analysis through blinded histopatho-
logical review [25]. In addition, this dataset also con-
tained two groups of cases labelled as cytology-benign/
histopathology-benign (44 cases) and cytology-malignant
/histopathology-malignant (55) with validated cytopa-
thology and histopathological features (Additional file
Table S1). Based on this dataset characters, we utilized
totally 364 samples and split into 4 groups in this study.
The expression level of identified signature genes will be
explored in cytology-benign/histopathology-benign and
cytology-malignant/histopathology-malignant groups as
negative and positive control. Moreover, as designed in
the workflow, the discovered signature genes would be
validated through another independently investigations
of thyroid carcinomas patient’s cases in TCGA via
GEIPA (Fig. 3c) and indicated these genes sensitiveness
with statistical analysis.
Compared with other computational methodology, the

WGCNA have unique merits, which could be robust
and sensitive detection of the subset of genes co-

Table 1 GO and KEGG pathway enrichment analysis of genes significance
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expression as functional modules from the entire tran-
scriptome and without pre-filtering to cause selective
bias or losing useful information [20]. It was designed to
discover the networks and genes associated with pheno-
types of target by using unsupervised clustering and con-
structing gene module. The constructed gene co-
expression module consists of a group of genes that
maintain a consistent expression relationship and share
a common biological regulation function that independ-
ent of a priori defined gene sets or pathways [31]. Previ-
ously, WGCNA has been successfully applied to
biomarker discovery for cancer diagnostics, such as dis-
covered microRNA expression network in prostate can-
cer [32] and identified ASPM as a potential biomarker in
glioblastoma [33].
In our study, our results firstly demonstrated that it is

reasonable to build on the co-expression networks with
clinical traits (histopathology, age, gender) using Pearson
correlation analysis (Additional file Figure S1). To dis-
cover the related modules to histopathological pheno-
type, we calculated the modules statistic significantly
with the linear mixed effects model for testing the asso-
ciation of the node to the histological phenotype. We
analyzed the gene expression profile data and identified
three module eigengenes (ME), blue, Green and Tur-
quoise module, are significantly associated with histo-
logical feature of malignant thyroid cancer (Fig. 2,
Additional file Figure S4). Through the Eigengene den-
drogram analysis, we discovered the most significantly
hub, the blue module that contained 24 genes, related to
histological feature (Fig. 2d&e).
To validate the WGCNA analysis results, we took two

approaches to test signature genes positive expression
and correlation. Firstly, we compared the signature genes
expression level between sample group 2/3/4 and group
one separately, which represent as test, negative and
positive control. Gone through the results, we setup the
fold change > 1.05 or fold change < 0.98 (plus P value <
0.001) as the cutoff for statistics significant standard. As
results indicated, all 24 signature genes do not signifi-
cant expression difference although some genes expres-
sion with lower or higher level in the double cytology/
histopathology benign case group, which defined as
negative control. While 22 signature genes were signifi-
cantly higher expression (FC > 1.0, P value < 0.001), ex-
cept PPP2R2B with lower expression (FC = 0.9227, P
value = 0.0042) and CC2D2B with higher expression
(FC = 1.0725, P value = 0.002), in the double cytology/
histopathology malignant cases group, which works as
positive control. These results indicated that 24 signa-
ture genes could significantly differentiate the malig-
nancy and benign cases (positive rate = 91.67%, 22/24).
For the cytology-Indeterminate/histopathology-malig-
nant group, the 23 signature genes show significant

higher expression (Fold change > 1.0, P value < 0.001)
than benchmark (positive rate = 95.83%, 23/24), while
only PPP2R2B with lower expression (P value = 0.0039)
(Table 1). Furthermore, identified 5 potential biomarker
genes were all significantly higher expression (FC > 1.15,
P value < 0.0001) in both cytology-indeterminate/histo-
pathology-malignant group and double cytology/histo-
pathology malignant group (Fig. 3a&b). These results
suggest these 5 genes have potential to be the biomarker
candidate for differentiation the malignancy among the
indeterminate cases. In the secondary approach, we ex-
plored these 24 genes through the cBioPortal Cancer
Genomic database, which is containing many published
cancer studies datasets from CCLE and TCGA [28], and
verified through 3 independent thyroid cancer investiga-
tions that contained 915 patient’s datasets. The 16 genes
were matched in 37 (4.0%) of 915 patient’s cases with
genetic alternation of missense mutation, amplification,
deep deletion and copy- number alterations, and listed
as CC2D2B, CFH, CITED1, FN1, GOS2, GABRB2,
KRT19, TENM1, PPP2R2B, PROS1, RXRG, SCEL, SER-
GEF, SLC34A2 and STK32A. Some of these generic al-
ternations were associated with papillary thyroid
carcinoma metastasis to brain [34] and could be useful
as histopathological biomarkers for papillary thyroid car-
cinoma [25, 35]. In addition, the queried results also dis-
covered 5 genes with missense mutation significantly (P
value < 0.01) associated thyroid cancer cases, listed as
FN1 (R534P), PROS1 ((K200I), (Q571K)), SCEL (T320S),
SLC34A2(T688M) and TENM1 (S1131F) (Fig. 4b). We
compared these genes expression level between groups,
and our results indicated these genes could significantly
differentiate the cases of benign and malignant among
cytological indeterminate cases (Fig. 3a). In addition, 5
potential biomarkers significantly higher expression in
malignant cases (P value < 0.0001, Fig. 3b). Furthermore,
to validate these signature genes, we blast the 5 potential
biomarkers through TGCA database with other inde-
pendent clinical cases (about 849 cases, Fig. 3c). These 5
genes are also significantly higher expression in thyroid
cancer cases (P value < 0.01) explored in GEPIA with
thyroid cancer clinical cases data. These two validation
approach made results more convincible.
Through the Genclip analysis, we found that these

genes are mainly concentrate on the GO pathways that
involving in physiological response of hormone and ster-
oid hormone, and regulation of cell migration and adhe-
sion, cell junction interaction, etc. (Table 1, Additional
file Figure S6A). The involving pathways are significantly
concentrated in subgroups of thyroid cancer, non-small
cell lung cancer and cancer, process, signaling, extracel-
lar region, and transporter activity (Additional file Figure
S6B, and Table 1). It indicates that these functions may
be associated with metabolism and accelerated growth
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and development of obesity individuals. Notably, the re-
sults of GO enrichment analysis also provide more sig-
nificant pathways with biological annotations (Table 1).
Checked with published literature, these 5 genes were

reported associated with the transform progress of mul-
tiple carcinomas. Fibronectin 1 (FN1) is a glycoprotein
existing with soluble dimer or multimeric form in differ-
ent conditions. FN1 is involved in multiple cell adhesion
and migration processes, including embryogenesis,
wound healing, blood coagulation, host defense, and
found with higher expression in metastasis [36]. It was
reported that FN1 is over expression in the Papillary
Thyroid Carcinoma [37] and listed as potential bio-
marker for diagnostics. PROS1(Protein S 1) is a vitamin
K-dependent plasma protein that works as a cofactor of
the anticoagulant protease. It could activate protein C
(APC) and inhibit blood coagulation [38]. The genetic
mutation of this gene will result in autosomal dominant
hereditary thrombophilia [39] and malignant glioma
[40]. The PROS1 and FN1 others 12 genes alternations
were identified as important diagnostic biomarkers for
thyroid cancer through the meta-analysis the gene ex-
pression profiling of clinical thyroid nodules [41]. SCEL
(Sciellin) is the precursor to the cornified envelope of
terminally differentiated keratinocytes. SCEL is overex-
pressed in the papillary thyroid carcinoma and worked as
key regulator in mesenchymal-to-epithelial transition and
dynamically regulated through the metastasis process [36].
SCEL was high expression in thyroid tumor tissue and sig-
nificantly associated with I-131 [42]. TENM1 (Teneurin
transmembrane protein 1) is involving in pattern forma-
tion and morphogenesis [43]. TENM1 was overexpression
in thyroid cancer and associated with thyroidal invasion
[44] and identified as potential marker of papillary thyroid
carcinoma progress [36, 45]. SLC34A2 (solute carrier fam-
ily 34 member 2) is a member of the SLC34 solute carrier
protein family and coded for pH-sensitive sodium-
dependent phosphate transporter (NaPi2b), which is a
multi-transmembrane [46] and The physiological function
of SLC34A2 is transcellular inorganic phosphate absorp-
tion and maintenance of phosphate homeostasis [47] and
cell differentiation. SLC34A2 is overexpressed in multiple
cancer types, including lung, ovarian, and thyroid cancers
[48] and identified as potential therapeutic target for non-
small cell lung and Ovarian cancer [48]. Combined with
these independent research results, it is strong suggest
that FN1 (R534P), PROS1 ((K200I), (Q571K)), SCEL
(T320S), SLC34A2 (T688M) and TENM1 (S1131F) are po-
tential novel biomarker candidates significantly associated
with thyroid carcinomas and could differentiate the malig-
nant thyroid nodule among cytological indeterminate
cases. As mentioned previously, the 7-gene MT bio-
markers panel was broadly recommended to evaluate the
residual cytological indeterminate thyroid nodules and

estimate with high specificity (~ about 90%) [14–16].
However, the sensitivity of 7-gene MT biomarkers panel
testing showed huge variation (from 44 to 100%) in clin-
ical practice [6, 17]. It suggests that there are some un-
known biomarkers existing in these indeterminate cases.
It is possible that our identified 5 novel biomarkers genes
could contribute to enhance specificity of previously 7-
gene MT biomarkers panel. The combined application of
these two panel biomarkers would get more promise and
precise clinical diagnostic results for nodules malignancy
in some cases population.
There are some limitations and several novelties in our

study. The FNA yield cytology indeterminate cases are in-
cluding subtype of follicular lesion, follicular neoplasm
and suspicious or malignancy. For the first limitation from
this dataset, lacking of these cases histopathological infor-
mation about thyroid cancer subtype sorting, such as fol-
licular adenoma (FA), follicular carcinoma (FC) and
papillary thyroid carcinoma (PTC), we could not track
these potential biomarkers back to original patient’s
pathological status and dig deeper insight. Secondly, the
gene expression profile was limited to 172 genes for prom-
ise diagnostic assessment [8]. It will cause to miss other
genes significantly associated with malignant thyroid car-
cinomas by this pre-filter selection. Thirdly, due to the
bioinformatics analysis nature, the discovered specific GO
pathways and KEGG pathways were referred from previ-
ously literatures and did not be further investigated. Al-
though we explored these significant genes associated
with histological feature through TCGA database via cBio-
Portal and compared with the other two groups case in
the same dataset, these potential biomarkers will be re-
quired to verify with storing patient’s cases according to
subtype of thyroid cancer by immunohistochemistry
(IHC) or other genetic detection method, like qPCR or se-
quencing in coming research work. Therefore, more num-
ber and sorting subtype patient’s cases are mandatory to
verify these potential biomarkers for thyroid cancer precise
diagnostics in the future cohort study. On the other side,
our study has several novelties. Firstly, we applied reverse
strategy by using WGCNA approach to discover the genes
significantly associated with malignant histopathological
feature in clinical FNA samples with cytological indeter-
minate feature. In parallels, compared these signature
genes expression level among histopathological benign and
malignant groups, the results indicated that signature genes
have significant positive overexpression in Malignant
groups and negative overexpression in benign group
(Table 1). Secondly, we inquired the key functional & GO
pathways that genes significance in module involving in
the progress of thyroid carcinomas by Genclip enrichment
analysis (Table 1). The results will be a clause for the next
step research. Thirdly, exploring through TCGA database,
we discovered 5 novel potential biomarkers to differentiate
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the malignant and benign thyroid nodules, which were
identified as potential biomarkers of malignant thyroid
cancer in previously independent researches. Furthermore,
these 5 genes were validated with significant higher expres-
sion level in the TCGA thyroid cancer cases (Fig. 3c).
These results are partially as evidences to support our re-
sults and research strategy.

Conclusions
Our study identified five novel signature genes with mis-
sense mutation, FN1 (R534P), PROS1((K200I), (Q571K)),
SCEL (T320S), SLC34A2(T688M) and TENM1 (S1131F)
that highlighted as potential biomarkers to rule out nod-
ules malignancy. These novel results provide new insight
and strategy to identify these potential biomarkers and
differentiate malignant histopathological thyroid nodules
with cytological Indeterminate. The clinical validation
and application of these prognostic biomarkers will fa-
cilitate the precise diagnostics and help to enhance the
healthcare efficiency for thyroid cancer patients.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12885-020-6676-z.

Additional file 1: Figure S1. Sample dendrogram and Clinic Feature
traits heatmap. Clustering dendrogram of samples based on their
Euclidean distance. The clinical feature traits were histopathology, gender
and age. The white color means a low value, red means a high value,
and grey represents a missing entry.

Additional file 2: Figure S2. Analysis of network topology for various
soft-thresholding powers. In panel (A), the scale-free topology model fit
index (signed R2, y-axis) shows as a function of the soft-thresholding
power (x-axis). In panel (B), the mean connectivity (ki, y-axis) displays as a
function of the soft-thresholding power (x-axis) under different weighting
coefficients. The connectivity ki of node i equals the number of its direct
connections to other nodes. P(k) indicates the frequency distribution of
the connectivity. The higher the coefficient, the closer the network is to
the distribution of the scale free network.

Additional file 3: Figure S3. Heatmap plot of genes network. The
heatmap represents the Topological Overlap Matrix (TOM) among all
Genes used for analysis. Light color represents low overlap and
progressively darker red color represents higher overlap. Blocks of darker
colors along the diagonal are the modules. The gene dendrogram and
module assignment are also shown along the left side and the top.

Additional file 4: Figure S4. Clustering dendrogram of Genes, with
dissimilarity based on topological overlap. Different colors index different
modules. Six modules are identified. Grey bars represent Genes that do
not belong to any other modules and are not co-expressed.

Additional file 5: Figure S5. The scatterplots of Gene Significance (GS)
for histology vs. Module Membership (MM) in the all modules (A~E).
There is a highly significant correlation between GS and MM in this
module, implying that the most important (central) elements of blue
module also tend to be highly correlated with thyroid nodule histology
trait.

Additional file 6: Figure S6. GO and pathway analysis of Genes
Significant (GS). Clustering analysis of the biological functions of 22 genes
in previous studies for GO (A) and Pathway (B) generated by the GenClip
software. In the heatmap, the black color represents that the biological
function of the corresponding gene-term association has not been re-
ported yet. While light green color means that the corresponding gene-

term association positively has been reported. The color scale bar for pro-
portion of genes associated were labelled.

Additional file 7: Table S1. The samples information and case group
sorting.

Additional file 8: Table S2. The pick soft threshold for Module.

Additional file 9: Table S3. List of the 29 Genes in the grey module.

Additional file 10: Table S4. List of the 24 significant genes in the blue
module.

Additional file 11: Table S5. The Copy-number Alterations of signifi-
cant genes.

Additional file 12: Table S6. The Mutual Exclusivity tab of significant
gene pairs. The genes pairs alternated in Thyroid cancer are mutual
exclusivity. The tab provides summary statistics significant on mutual
exclusivity and co-occurrence of genomic alterations in each pair of
query genes. The mutual exclusivity is significant for the other two gene
pairs (P < 0.05). The P values are determined by a Fisher’s exact test with
the null hypothesis that the frequency of occurrence of a pair of alter-
ations in two genes is proportional to their uncorrelated occurrence in
each gene.

Additional file 13: Table S7. The Genetic Alterations type of query
genes.
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