
Germline genetic polymorphisms influence tumor gene
expression and immune cell infiltration
Yoong Wearn Lima,1, Haiyin Chen-Harrisa,1, Oleg Maybab, Steve Lianogloub, Arthur Wusterb,c, Tushar Bhangaleb,c,
Zia Khanc, Sanjeev Mariathasand, Anneleen Daemenb, Jens Reederb, Peter M. Havertyb, William F. Forrestb,
Matthew Brauerb, Ira Mellmana, and Matthew L. Alberta,2

aDepartment of Cancer Immunology, Genentech, South San Francisco, CA 94080; bDepartment of Bioinformatics and Computational Biology, Genentech,
South San Francisco, CA 94080; cDepartment of Human Genetics, Genentech, South San Francisco, CA 94080; and dOncology Biomarker Development,
Genentech, South San Francisco, CA 94080

Edited by Tak W. Mak, The Campbell Family Institute for Breast Cancer Research at Princess Margaret Cancer Centre, University Health Network, Toronto, ON,
Canada, and approved October 23, 2018 (received for review March 22, 2018)

Cancer immunotherapy has emerged as an effective therapy in a
variety of cancers. However, a key challenge in the field is that only a
subset of patients who receive immunotherapy exhibit durable
response. It has been hypothesized that host genetics influences
the inherent immune profiles of patients and may underlie their
differential response to immunotherapy. Herein, we systematically
determined the association of common germline genetic variants
with gene expression and immune cell infiltration of the tumor. We
identified 64,094 expression quantitative trait loci (eQTLs) that
associated with 18,210 genes (eGenes) across 24 human cancers.
Overall, eGenes were enriched for their being involved in immune
processes, suggesting that expression of immune genes can be
shaped by hereditary genetic variants. We identified the endoplasmic
reticulum aminopeptidase 2 (ERAP2) gene as a pan-cancer type eGene
whose expression levels stratified overall survival in a subset of pa-
tients with bladder cancer receiving anti–PD-L1 (atezolizumab) ther-
apy. Finally, we identified 103 gene signature QTLs (gsQTLs) that
were associated with predicted immune cell abundance within the
tumor microenvironment. Our findings highlight the impact of germ-
line SNPs on cancer-immune phenotypes and response to therapy;
and these analyses provide a resource for integration of germline
genetics as a component of personalized cancer immunotherapy.
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Cancer can be thought of as a dynamic tug-of-war between the
tumor and the host. To thrive, tumor cells acquire charac-

teristics of sustained proliferation, genome instability, and mutation
(1). The host immune system counteracts cancer by recognizing,
targeting, and eliminating tumor cells, but, in doing so, applies the
selective pressure responsible for tumor immune evasion (2). The
relative success of the tumor is determined by a myriad of factors,
which include genetic susceptibilities that have been mapped to
oncogenes or tumor suppressor genes, as well as our lifetime of
cumulative environmental exposures. An unexplored set of deter-
minants are the germline genetic and environmental factors that
combine to represent the inherent immunological status of a pa-
tient, as it plays out at the multiple rate-limiting steps of the cancer-
immunity cycle (3). The rapidly emerging field of cancer immu-
notherapy aims to tip the balance by harnessing the host immune
response(s); however, despite significant successes, only a subset of
patients benefits from durable responses (3). To explore the role of
this underappreciated determinant of heterogeneity among patients
with cancer, namely, germline genetic polymorphism, we defined
the set of expression/gene signature quantitative trait loci (QTLs)
that associated with tumor gene expression and the infiltration of
tumors by immune cells.
Inherited genetic variants have been demonstrated to impact

baseline and induced host immune responses. Indeed, there is large
variation in the abundance and activation state of multiple immune
cell types (4–6), molecules (7, 8), and genes (9, 10), which likely
translates to distinct immune states. Prior studies have demon-

strated that inherited genetic variation affects expression of a
substantial number of genes (11–13). In fact, genome-wide asso-
ciation studies (GWASs) have identified hundreds of genetic risk
loci for autoimmune and inflammatory diseases (14), underscoring
the heritable nature of immune variation. However, such concepts
have yet to be systematically applied to cancer immunology.
To assess the association between genetic variation and tumor

gene expression, we utilized The Cancer Genome Atlas (TCGA)
and systematically performed expression QTL (eQTL) analysis
across 24 human cancer types. eQTLs are genomic loci harboring
polymorphisms that are associated with gene transcript levels.
Because gene expression reflects cellular phenotypes, eQTL
studies bridge germline variants and phenotypes via the in-
termediate trait of mRNA expression. Large-scale eQTL studies,
such as the Genotype-Tissue Expression (GTEx) project, have
demonstrated widespread genetic control of gene expression
across normal tissue types (15–17). To formally test whether
similar underlying genetic variants are determinants of gene
expression in cancer, we applied a similar approach, establishing
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shaping the tumor environment and immune response.
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the set of common hereditable factors that are associated with cancer-
immune phenotypes. Notably, there is considerable overlap between
GTEx tissue and TCGA tumor eGenes, indicating that regulation of
tumor tissue gene expression shares genetic determinants with healthy
tissues. We also identified gene signature QTLs (gsQTLs) that asso-
ciated with predicted immune cell abundance, thus establishing
putative modulators of immune cell infiltration in tumors. This
comprehensive eQTL and gsQTL resource helps to define the like-
lihood that a given person’s tumor will adopt a more inflamed or
noninflamed phenotype, effectively defining the person’s immune
state, and supporting a path toward personalized immunotherapy.

Results
eQTL Discovery in TCGA Cancer Types. To identify germline genetic
variants associated with tumor gene expression, we systematically
performed eQTL discovery in each of the 24 cancer types in
TCGA that contained matched tumor RNA-sequencing (RNA-
seq) and whole-genome genotyping data. Recognizing that tu-
mor gene expression can be impacted by somatic copy number
alterations, we modified the eQTL discovery pipeline established
by the GTEx Consortium (17) by including gene-level somatic
copy number values in the linear models (Fig. 1A). Briefly,
genome-wide genotyping data for n = 4,840 patients included in
TCGA were derived from either normal blood (for solid tumor
cancer types) or normal tissue (for acute myeloid leukemia),
imputed to ∼22 million SNPs, and then filtered to a total of
∼4 million common variants with >10% minor allele frequency

(MAF) and 90% genotyping call rates. In parallel, TCGA tumor
RNA-seq datasets were aligned to GRCh38, filtered to exclude
genes with low expression, and then quantile- and normal-
transformed to minimize the impact of outliers. Within each
cancer type, we performed local eQTL discovery using linear
regression, modeling the expression value of each gene as pre-
dicted by a nearby SNP (defined by ±1-Mb proximity to the
annotated gene boundary), while controlling for ancestry, age,
sex, and probabilistic estimation of expression residuals (PEER)
factors (18), as in the GTEx workflow. PEER factors were
computed from normalized gene expression to capture global
expression variability due to hidden factors, such as batch effects.
In addition, we included the estimated somatic copy number for
the gene in question as a covariate. Matrix eQTL software (19) was
modified to enable incorporation of copy number as well as vari-
ance factorization to reveal the contribution of all covariates and
SNPs to gene expression in serial regression (details are provided in
Methods). The numbers of eQTLs and associated eGenes are listed
for the 24 cancer types, applying a false discovery rate (FDR) cutoff
of 0.05 for significant SNP-gene pairs. To account for linkage dis-
equilibrium (LD), we further trimmed our hits to retain only the
most significant eQTL per haplotype block (Fig. 1A and details are
provided in Methods). We provide a complete set of eQTL-eGene
pairs via https://albertlab.shinyapps.io/tcga_eqtl/.

eQTLs Associate with Gene Expression of 18,210 Genes in Tumor Tissues. In
total, we identified 76,201 significant SNP-gene pairs, corresponding
to 64,094 unique eQTLs and 18,210 unique eGenes across the 24
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Fig. 1. Expression of QTLs in tumor tissues. (A) eQTL discovery workflow to identify the association between germline genotype and tumor gene expression in 24 TCGA
cancer types. Covariates studied are color-coded. nRPKM, normalized read per kilobase of transcript permillionmapped reads. (B) RepresentativeManhattan plot showing
eQTLs in brain lower grade glioma (LGG) along the 22 human chromosomes. Each dot represents a significant eQTL, and the y axis represents −log10 P value. The top
10 most significant eGenes are labeled. Plots for each cancer type can be found in SI Appendix, Fig. S1A. (C) Number of eQTLs in each cancer type correlates with sample
size. Definitions of cancer types are provided in Table 1. (D) Donut plot showing the sharing of eGenes across tissues. For example, 5,322 eGenes were discovered in only
one cancer type and 4,440 eGenes were discovered in two cancer types. (E) Histogram showing the distribution of the absolute effect size (β) of eQTLs of all cancer types.
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TCGA cancer types (Fig. 1B). The Manhattan plots highlight the top
10 most significant eGenes per cancer type (Fig. 1B and SI Appendix,
Fig. S1A). Across cancer types, 11,406 (17.8%) of SNPs associated
with more than one local eGene and 13,286 (73%) eGenes were
regulated by two or more independent eQTLs (i.e., not in LD). The
number of eQTLs ranged from five in adrenocortical carcinoma to
16,737 in thyroid carcinoma (THCA) (Table 1), which correlated
with the sample size (Fig. 1C). Comparison of our findings to
results from the GTEx project revealed that 87.4% of tumor
eGenes have been cataloged as eGenes based on the study of
available healthy tissues. This suggests that germline genetic var-
iants may similarly contribute to the biological processes within
tumor tissue.
To ascertain how sample size influenced the number of

eGenes identified, we subsampled each cancer type to a range of
sample sizes, where possible, and repeated eGene discovery. As
expected, the number of eGenes decreased with down-sampling
(SI Appendix, Fig. S1B). Interestingly, several cancer types, in-
cluding THCA, prostate adenocarcinoma (PRAD), brain lower
grade glioma, and acute myeloid leukemia, had a higher number
of eGenes than other cancer types when sample size differences
were adjusted (SI Appendix, Fig. S1B). For example, in THCA,
26.9–32.2 eGenes were discovered per sample (SI Appendix, Fig.
S1C), consistent with previous findings using healthy tissues,
which identified thyroid as one of the tissues bearing the greatest
number of eGenes (17). For all cancer types, the number of
eGenes increased with sample size, with no evidence of satura-
tion (SI Appendix, Fig. S1B), therefore suggesting that the true
extent of germline influence on tumor gene expression is likely to
be even greater.
To understand how genetic effects vary among cancer types,

we next investigated the sharing of eGenes among different
cancer types. Notably, 56 eGenes were common to 20 or more
cancer types; however, the majority of eGenes (14,739 or 80.9%)
were discovered in only four or fewer cancer types (Fig. 1D), with
29.2% (5,322) being identified in only one cancer type (Fig. 1E).
Larger datasets will be required to determine if the degree of
tumor tissue sharing was limited by statistical power or if these

are truly tumor tissue-specific eGenes. The MAFs of eQTLs
were evenly distributed from 10–50% (SI Appendix, Fig. S1D).
The effect size, defined as the slope (β) of the linear regression,
measured the magnitude of normalized gene expression change
per additional copy of minor allele, in the units of SDs of gene
expression. Across indications, the effect size of all eQTLs had
absolute values that ranged from 0.058 to 3.49, with a mean β =
0.37 (Fig. 1E and SI Appendix, Fig. S1E). Nine hundred sixty-
three eQTLs had effect sizes larger than 1. As expected, most
eQTLs were concentrated proximal to the transcriptional start
site of the genes, and these eQTLs were shown to have higher
absolute effect sizes (SI Appendix, Fig. S1 F and G).
Having determined the set of eQTL-eGene pairs, we in-

tegrated the different covariates that contributed to variability in
tumor eGene expression. For all genes, we regressed expression
on ancestry, age, sex, PEER factors, gene copy number, and the
genotype of top associated eQTLs, adding each covariate in se-
quence and recording the additional fraction of total expression
variance explained by each added covariate. The fraction of gene
expression variance explained jointly by ancestry, age, and sex
was modest, with median values (across all genes) ranging from
3.5% in head and neck squamous cell carcinoma (HNSC) to
28.6% in pancreatic adenocarcinoma (PAAD) (Fig. 2A). By
contrast, adding PEER factors to the model increased the ex-
planatory power drastically, with the median cumulative fraction
of variance explained ranging from 36.2% in ovarian serous
cystadenocarcinoma to 67.3% in kidney renal clear cell carci-
noma, suggesting the presence of confounding factors that sub-
stantially contributed to the heterogeneity in tumor gene
expression (Fig. 2A). We asked if copy number alteration, a
common anomaly in cancer, could be one of the unexplained
confounding factors. Indeed, we found in many cancer types that
select PEER factors correlated with copy number (SI Appendix,
Fig. S2A). For example, in colon adenocarcinoma (COAD),
PEER factor 2 showed moderate correlation with copy number
(Spearman’s correlation coefficient = 0.36 across all COAD
eGenes) (SI Appendix, Fig. S2A). This indicated that PEER
factors had captured some of the global impact of copy number

Table 1. Number of eQTLs and eGenes per cancer type

Cancer type Acronym Sample size eQTL count eGene count

Adrenocortical carcinoma ACC 49 5 5
Bladder urothelial carcinoma BLCA 151 958 808
Breast invasive carcinoma BRCA 799 14,089 8,474
Cervical squamous cell carcinoma and

endocervical adenocarcinoma
CESC 118 698 604

Colon adenocarcinoma COAD 183 3,351 2,510
Glioblastoma multiforme GBM 135 2,295 1,776
Head and neck squamous cell carcinoma HNSC 364 6,361 4,314
Kidney renal clear cell carcinoma KIRC 61 239 228
Kidney renal papillary cell carcinoma KIRP 102 1,085 940
Acute myeloid leukemia LAML 122 2,714 2,118
Brain lower grade glioma LGG 255 8,273 5,531
Liver hepatocellular carcinoma LIHC 85 328 298
Lung adenocarcinoma LUAD 361 6,545 4,265
Lung squamous cell carcinoma LUSC 264 3,349 2,313
Ovarian serous cystadenocarcinoma OV 318 3,882 2,656
Pancreatic adenocarcinoma PAAD 46 74 73
Prostate adenocarcinoma PRAD 209 8,166 5,628
Rectum adenocarcinoma READ 73 391 355
Sarcoma SARC 90 308 277
Skin cutaneous melanoma SKCM 73 155 144
Stomach adenocarcinoma STAD 234 2,710 1,933
Thyroid carcinoma THCA 366 16,737 10,153
Uterine corpus endometrial carcinoma UCEC 336 4,315 3,050
Uterine carcinosarcoma UCS 46 8 8
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on gene expression. Nevertheless, to account for the full effect of
copy number on the expression level of individual genes, we
included the copy number of the local gene in question as an
additional covariate, executed after taking into account PEER
factors (Fig. 1A). Overall, we found that the additional fraction
of expression variance explained by a given gene’s copy number
was small (average = 0.3%). It is notable, however, that for
177 eGenes, copy number explained an additional 5–26.4% of
expression variance (Fig. 2B).
Accounting for aforementioned covariates, we determined

that the top eQTLs, on average, explained an additional 5.3% of
the total variance in gene expression, showing a wide range at the
individual gene level (SD = 6.3%, maximum additional fraction
of variance explained = 70.4%) (Fig. 2C). As a majority of the
eGenes had more than one associated eQTL present in distinct
LD blocks, these results provide a lower limit estimate of the
impact of germline variants on tumor gene expression.
To illustrate results from these analyses, we show here two

examples in breast invasive carcinoma, where somatic copy
number or germline genetics contributed greatly to variable gene
expression. In the first example, ancestry, age, sex, and PEERs
collectively explained 36.4% of the variance in SETD4 gene ex-
pression. Inclusion of copy number markedly increased the total
variance explained to 56%, while further inclusion of the top
eQTL only marginally improved the total variance explained to
58.1% (Fig. 2D). The impact of copy number on SETD4 ex-
pression is illustrated by the boxplot showing a positive corre-
lation between SETD4 copy number and SETD4 mRNA
expression levels (Fig. 2E). By contrast, for the inducible T cell
costimulator ligand (ICOSLG) gene, ancestry, age, sex, PEERs
and copy number collectively explained only 8.5% of the total

variance in ICOSLG expression. Upon addition of the top eQTL
(rs7278940), the fraction of total variance explained increased to
62.2% (Fig. 2F), suggesting that ICOSLG expression in the tumor
was under strong germline control. In fact, the stratification of
ICOSLG expression by genotype was observed not only in tumor
samples but also in normal breast tissues in TCGA (Fig. 2G). Our
online tool provides the ability to query the serial explained vari-
ance decomposition for each gene expressed within the dataset of
TCGA, highlighting the additional contributions of each factor of
interest (https://albertlab.shinyapps.io/tcga_eqtl/).

Immunity-Related Genes Are Under Strong Germline Genetic Control.
To identify cellular processes under strong influence of germline
genetics, we evaluated those gene sets that are under strong in-
fluence of germline genetics, as measured by overrepresentation
of eGenes. For each cancer type, we performed gene ontology
(GO) analysis in three defined categories: biological process,
cellular component, and molecular function. GO analysis iden-
tified multiple immune-related gene sets that were enriched for
eGenes (Dataset S1). For example, in sarcoma, multiple GO
terms relevant for T cell immunity were enriched for eGenes
(FDR < 0.05): MHC protein complex, peptide antigen binding,
and T cell costimulation (Fig. 3A). The enrichment of eGenes in
immune-related gene sets was not unique to TCGA tumor tis-
sues, as a similar enrichment was observed in multiple normal
tissues in the GTEx project (Dataset S1). These findings are
consistent with previous studies, which reported that genetic
variants play a major role in shaping an individual’s immune
response (8, 20).
We further tested whether eQTLs preferentially impacted ex-

pression of immune genes relative to other genes. Previous studies

A B
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Fig. 2. eQTLs explain 5.3% of total tumor gene ex-
pression variance. (A) Cumulative fraction of variance
in eGene expression was calculated using sequential
addition of the following covariates: three ancestry
principal components, age, sex, 15 PEER factors, copy
number, and the top associated eQTLs. The bars rep-
resent the median value for all eGenes across 24 TCGA
cancer types. Definitions of cancer types are provided
in Table 1. (B) Histogram showing the distribution
of additional fraction of variance in gene expression
that is explained by copy number, after accounting
for ancestry, age, sex and PEER factors, for eGenes
aggregated across all cancer types. (C ) Histogram
showing the distribution of the fraction of variance
in gene expression explained by the top associated
eQTLs, for eGenes aggregated across all cancer types.
(D) Total fraction of variance in SETD4 expression
explained by sequential addition of different cova-
riates, in BRCA. (E) Boxplot showing the expression
of SETD4 in BRCA, as stratified by SETD4 copy num-
ber. (F) Total fraction of variance in ICOSLG expres-
sion explained by sequential addition of different
covariates, in the BRCA cancer type. (G) Boxplot
showing the expression levels of ICOSLG stratified by
the genotype of its top associated eQTL, rs7278940,
in BRCA. Both normal and tumor samples are shown.
nRPKM, normalized read per kilobase of transcript
per million mapped reads.
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have indicated the presence of eQTLs in enhancer regions (15,
17); thus, we asked if immune gene enhancers were more likely to
harbor stronger eQTLs than general enhancers. We compared
SNP-gene association P values for SNPs that mapped to enhancers
active in the tissue of origin (general enhancers) with enhancers
active in T cells (immune enhancers). We performed our analyses
using SNP-gene pair P values computed from bladder urothelial
carcinoma (BLCA) and lung adenocarcinoma (LUAD), where
enhancer annotations were available for the corresponding
healthy tissue (21). As expected, gene-SNP association P values
for SNPs located within the general enhancer regions deviated
from the uniform distribution, consistent with the presence of
eQTLs in enhancers (Fig. 3 B and C). Interestingly, the global
gene-SNP P value distribution for SNPs in immune enhancers
was further shifted toward smaller P values (Fig. 3 B and C),
suggesting that SNPs in immune enhancer regions harbored
more significant gene-SNP associations than SNPs in general
enhancers (Wilcoxon rank sum test: P < 2.2 × 10−16 for both
BLCA and LUAD). This suggests that expression of immune
genes, relative to overall gene expression, was enriched for their
being impacted by SNPs.

Endoplasmic Reticulum Aminopeptidase 2 Is a Pan-Cancer eGene That
Stratifies Response to Luminal-Subtype Bladder Cancer Immunotherapy.
We next aimed to determine if expression of eGenes was associated
with response to immunotherapy. We focused on eQTL-eGene
pairs for which associated genetic variants most strongly contribute
to heterogeneity in tumor gene expression. We filtered the eQTLs
by their influence on eGene expression variance (accounting
for >50% of the additional variance in gene expression in at least
one cancer type). This filtering step resulted in a list of 21 eGenes
under strong germline genetic control (Fig. 4A).
Given our interest in cancer immunology and immunotherapy,

we focused our analysis on the endoplasmic reticulum amino-
peptidase 2 (ERAP2) and ICOSLG genes (Fig. 4A). In all
24 cancer types, the associated ERAP2 SNPs fell into a large
(∼150 kb) haplotype block that spans the ERAP2 gene and the

neighboring LNPEP gene (also known as IRAP) (Fig. 4B). For the
top eQTL, rs2927608, the effect sizes (β) on ERAP2 gene expres-
sion ranged from 1.02 in lung squamous cell carcinoma (LUSC) to
0.98 in skin cutaneous melanoma (SKCM) (Fig. 4C). For example,
in BLCA, the genotype of rs2927608 was associated with expression
levels of ERAP2 (β = 1.19, P = 6.69 × 10−36) (Fig. 4D). The effect of
eQTLs on ERAP2 was not unique to tumor samples, as ERAP2 was
also a significant eGene in all healthy tissues in the GTEx catalog
(17) (SI Appendix, Fig. S4A). Interestingly, the haplotype associated
with low ERAP2 expression, tagged by the rs2927608-G allele,
contains an SNP that has been previously reported to alter a splice
donor site, and thus to result in intronic read-through and the in-
troduction of a stop codon, which, in turn, leads to nonsense-
mediated decay (NMD) of the ERAP2 mRNA (22) (haplotype B
in SI Appendix, Fig. S4C). ICOSLG was an eGene in 21 TCGA
cancer types. The most significant eQTL for ICOSLG, rs7278940,
mapped to a haplotype with a known GWAS hit for celiac disease
(23). The rs7278940 eQTL showed an effect size on ICOSLG gene
expression that ranged from 0.85 in stomach adenocarcinoma
(STAD) to 1.2 in LUSC (SI Appendix, Fig. S4F).
In the context of immune regulation, ERAP2 and ICOSLG

play important roles. ERAP2 participates in the processing and
presentation of antigen, acting as a heterodimer with a closely
related aminopeptidase, ERAP1. Together, ERAP1 and ERAP2
trim precursor peptides to mature epitopes that can be loaded
onto HLA class I molecules and presented on the surface of both
antigen-presenting cells and tumor cells to elicit and engage a
cytotoxic T cell response (24). Interestingly, we found that ERAP1
was also an eGene in 16 cancer types. For example, an SNP lo-
cated within ERAP1, rs28119, was an eQTL for ERAP1, with ef-
fect sizes ranging from 0.49 in PRAD to 0.74 in glioblastoma
multiforme (SI Appendix, Fig. S4 D and E). While ERAPs have
been established as important for the generation of the peptide
repertoire, paradoxically, attenuation of the mouse ortholog,
ERAAP, resulted in an enhanced antitumor T cell response (25).
This enhanced immunogenicity was thought to be a consequence

B C

A

Fig. 3. Immunity-related genes and enhancers are
enriched for eQTLs. (A) GO enrichment using eGenes
for the sarcoma cancer type. BP, biological process; CC,
cellular component; MF, molecular function. (B and C)
Quantile-quantile plots showing the deviation of SNP-
gene pair association P values from the distribution
expected under the null hypothesis (red line). (B) BLCA
SNP-gene pair P values for SNPs located within either
general (i.e., bladder tissue) (black) or immune (i.e.,
T cell) enhancer regions (blue). Relative to SNPs lo-
cated within general enhancers, SNPs located within
immune enhancers have more significant gene-SNP
pair P values. (C) LUAD SNP-gene pair P values for
SNPs located within either general (i.e., lung tissue)
(black) or immune (i.e., T cell) enhancer regions (blue).

Lim et al. PNAS | vol. 115 | no. 50 | E11705

G
EN

ET
IC
S

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804506115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804506115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804506115/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1804506115/-/DCSupplemental


of presentation of an altered repertoire that included novel im-
munogenic peptides in the absence of ERAAP (26). ICOSLG
acts at a distinct step, regulating adaptive immunity by acting as a
costimulatory molecule expressed by antigen-presenting cells
and engaging ICOS on T cells, inducing activation and differ-
entiation (27). ICOSLG signaling in dendritic cells also serves to
amplify pattern recognition-induced cytokine stimulation (28).
Additionally, activating ICOS has been shown to enhance tumor
immunity in mice (29), and agonist antibodies are being de-
veloped for cancer immunotherapy in humans (27).
Given the role of ERAP2 and ICOSLG in adaptive immunity

and the preclinical data supporting their respective roles in an-
titumor immunity in mice, we asked if variable ERAP2 or
ICOSLG expression in humans was associated with different
survival outcome in patients with cancer. Using RNA-seq data
from the anti–PD-L1 (atezolizumab) urothelial bladder cancer
phase 2 clinical trial [IMvigor210 (30)], we stratified patients into
two groups, split by the median expression of ERAP2 or
ICOSLG (of note, genetic data are not available for this trial).
While ICOSLG did not serve as a prognostic marker in any
bladder cancer subtype (SI Appendix, Fig. S4H), ERAP2 levels
were significantly associated with overall survival in patients with
the luminal subtype of bladder cancer (Fig. 4E). Consistent with

mouse studies, patients with low ERAP2 expression had better
overall survival relative to those with higher ERAP2 expression
(P = 0.03) (Fig. 4F). One potential caveat concerns ERAP2 ex-
pression being induced by IFN-γ (31), which suggested that
ERAP2 could simply be a secondary effect of differential IFN-γ
stimulation in responders and nonresponders. Indeed, IFN-
γ–induced genes, including CXCL9, have been shown to be as-
sociated with both enhanced CD8+ T cell infiltration in tumors
and response to anti–PD-L1 (30). We interpreted that it was
unlikely for ERAP2-associated survival benefit to be a conse-
quence of the IFN-γ response, as enhanced survival was associ-
ated with low, rather than high, ERAP2 expression. Nonetheless,
to determine whether variable IFN-γ response confounded the
association between ERAP2 and patient survival, we included
CXCL9 expression (shown to be more robust than IFN-γ ex-
pression) into the same model and found that the association
between ERAP2 and survival significantly enhanced the pre-
dictive value of CXCL9 (likelihood ratio test: P < 2.2 × 10−16)
(Fig. 4 G–I). These data suggest that ERAP2 is an independent
prognostic predictor of survival in patients with luminal subtype
bladder cancer receiving anti–PD-L1 therapy, and, in fact, low
ERAP2 expression can be used along with the IFN-γ response to
establish a further improved prognostic biomarker signature. We
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Fig. 4. ERAP2 expression stratifies overall survival in
patients with bladder cancer. (A) Heat map showing
the fraction of variance in gene expression explained
by eQTLs for 21 genes associated with high-impact
variants (accounting for >50% of variance in gene
expression in at least one cancer type). (B) LocusZoom
plot displaying a 1-Mb region around the ERAP2
gene. The dots represent SNPs; the height of the
dots represents the −log10 P value of the association
between the SNPs and ERAP2 expression in BLCA.
rs2927608 is the most significantly associated SNP
with ERAP2 expression. The color of the dots repre-
sents LD (r2) of a particular SNP with rs2927608.
cMMb, centimorgan per megabase. (C) Effect size (β)
of ERAP2 eQTL rs2927608 across TCGA cancer types.
The error bars represent SEs. Definitions of cancer
types are provided in Table 1. (D) Boxplot showing
BLCA ERAP2 expression in log2 normalized read
per kilobase of transcript per million mapped reads
(nRPKM) for the three genotype groups of the
eQTL rs2927608. Each dot represents ERAP2 expres-
sion in a patient tumor sample. (E) Hazard ratio of
overall survival, as stratified by median ERAP2 ex-
pression level, of patients with bladder cancer in the
IMvigor210 phase 2 PD-L1 trial, for all molecular
subtypes or only the luminal or basal subtype. The
error bars represent the 95% confidence intervals
(*P < 0.05). n.s., not significant. (F) Overall survival of
patients with bladder cancer with tumors of the lu-
minal subtype in the IMvigor210 trial, stratified by
median ERAP2 expression level. (G) Hazard ratio of
overall survival, as stratified by median CXCL9 ex-
pression level, of patients with bladder cancer in the
IMvigor210 trial, for all molecular subtypes or only
the luminal or basal subtype. Black bars represent the
hazard ratio calculated using CXCL9 expression alone;
red bars represent the hazard ratio calculated using
ERAP2 normalized CXCL9 expression level. The error
bars represent the 95% confidence intervals (*P <
0.05; **P < 0.005). Overall survival of patients with the
luminal subtype as stratified by median CXCL9 level,
without (H) or with (I) ERAP2 normalization, is shown.
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do note that ERAP2 expression was not prognostic for the basal
subtype of bladder cancer (Fig. 4E), and may reflect possible
interactions with HLA molecules or other unknown factors.

gsQTLs Impact Immune Cell Infiltration in Tumors. Immune cell in-
filtration has been shown to be another important variable that
may positively or negatively shape tumor growth, progression, or
clinical outcome (32). It has yet to be evaluated if germline ge-
netics influences immune cell infiltration in tumors. Therefore,
we next aimed to examine SNPs associated with the abundance
of immune cells in tumors, taking advantage of predictive
methods that permit the estimation of cellular composition
based on gene expression data.
Specifically, we inferred the abundance of immune cells in

TCGA tumor samples using a cellularity deconvolution method
based on the aggregate expression of marker genes, recently
established by Aran et al. (33). These gene signature scores es-
timate the abundance of 34 lymphoid and myeloid cell types (SI
Appendix, Fig. S5A). We next modified our analytical method to
determine gsQTLs associated with predicted immune cell
abundance. We focused on SNPs that were within 50 kb of an-
notated genes to reduce the burden of multiple testing. As with
the eQTL discovery workflow, we initially controlled for cova-
riates by including three ancestry principal components, 15
PEER factors, sex, and age. Concerned that PEER factors would
capture variable gene expression resulting from the heteroge-
neous presence of immune cells in tumors, we asked if PEER
factors correlated with the immune cell gene signatures. Indeed,
PEER factors highly correlated with some of the gene signatures
(SI Appendix, Fig. S5 B–D and Dataset S1), indicating that cel-
lular composition is a major contributor to the variance in gene
expression. To mitigate the potential loss of signal to PEER,
while still accounting for unexplained variance, we computed, for
each gene, residuals from regressing its expression on gene sig-
nature scores. The resulting residual matrix thus reflected global
variation in expression that is not correlated with immune cell
composition but is due to other factors, such as copy number and
batch effects. We then used this residual matrix to calculate a
new set of PEER factors. With this improved pipeline (SI Ap-
pendix, Fig. S5A), we performed gsQTL discovery using Matrix
eQTL software, utilizing the P value threshold of 2.1 × 10−8 for
significant hits (details are provided in Methods). Finally, we
pruned the hits to generate a final list of independent gsQTLs
(i.e., not in LD) (SI Appendix, Fig. S5A).
We discovered a total of 103 gsQTLs that were significantly

associated with the immune gene signatures (31 lymphoid and
72 myeloid signatures) (Dataset S1). Cancer types with at least
one significant gsQTL, along with the associated gene signatures,
are shown in Fig. 5A. The significant immune gene signatures
included signatures for T cells, B cells, natural killer (NK) cells,
dendritic cells, eosinophils, macrophages, and monocytes, sug-
gesting the widespread impact of germline genetics on immune
cellularity within the tumor microenvironment (Fig. 5A). In-
terestingly, 23 gsQTLs were significantly associated with multiple
gene signatures, all of which were in the STAD cancer type, a
possible reflection of their being a common causal infectious agent
responsible for most gastric cancer (Fig. 5B). These gsQTLs were
associated with two or more of the following gene signatures:
conventional dendritic cells (cDCs), immature dendritic cells
(iDCs), monocytes, and NK T (NKT) cells, suggesting the pres-
ence of common modulators for these signatures. Alternatively,
the gsQTL is impacting a common progenitor, which, in turn, is
regulating multiple cell types [e.g., monocytes and iDCs are part of
a common hematopoietic lineage (34)]. The gsQTLs associated
with cDCs, iDCs, and monocytes had opposite direction effect
sizes compared with the gsQTLs associated with the NKT cell
signature (Fig. 5B). In agreement, the cDC, iDC, and monocyte

signatures were positively correlated, and they negatively corre-
lated with the NKT cell signature (SI Appendix, Fig. S5E).
A possible mechanism by which the gsQTLs influence immune

gene signatures was by acting as eQTLs for “mediator” genes
that are upstream regulators of immune cell infiltration in tu-
mors. Thus, we asked if any of the gsQTLs were also eQTLs,
determined in tumor gene expression (in this study) or in healthy
tissues as reported in previous studies (17, 35). Indeed, 19
gsQTLs were also eQTLs with at least one associated eGene.
For gsQTLs that were not known eQTLs, we assigned the
nearest gene(s) to gsQTLs, thereby generating a list of candidate
mediator genes (Dataset S1). A mediator analysis (Methods) was
performed to determine if the gsQTL-gene signature associations
were likely regulated by expression of the respective candidate
mediator genes. Interestingly, nine gsQTL-gene signature associa-
tions were significantly attenuated, as reflected by decreased abso-
lute effect size (β), after adjusting for expression of the mediator
genes (500 simulations; P < 0.05) (Fig. 5C). However, while at-
tenuated, the gsQTL-gene signature associations were not com-
pletely abolished, indicating that the mediation effects were partial.
For example, the gsQTL rs35051459 was associated with the
NKT cell gene signature in HNSC (β = 0.44, P = 1.79 × 10−10) (Fig.
5D, Left). This association was partially mediated by the SEMA4D
gene (Fig. 5D, Right), which was previously shown to be an eGene
for rs35051459 (17). Interestingly, expression of SEMA4D has been
shown to influence the infiltration and distribution of leukocytes in
the tumor microenvironment, and the inhibition of SEMA4D
promoted immune infiltration into the tumor (36). In agreement,
the rs35051459 genotype associated with lower SEMA4D expression
was associated with a higher NKT cell gene signature (Fig. 5D). As
a second example in STAD, the association between the gsQTL
rs9308067 and the monocyte gene signature (β = −0.95, P = 6.25 ×
10−9) was partially mediated through the MARCH1 gene (Fig. 5E),
which was previously shown to regulate innate immune responses by
modulating monocyte functions (37).
The mediator analysis, while useful, only captured genes that

mediated the gsQTL-gene signature associations by acting as
eGenes. Besides influencing mRNA expression, gsQTLs may
also affect associated genes by influencing mRNA conformation,
stability, and localization or by resulting in changes in the
encoded amino acids (38). This, in turn, may impact the func-
tional role of the associated genes in regulating immune cell in-
filtration in the tumor. For example, the gsQTL rs12063638 was
associated with the cDC gene signature in STAD (β = 0.44, P =
1.79 × 10−10) (Dataset S1). Although rs12063638 has not been
shown to be an eQTL, it is located downstream of the gene that
encodes for glycoprotein podoplanin (PDPN) (Fig. 5F), a key
modulator of dendritic cell trafficking (39). We also highlight the
gsQTL rs73016119, which was associated with the plasma cell gene
signature in PAAD (β = 1.39, P = 3.39 × 10−9). Notably,
rs73016119 is in LD with rs561722 (R2 = 0.74), which has been
shown through GWASs to be associated with ulcerative colitis (Fig.
5G), an inflammatory condition characterized, in part, by in-
filtration of plasma cells in the gut (40). An understanding of how
the gsQTL impacts plasma cells may shed light upon the patho-
genesis of ulcerative colitis.
Together, the presence of gsQTLs for immune gene signatures

suggests that germline genetic variants may influence the abun-
dance, infiltration, and composition of immune cells in tumors.
Moreover, gsQTLs, along with the candidate genes, provide a
resource for functional studies of immune infiltration in the
tumor microenvironment.

Discussion
Large-scale efforts by the GTEx Consortium have demonstrated
the impact of eQTLs on gene expression in healthy tissues (17).
Previous studies that aimed to characterize eQTLs in tumors
were limited in scope as they were performed in only a small
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number of cancer types (41, 42). A recent pan-cancer analysis
identified eQTLs across TCGA cancer types (43); however, their
assessment applied the GTEx-eQTL matrix without consider-

ation for copy number alterations present in tumor genomes; more-
over, they did not provide detailed evaluation of the impact of genetic
variation on tumor phenotypes. To fully account for heterogeneity of
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Fig. 5. TCGA tumor immune cellularity gsQTLs. (A) Heat map showing gene signatures (x axis) with one or more significant gsQTLs and the cancer type(s) (y axis) in
which they were shown to be statistically significant (P < 2.1 × 10−8). Definitions of cancer types are provided in Table 1. Cancer types without any significant gsQTLs
were not shown. (B) Heat map showing gsQTLs associated with two or more of the following gene signatures: cDCs, iDCs, monocytes, and NKT cells (in STAD). The
color represents the effect size (β) of the association. Gray boxes are nonsignificant associations. (C) Forest plot showing significant mediator genes for the gsQTL-
gene signature associations. The dots represent the effect sizes (β) of the gsQTL-gene signature associations before (black) and after (red) adjusting for the expression
of themediator genes. The error bars represent confidence intervals. (D, Left) Boxplot showing NKT cell gene signature scores stratified by genotypes of its associated
gsQTL, rs35051459. (D, Right) Boxplot showing the expression of the mediator gene SEMA4D [log2 normalized read per kilobase of transcript per million mapped
reads (nRPKM)] stratified by genotypes of the same gsQTL. (E, Left) Boxplot showing the monocyte gene signature scores stratified by genotypes of its associated
gsQTL, rs9308067. (E, Right) Boxplot showing the expression of the mediator geneMARCH1 (log2 nRPKM) stratified by genotypes of the same gsQTL. (F) LocusZoom
plot for the cDC gene signature in STAD. The gsQTL rs12063638 is located downstream of the PDPN gene. cMMb, centimorgan per megabase; chr, chromosome. (G)
LocusZoom plot for the plasma cell gene signature in PAAD. The gsQTL rs73016119 is located in the same LD block as GWAS risk loci for ulcerative colitis.
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gene expression in tumor samples, we incorporated copy number in
our eQTL discovery pipeline. Moreover, we modified the Matrix
eQTL software to reveal the contribution of all covariates and SNPs
to the variability in eGene expression. This allowed us to assign with
confidence the impact of germline variants on the heterogeneous
genes in patient tumors. While it will be interesting to assess if these
variants similarly impact gene expression in healthy tissues, the lim-
ited sample size of TCGA healthy tissues precluded eQTL discovery.
However, we note that the majority (87.4%) of tumor eGenes were
also eGenes in healthy tissues as cataloged by the GTEx Consortium,
suggesting that germline genetic control of gene expression is not lost
upon tumorigenesis. Direct comparison of the dataset of TCGA and
the GTEx dataset, however, was challenging due to different histo-
logical compositions of the tumor compared with the underlying
normal tissue. For example, melanoma constitutes the expansion of a
cell type, the melanocyte, which is relatively rare in healthy skin and
contributes modestly to total mRNA expression. As the field moves
toward single-cell-type eQTL studies, such comparisons may be en-
abled. Additionally, tissue acquisition in TCGA and the GTEx
project was distinct, hence introducing batch effects and precluding
direct effect size comparisons.
We demonstrated that, in the context of tumors, the expres-

sion of immunity-related genes was most highly enriched for
their being associated with germline variants. This supported the
concept that the strength of a person’s antitumor immune re-
sponse is an intrinsic characteristic, controlled, in part, by one’s
inherited genome. Of the immune genes most highly enriched
for their being under genetic control, ERAP2 is a striking ex-
ample, where a defined haplotype block contributed up to 65%
of total variability in tumor gene expression. As discussed, hap-
lotype B is known to generate an RNA transcript that is sus-
ceptible to NMD, providing a likely explanation for the low level
of ERAP2 expression that is associated with the rs2927608-G
allele. The other major ERAP2 haplotype, tagged by the
rs2927608-A allele, contains multiple risk alleles for autoimmune
and inflammatory diseases, as identified in prior GWASs (44–50)
(SI Appendix, Fig. S4C). Given the high MAF, ERAP2 eQTLs
are impactful in terms of both the magnitude of their effect on
ERAP2 expression and their prevalence in the population. It is
precarious to draw inferences from mouse models due to the
presence of two ERAP genes in humans compared with one gene
in mice (24). Nonetheless, experimental studies have demon-
strated that down-regulation of ERAAP results in enhanced
immunogenicity, tumor growth arrest, and improved survival (25,
26). One study established that the observed tumor immunity
was dependent on CD8+ T cells (25); however, it remains to be
established if the mechanism of tumor killing was a result of
conventional αβT cells reacting to the enhanced presentation of
immunogenic tumor peptides. While seemingly paradoxical,
ERAAP deficiency does not necessarily reduce the number of
epitopes presented; instead, it alters the peptide repertoire (51),
which may confer enhanced T cell responses in some individuals
or mouse models. Alternatively, ERAAP deficiency in the tumor
may unleash killing by nonclassical CD8+ T cells (52). Our re-
sults are also supported by a recent in vivo CRISPR screen,
which demonstrated that depletion of ERAAP in mouse tumors
increased the efficacy of anti–PD-1 immunotherapy (53). The
presence of both ERAP1 and ERAP2 in humans, as opposed to a
single ERAAP in mice, makes it challenging to disentangle the
aminopeptidases’ contributions in modulating the peptide rep-
ertoire for T cell recognition. However, consistent with the
mouse studies, we show that low ERAP2 levels were associated
with improved response to anti–PD-L1 in patients with the lu-

minal subtype of bladder cancer (Fig. 4E). Further studies will be
necessary to evaluate whether the prognostic effect of low
ERAP2 expression can be generalized to other cancer types or
other clinical trial datasets. Other caveats will also need to be
addressed, including potential interactions between ERAP2 and
patient HLA haplotypes, which work in concert to define the set
of immunogenic peptides available in the tumor. Studies of au-
toimmune diseases, including ankylosing spondylitis and birdshot
chorioretinitis, have already demonstrated strong interactions
between ERAP2 polymorphisms and HLA haplotypes (44, 54).
We also investigated the ICOSLG variants identified in the

eQTL analysis, querying whether expression level impacts clini-
cal outcome in anti–PD-L1 immunotherapy trials. It has been
shown previously that ICOSLG regional polymorphisms were
associated not only with decreased ICOSLG expression but also
with decreased signaling in response to pattern recognition
receptor-induced cytokine secretion in dendritic cells (28). While
we did not observe stratification in our sample of patients with
bladder cancer receiving anti–PD-L1, the strong underlying role
for germline genetics may be an important consideration for
active clinical development programs that are attempting to ex-
tend preclinical observations from mice. In addition to ERAP2
and ICOSLG, it will be interesting to evaluate how other eGenes,
individually and collectively, regulate the antitumor response.
The presence of immune cell infiltrations is considered to be

an important biomarker for stratifying human tumors. Notably,
inflamed tumors are more sensitive to anti-PD1/anti–PD-L1
therapies compared with those with large stromal infiltrations or
those tumors showing an absence of T cells (55, 56). We show
that germline-encoded gsQTLs influence the abundance of im-
mune cells within the tumor microenvironment. For example,
the gsQTL associated with the cDC gene signature was located
near the PDPN gene. PDPN activates the C-type lectin receptor
(CLEC-2) to rearrange the actin cytoskeleton in dendritic cells
to promote efficient motility along stromal surfaces (39). Func-
tional experiments will be necessary to determine if and how
gsQTL affects PDPN function and modulates dendritic cell mi-
gration. In fact, clear understanding of the exact mechanisms by
which gsQTLs regulate the immune gene signatures will be
valuable to the identification of drivers of immune cell infiltra-
tion in tumors and likely other inflammatory conditions.
In conclusion, we show that expression of more than half of

the genes in tumor tissues was associated with germline genetics,
highlighting an underappreciated determinant of variable tumor
gene expression and immune cell infiltration. These findings
provide insight into stratification of patients receiving anti–PD-
L1 therapy, and our analyses serve as a resource for integrating
human genetics into the development of novel therapeutics.

Methods
Within each cancer type, we performed local eQTL discovery with Matrix
eQTL software (19). PEER factors were computed with the R package PEER
(18), with the aim of removing effects of confounding variables (“batch”
effects) from the gene expression matrix. We modified Matrix eQTL so that
copy number for the gene in question was regressed after regression of
PEER factors and other covariates. We applied an FDR cutoff of 0.05 for
significant SNP-gene pairs. Using Plink’s clump command, we trimmed the
list of eQTLs to retain only the most significant eQTL per haplotype block
(r2 = 0.2, clump distance = 500 kb). Full details are provided in SI Appendix,
Supplementary Methods.
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