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    I N T R O D U C T I O N 

 Skeletal muscle cells may contract and relax at frequen-

cies of up to 200 Hz (e.g.,  Rome et al., 1996 ), which re-

quires the messenger Ca 2+  ions to undergo rapid cycling 

between cytosol and cell store. A requisite for this cy-

cling is the nearly simultaneous and short-lived opening 

of Ca 2+  release channels of the sarcoplasmic reticulum 

(SR). The opening of a large fraction of the channels 

occurs in response to a rapid conformational signal by 

the CaV1.1 voltage-sensing proteins of the transverse tu-

bules, driven by the action potential. In the muscles of 

frogs and other amphibians, this conformational signal 

appears to be amplifi ed by Ca 2+ -dependent activation of 

channels not directly coupled to the voltage sensors 

( Pouvreau et al., 2007 ). 

 An equally concerted closing of the channels ( Pape 

et al., 1993 ; Stern et al., 1997  ), which is complete and rarely 

followed by reopenings, follows upon membrane re-

polarization ( Lacampagne et al., 2000 ). But, perhaps more 

interestingly, a rapid closure of release channels occurs 

in all species studied, even if the cell membrane remains 

depolarized ( Baylor et al., 1983 ;  Melzer et al., 1984 ).   Abbreviations used: CDI, Ca 2+ -dependent inactivation; CICR, Ca 2+ -

 induced Ca 2+  release; FWHM, full width at half maximum; NA, numeri-

cal aperture; PSF, point spread function; RyR, ryanodine receptor. 

A spontaneous closure with similarly rapid kinetics (in the 

few milliseconds range) terminates Ca 2+  release in Ca 2+  

sparks (R í os et al., 1999;  Lacampagne et al., 2000 ). 

 Kinetic similarity is but one of the pieces of evidence 

that Ca 2+  sparks (for reviews see  Baylor, 2005 ;  Klein and 

Schneider, 2006 ) constitute elementary building blocks 

of physiological cell-wide (or global) Ca 2+  release, or, in 

other words, that the initial peak of global release, cru-

cial in the contractile response to action potentials, re-

sults from superposition of sparks. In support of this idea, 

fi rst formally proposed by Klein et al. (1997  ),  Pouvreau 

et al. (2007)  have shown that both the production of 

sparks upon membrane depolarization and a cell-wide 

release evolution characterized by a large peak (relative 

to the steady level reached upon clamp depolarization) 

depend on the presence of ryanodine receptor 3 (RyR3), 

isoform 3 of the Ca 2+  release channel of the sarcoplasmic 

reticulum. Also pointing in this direction are evidences 

that both sparks and a major portion of the cell-wide 
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     In skeletal muscle of amphibians, the cell-wide cytosolic release of calcium that enables contraction in response to 
an action potential appears to be built of Ca 2+  sparks. The mechanism that rapidly terminates this release was inves-
tigated by studying the termination of Ca 2+  release underlying sparks. In groups of thousands of sparks occurring 
spontaneously in membrane-permeabilized frog muscle cells a complex relationship was found between amplitude 
 a  and rise time  T , which in sparks corresponds to the active time of the underlying Ca 2+  release. This relationship 
included a range of  T  where  a  paradoxically decreased with increasing  T . Three different methods were used to 
 estimate Ca 2+  release fl ux in groups of sparks of different  T . Using every method, it was found that  T  and fl ux were 
inversely correlated, roughly inversely proportional. A simple model in which release sources were inactivated by 
cytosolic Ca 2+  was able to explain the relationship. The predictive value of the model, evaluated by analyzing the 
variance of spark amplitude, was found to be high when allowance was made for the out-of-focus error contribution 
to the total variance. This contribution was estimated using a theory of confocal scanning (R í os, E., N. Shirokova, 
W.G. Kirsch, G. Pizarro, M.D. Stern, H. Cheng, and A. Gonz á lez.  Biophys .  J . 2001. 80:169 – 183), which was confi rmed 
in the present work by simulated line scanning of simulated sparks. Considering these results and other available 
evidence it is concluded that Ca 2+ -dependent inactivation, or CDI, provides the crucial mechanism for termination 
of sparks and cell-wide Ca 2+  release in amphibians. Given the similarities in kinetics of release termination ob-
served in cell-averaged records of amphibian and mammalian muscle, and in spite of differences in activation 
mechanisms, CDI is likely to play a central role in mammals as well. Trivially, an inverse proportionality between 
release fl ux and duration, in sparks or in global release of skeletal muscle, maintains constancy of the amount of 
released Ca 2+ . 
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 Ca 2+  release fl ux underlying sparks was calculated by the so-
called  “ backward ”  method developed by  Blatter et al. (1997)  and 
 R í os et al. (1999) . In brief, the evolution [Ca 2+ ] ( x ,  t ) is fi rst de-
rived from the fl uorescence in spark averages by solving suitable 
diffusion – reaction equations. The [Ca 2+ ] waveform, assumed 
to be spherically symmetric, is then used to calculate reaction 
and diffusion fl uxes of Ca 2+  due to known ligands and removal 
mechanisms. Release fl ux density is derived as sum of these 
components plus the local Ca 2+  concentration change, while to-
tal fl ux and the proportional release current are calculated by 
volume integration of the density in the region where it is posi-
tive. Specifi cally, dynamical variables were Diffusible: [Ca 2+ ], 
[Fluo3], [CaFluo3], [EGTA], [CaEGTA], [SO 4  

2 �  ], [CaSO 4 ], 
[ATP], [CaATP], [MgATP], [PV] (parvalbumin), [CaPV], [MgPV]; 
and Fixed: [CaTNC], [Fluo3Protein], [CaFluo3Protein], 
[CaSERCA], SERCA transport. Reaction and diffusion calcula-
tions use conventional parameter values listed in Table I of  R í os 
et al. (1999) . Note that the calculation does not involve  “ deblur-
ring ”  (correction for the blurring of sparks by the imaging system). 
As shown in prior work ( R í os et al., 1999 ), deblurring for the 
point spread function (PSF) measured in our Carl Zeiss Micro-
Imaging, Inc. system (FWHM of 0.47 and 1.44  μ m) results in an 
increase in calculated release current by close to twofold. Because 
deblurring greatly increases noise, we chose not to use it and in-
stead introduce a correction factor   �   (defi ned in Eq. 8) when 
comparing simulated and experimental sparks. 

 Spark Simulations 
 Skeletal muscle calcium sparks were simulated by solving a sys-
tem of reaction – diffusion equations describing the movement 
and interaction of calcium with a complete system of skeletal 
muscle intracellular calcium buffers, as described in  R í os et al. 
(1999 ). The dynamic variables were the same used for the back-
ward calculation of fl ux. Reaction – diffusion equations were dis-
cretized into 100 concentric spherical shells of thickness 30 nm 
each with the spark source calcium represented as a rectangular 
pulse of calcium current deposited uniformly in a central sphere 
of radius 100 nm. This converted the problem to a system of 
1,300 ordinary differential equations that were solved using 
the modeling system FACSIMILE. For each spark, a simulated 
confocal line scan was generated by convolving the fl uorescence 
of free and bound fl uo-3 with the empirically measured PSF 
( R í os et al., 1999 ) of the confocal microscope, positioned along 
an x-axis line offset from the center of the spark by randomly 
chosen y-axis and  z -axis displacements uniformly distributed 
within an ellipse of major axes 4  μ m ( y ) and 6  μ m ( z ). For each 
randomly chosen offset, convolution integrals were calculated 
using nested calls to a Gauss-Kronrod integration routine writ-
ten in Fortran to generate a 29  ×  100  “ blurring matrix ”  mapping 
spherical shells of fl uo-3 onto 29 pixels along the scan line. 
The amplitude (peak  �  F / F  0 ) and rise time of the simulated spark 
image were then estimated from a spline interpolation onto a 
20-fold fi ner time step, as was done with the experimental data. 
For the purposes of this study, the effects of microscope photon 
noise were not included, since the presence of noise makes the 
results dependent on the details of the spark detection algo-
rithm, a complicated image processing routine written in IDL 
with many features for rejecting false positive sparks in experi-
mental line scans. Instead, simulated sparks were  “ detected ”  sim-
ply by including only those sparks with amplitude  > 0.3. In this 
way, we were able to restrict ourselves to the statistical features 
that are a direct consequence of the random offset of sparks 
from the scan line. That the essential aspects of the randomiza-
tion of amplitudes derived from the scanning process is well cap-
tured by this simulation was confi rmed by the good agreement 
between experimentally measured amplitude variance and its 
value in the simulation. 

peak require Ca 2+ -induced opening of release channels, 

Ca 2+ -induced Ca 2+  release (CICR) (e.g.,  Jacquemond 

et al., 1991 ;  Pizarro et al., 1992 ;  Klein et al., 1996 ;  Pape 

et al., 2002 ;  Brum et al., 2003 ;  Pouvreau et al., 2007 ). 

 For the above reasons it is widely believed that the 

mechanism or mechanisms determining channel clo-

sure and termination of Ca 2+  release in sparks are also 

operative in the termination of global, physiological 

Ca 2+  release. 

 In this paper we demonstrate a set of properties of 

Ca 2+  release termination in sparks and then show that 

they are straightforwardly explained as the result of 

inhibition by Ca 2+  acting on the cytosolic side of the 

RyR channels. 

 Put together with other evidence reviewed recently 

( R í os et al., 2006 ), these results and conclusions suggest 

that termination of Ca 2+  release in skeletal muscle is un-

like that of cardiac muscle, where termination of Ca 2+  

sparks (elementary units of the cell-wide transients) is 

believed to largely depend on a signal caused by partial 

Ca 2+  depletion in the SR, a signal perhaps conveyed 

through ancillary SR proteins like triadin and calseques-

trin ( Gy ö rke et al., 2002 ,  Stern and Cheng, 2004 ). 

 M AT E R I A L S  A N D  M E T H O D S 

 Ca 2+  sparks were imaged at 17 – 20 ° C in saponin-permeabilized 
skeletal muscle fi bers from  Rana pipiens  semitendinosus muscle. 
Adult frogs were killed by double pithing under anesthesia. Pro-
cedures were approved by Rush University ’ s IACUC. Procedures 
and solutions for fi ber dissection and mounting are published 
( Zhou et al., 2003 ). Data presented were obtained with two inter-
nal solutions: a  “ reference, ”  with glutamate as main anion, and 
one with sulfate as main anion (a solution found to determine in-
triguing changes in spark morphology, e.g.,  Zhou et al., 2005 ), 
with compositions given in  Zhou et al. (2003) , Table I. Internal 
solutions had 100  μ M fl uo-4. 

 Line scans were obtained with two confocal scanning micro-
scopes, an MRC 1000 (Bio-Rad Laboratories, Inc.) using a 40 × , 
1.2 NA water-immersion objective (Carl Zeiss MicroImaging, Inc.) 
or a SP2-AOBS with a 63 ×  objective of the same NA (Leica Micro-
systems). The spatial width of the point spread function of these 
microscopes (full width at half maximum [FWHM] of Gaussian 
functions fi tted to the profi les of the images of fl uorescent beads 
of 0.1  μ m diameter) were 0.47 and 1.44  μ m (respectively in the 
focal  x - y  plane and the  z  direction) for the Carl Zeiss MicroImaging, 
Inc. miscoscope, and 0.47 and 0.89  μ m for the Leica. Fluorescence 
 F ( x ,  t ) excited at 488 nm was determined at 2-, 1.875-, or 0.5-ms 
intervals and pixel distances given in the text, and normalized to 
its resting average  F  0 ( x ). Sparks were located on a spatially fi ltered 
version of the normalized image as previously described ( Zhou et al., 
2003 ). Parameters measured on the unfi ltered image for every 
event include the following: amplitude (peak minus local average 
before the event), FWHM (spatial width of the region exceeding 
half amplitude at the time of peak), and rise time (between 0.1 
and peak, on a spline interpolate). That the determination of rise 
time is done on averages of spline interpolates of the three cen-
tral pixels of sparks nominally increases the temporal resolution 
by a factor of 3 ( Gonz á lez et al., 2000 ). 

 The signal mass  M  of events was calculated as a function of time 
 t  by text Eq. 2. ( Chandler et al., 2003 ). Signal mass production 
rate was calculated numerically from  M . 



  R í os et al. 337

 The simulations aimed on one hand to test whether and how 
different models of spark release current and/or duration af-
fected the distribution of amplitudes and rise times determined 
in line scans, thus testing whether experimental distributions 
could be used to evaluate such models. A second purpose of the 
simulations was to test predictions (about these amplitude distri-
butions) derived from a theory of confocal scanning ( R í os et al., 
2001 ). For the fi rst goal, two distributions of parameters were 
used, with results represented in  Fig. 5 . To represent sparks satis-
fying the calcium inactivation model of Scheme 1, release dura-
tions were randomly assigned according to an exponential 
distribution with a mean of 5 ms. Release current  m  3  was then cal-
culated for each spark from its release duration  T  by approximate 
numerical inversion of Eq. 6 subject to an upper bound ( m  3  = 40 
pA*(2.163 ms/ T   �  0.061);  m  3   ≤  37 pA). Then, to generate a com-
parable representation of a  “ null model, ”  another set of simulated 
sparks was generated with a distribution of release current dura-
tion that was the same as in the calcium inactivation model, but 
with constant release current. 

 The simulations done to test the theory of line scanning are de-
scribed in the Appendix. To examine the pure effect of scan line 
offset on the distribution of apparent spark amplitudes, a popula-
tion of sparks with random offsets from the scanned line, but fi xed 
source current and duration, was generated. This study is illustrated 
with  Fig. A1 . To test the ability of theory to recover the  “ true amp-
litude ”  distribution of a set of sparks from the distribution of ampli-
tudes measured in line scans, a large set of simulated sparks was 
generated with three different values of release current and release 
duration. The results of these are presented in  Figs. A2 and A3 . 

 Because of the large amount of computation required to carry 
out the convolution integrals, simulations were performed simul-
taneously on 160 AMD Opteron processors in the high perfor-
mance Biowulf Linux cluster at the National Institutes of Health 
(http://biowulf.nih.gov). 

 R E S U LT S  A N D  D I S C U S S I O N 

 In this section we analyze quantitative  “ morphometric ”  

properties of large sets of sparks imaged in frog fast 

twitch muscle and demonstrate a paradoxical relation-

ship between two of these properties, amplitude ( a ) 

and rise time ( T ). Then we develop a simple theory of 

Ca 2+ -dependent inactivation, which accounts for the 

main observations. 

 The inset of  Fig. 1 A  represents diagrammatically the 

fl uorescence profi le (top trace) and the Ca 2+  current 

(or release fl ux, bottom) believed to underlie a Ca 2+  

spark (evidences for this view are summarized by  Baylor, 

2005 , and  Klein and Schneider, 2006 ).  Ca 2+  current 

starts abruptly and remains approximately constant, as 

far as the temporal resolution of various methods can 

tell, until it terminates, abruptly as well. The time of ac-

tive release has been shown with simulations to match 

fairly well the spark rise time  T  (elapsed from start to peak 

fl uorescence), even for off-focus sparks (e.g.,  Pratusevich 

and Balke, 1996 ;  Jiang et al., 1999 ). 

 Even if the rate of rise of the fl uorescence is not con-

stant during the time of active release, a straightforward 

 Figure 1.   The relationship between spark rise time and ampli-
tude. (A) Rise time,  T , vs. amplitude,  a , of 1,887 sparks collected 
in 700 images of seven frog fi bers with permeabilized membrane, 
placed in standard glutamate solution. Fibers were imaged at 
0.135  μ m per pixel and 2 ms per line. Sparks were detected and 
parameters were measured automatically on an interpolated av-
erage of three central pixels. Correlation coeffi cient  r  2  = 0.015, 
regression coeffi cient  b  =  � 0.017 ms  � 1 . Inset: top, schematic of 
the profi le  F / F  0  vs.  t  at the spatial center of the spark, indicating 
 a  and  T ; bottom, Ca 2+  fl ux during spark is thought to be roughly 
constant and last for the rise time. (B) Average  a  vs. average  T  in 
 “ bins ”  of increasing  T  for the group of sparks in A. Bars represent 
 ±  SEM of  a  and  T . (C) Average  a  vs. average  T , determined as de-
scribed for B, for a set of 881 sparks detected in 500 images of two 
frog fi bers imaged at 0.14  μ m per pixel and 0.5 ms per line. (D) 
Average  a  vs.  T , for a set of 6,300 sparks in 1,000 images of four 

permeabilized fi bers placed in sulfate-based solution and imaged 
at 0.23  μ m per pixel and 1.875 ms per line.   
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 The Relationship between Spark Amplitude and Rise Time 
  Fig. 1  A plots  a  vs.  T  for a set of 1,886 sparks occurring 

spontaneously in frog semitendinosus fi bers with the 

plasma membrane permeabilized by saponin. The fre-

quency of occurrence of these sparks was increased to 

 � 6 s  � 1  (100  μ m)  � 1  (or  � 0.2 s  � 1  per sarcomere) by re-

ducing [Mg 2+ ] in the cytosolic solution to 0.4 mM. Plots 

with similar properties were obtained from a set of  � 900 

sparks also imaged in membrane-permeabilized frog 

muscle cells, but at an acquisition rate of 0.5 ms/line 

and an additional set of 6,300 events, in a cytosolic solu-

tion with sulfate instead of glutamate as main anion. A plot 

with nearly identical properties has been published for 

sparks elicited by low voltage depolarization in cut seg-

ments of frog fi bers with intact plasmalemma ( R í os et al., 

1999 , Fig. 5 C). The main features of the relationship 

therefore do not depend on stimuli or conditions of ac-

quisition, to the extent that these were varied. 

 The scatter plot in  Fig. 1 A  shows a poor correlation 

between amplitude and rise time. The fi rst order regres-

sion line had negative slope and a barely signifi cant 

correlation coeffi cient. As argued below, the poor cor-

relation largely refl ects the variation in apparent spark 

amplitude due to variation in the distance between 

spark source and confocal scan line. 

 A more elaborate analysis, represented in the other 

panels of  Fig. 1 , unveiled more features in the relation-

ship. Sparks were separated according to rise time, 

grouped in unequal  “ bins ”  that were chosen for rough 

equality of events per bin. Plotted in  Fig. 1 B  are average 

 a  vs. average  T  in each bin for the set of sparks of 

panel A. Bidirectional bars represent one standard error 

on each side of the mean. Naturally, average values of  T  

were close to the center of each bin. 

 The analysis reveals clearly a relationship with two re-

gions: at  T  of 4.5 ms or less the amplitude increases with 

 T . It is only at  T  greater than 4.5 that the paradoxical de-

creasing relationship is found. These features appeared 

independently of the choice of binning intervals. 

 Panels C and D demonstrate qualitatively similar 

properties in the group of sparks imaged at a higher 

scanning rate and in the set obtained in sulfate solution 

(though in the latter the maximum is clearly displaced 

to a greater  T ). 

 The analysis therefore improves upon the simple lin-

ear regression, in revealing two regions of rise time 

where two strong correlations of opposite sign exist. 

Unexpected relationships between amplitude and rise 

time have been noticed before:  Lacampagne et al. 

(1999)  found similarity of amplitudes among groups of 

sparks of different  T  imaged with a fast scanner (a result 

not inconsistent with the present one, considering the 

much smaller number of events and range of  T  values 

covered in the study cited). Likewise, in their study of 

cardiac myocyte sparks with quantized rates of fl uo-

rescence rise,  Wang et al. (2004)  noticed an inverse 

expectation from this simple picture is that longer-

 lasting Ca 2+  release (i.e., longer  T ) should result in 

sparks of greater amplitude. Simulations discussed later 

confi rm this prediction for sparks of the same, constant 

fl ux. In contrast, the experimental data do not fulfi ll 

this expectation. 

 Figure 2.   The relationship between rise time and a simple esti-
mator of Ca 2+  release fl ux in sparks. (A) Examples of spark 
 profi les used to estimate release fl ux. Thick trace,  F / F  0  vs.  t  at 
the center of the average of the 88 sparks with  T  between 4 and 
5 ms in the group represented in  Fig. 1 C . Thin trace,  F / F  0  vs. 
 t  for the average of the 18 sparks with  T  between 9 and 11 ms 
in the same group. Release fl ux was estimated by the average 
rate of rise of normalized fl uorescence,  m  1 , calculated on bin 
averages as the ratio  a / T , which for the averages shown is re-
spectively 0.234 and 0.069 ms  � 1 . Note that the time-varying rate 
of rise of fl uorescence may diverge substantially from  m  1 . (B – D) 
Bin averages of  T  plotted against  m  1  for the sets of sparks in 
Fig. 1, B – D. A similar, strictly monotonic dependence is obtained 
in all cases.   
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 The results of this calculation applied to all datasets 

in  Fig. 1  are represented in  Fig. 2 (B – D) .   T  is repre-

sented on the ordinate axis to emphasize the conclu-

sion, reached eventually, that  T  is largely determined by 

the value of fl ux. 

 It is clear from inspection that this operation on the 

data uncovers a simple, monotonically decaying rela-

tionship between rise time and a proxy for Ca 2+  fl ux. 

 The estimation of fl ux represented by Eq. 1 is coarse 

however. One limitation can be appreciated in the pro-

fi les of fl uorescence in  Fig. 2 A . Because the rate of rise 

varies as a function of time, its average during the rise 

time may seriously underestimate the maximum. Also, 

as will be demonstrated later with simulated sparks, 

amplitude associated with a constant fl ux tends to a satu-

ration value as release duration increases. Moreover, 

because the transformation involves explicit division 

by  T , it comes as no surprise that the resulting ratio  m  1  

should decay with increasing  T . 

 To overcome these weaknesses, two additional estima-

tions of release fl ux were used, none of which involved 

explicit division by  T . One approximated release fl ux 

as the rate of change of signal mass, or spark mass,  M . 

Following  Chandler et al. (2003) ,  M  was calculated as-

suming that sparks are spherically symmetric, as 

   M t
F

F
t x FWHM t( ) . ( , ) ( ) .∼ 1 206 0

0

3Δ
=    (2) 

 In this equation fl uorescence  F  and its initial value  F  0  

are evaluated on the spark averages at each bin of rise 

time at the location  x  of the spark peak; FWHM ( t ) rep-

resents the full width at half maximum of   ΔF t x( , )   , 

calculated from the Gaussian standard deviation   �   of 

the spatial profi le at time  t  as 2(2ln2) 0.5   �  . Peak rate of 

change, calculated on  M  ( t ), was close in value to its 

average over the duration of the rising phase of  M ( t ). 

This average was calculated for all bins of  T  in the set 

of sparks represented in  Fig. 1 (A and B) . Denoted 

as  m  2 , it is plotted against  T  by green symbols in  Fig. 4 . 

In the same fi gure,  m  1 , calculated by Eq. 1, is repre-

sented in black. 

 The third approach was to explicitly calculate release 

fl ux from the time course of the averaged sparks, by the ab 

initio  “ backward ”  method of  R í os et al. (1999) . This cal-

culation was performed for the averages of sparks in bins 

of different  T  from the set in  Fig. 1 A . The average of sparks 

and the calculated release fl ux density are illustrated for 

the bin of rise time 4 – 5 ms, in  Fig. 3 .  The fl ux is calcu-

lated as the sum of removal by ligands and transporters, 

diffusion away from the source, and rate of change of the 

local concentration. These terms are all driven by [Ca 2+ ] 

( x , t ), which is derived from the measured  F ( x , t ) ( Fig. 3 A ) 

using the known binding kinetics and diffusion prop-

erties of the monitoring Ca 2+  sensor. The calculation 

yields a fl ux density (with dimensions of concentration 

 correlation between number of quanta (which mapped 

to greater  a ) and  T . 

 Ca 2+  Flux and Spark Rise Time Are Related Inversely 
 A simple transformation of the data presents this rela-

tionship in a simpler and more meaningful form. The 

transformation is based on the assumption of near pro-

portionality between Ca 2+  release fl ux and rate of change 

of fl uorescence, in sparks as well as global signals. As ex-

amples of data used for this calculation,  Fig. 2 A  shows 

the profi le of normalized fl uorescence  F/F  0  of averages of 

two groups of sparks from the set represented in  Fig. 1 C . 

The profi le in thick trace is from sparks with  T  between 4 

and 5 ms, while that in thin trace is from sparks with  T  

between 9 and 11 ms. An average rate of rise of fl uo-

rescence during the time of Ca 2+  release is calculated as the 

ratio of amplitude by rise time and represented by  m  1 . 

   m a T1 ≡ /    (1) 

 Figure 3.   Ca 2+  release fl ux calculated ab initio. (A) Average of 
fl uorescence in all sparks with  T  between 4 and 5 ms in the group 
represented in  Fig. 1 A . (B) Release fl ux density calculated from 
the average in A, by the  “ backward ”  algorithm (details in Mate-
rials and methods). The inset is an  x-y  projection that shows well 
the narrow footprint of the calculated fl ux.   
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 where   �   is a constant that depends on physical aspects 

of the medium and geometry of the  “ local ”  site. We used 

Eqs. 1 and 3 to derive predictions from the model in 

Scheme 1, a two-state model of the spark Ca 2+  source 

(a cluster of channels) that leaves unspecifi ed all geo-

metric details.

 (SCHEME 1)

 To account for the observation of an approximately 

constant fl ux during the spark rise time, the source is 

assumed to be capable of just two fl ux values,  m  or zero. 

In every spark, channels start in state A (available) and 

undergo a continuous transition to state I (inactivated), 

driven by the local Ca 2+  increase calculated from Eqs. 1 

and 2. Let  A ( t ) represent the evolution of the occupancy 

of state A, this evolution is determined by 

   dA dt k m A A ki r/ ( ) .= − + −β 1    (4) 

 Because  m  is assumed to be constant, the occupancy  A  

undergoes an exponentially time-dependent decay 

   A
k

k m k
k m

k m k
e

k m k tr

i r

i

i r

i r=
+

+
+

− +
β

β
β

β( )
,    (5) 

 where  t  is measured from the beginning of the spark, at 

which point the value of  A  is one. 

 It is assumed that when  A  declines to a critical level, 

 A* , the source closes. Hence the time at which the level 

 A * is reached is equal to the release (open) time,   �  , 
which is for practical purposes the rise time  T . Solving 

Eq. 5 for  T : 

   T
k m A k m A k

k m k
i i r

i r

=
( ) − − −( )⎡⎣ ⎤⎦

+
ln ln * *

.
β β

β
1

   (6) 

 Eq. 6 represents the model prediction for the rela-

tionship between  T  and  m . The curve in  Fig. 4  repre-

sents the best fi t by Eq. 6 to the  T  vs.  m  3  data (red) with 

adjustable parameters  A* ,  k  i   �  , and  k  r  at values listed in 

the fi gure legend. As should be obvious by inspection, 

reasonable fi ts are also possible for the two other evalu-

ations of fl ux ( m  1  and  m  2 ). 

 The Model Predicts Spark Amplitude 
 While the model reproduces well the relationship be-

tween rise time and release current calculated from 

spark averages, a more direct test is whether it can pre-

dict measured spark amplitudes. 

 Note fi rst that the model, via Eq. 6, defi nes an invert-

ible relationship between  T  and  m , while the ab initio or 

backward algorithm yields  m  (specifi cally  m  3 ) starting 

from observed sparks (the parameters of which include  a ). 

In other words, we have methods to go from  a  to  m , and 

change per unit time) as a function of time and space 

( Fig. 3 B ). The fl ux density obtained by this calculation, 

integrated over volume at the time of its maximum and 

converted proportionally to intensity of Ca 2+  release cur-

rent is denoted as  m  3  and plotted in red in  Fig. 4 .  

  m  1 ,  m  2 , and  m  3  all exhibit a similar dependence with  T . 

The approximate inverse relationship between Ca 2+  fl ux 

and rise time therefore applies robustly, independently 

of the approach used to estimate fl ux. 

 A Ca 2+ -dependent Inactivation Model of Spark Termination 
 An inverse relationship between ion fl ux and rise time 

(i.e., channel open time) is to be expected whenever 

the permeant ion, acting on the exit side, is able to in-

activate, inhibit, or by any means close the channel. In the 

following the term  “ inactivation ”  is used to underscore 

a presumption that the resulting channel closure is in-

dependent of activation processes that may act else-

where on the channels. 

 The idea of a Ca 2+ -dependent inactivation can be for-

malized by fi rst noting that the local [Ca 2+ ] increase at 

the exit site, i.e., at the putative inhibitory site on the 

channels, should be proportional to the fl ux, provided 

that the geometry of the source is not different in sparks 

of different fl ux (e.g.,  R í os and Pizarro, 1991 ;  Jong et al., 

1995 ). Namely 

   [ ]Ca mlocal
2+ = β  ,  (3) 

 Figure 4.   Rise time vs. different estimators of release fl ux. Black 
symbols,  T  vs.  m  1 , calculated from binned averages in  Fig. 1 B  by 
Eq. 1 (same values as in graph in Fig. 2 B). Green,  T  vs.  m  2 , calcu-
lated according to Eq. 2 for the same spark averages. Red,  T  vs. 
 m  3 , release current calculated by volume integration of fl ux den-
sity derived for the same spark averages by the backward method. 
Continuous curve, best fi t to  T  vs.  m  3  by Eq. 6. Best fi t parameters: 
 k  i   �  , 2.3 mM  � 1 ;  k  r , 0.061 ms  � 1 ;  A*  = 0.115.   
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  Fig. 5  represents with dots  a  s  vs.  T  for 6,665 sparks 

from a total of 20,000 that were placed at random loca-

tions in the simulation space.  The sparks were gener-

ated with a current of 30 pA and   �   exponentially 

distributed between 0.5 and 35 ms. The simulation vol-

ume was made suffi ciently large for  a  s  to vary from a 

maximum (the in-focus value) to zero; the 6,665 sparks 

represented are those for which  a  s  is greater than the 

detectability criterion used in the experimental mea-

surement (0.3). (The quasi periodic clustering of  T  

of simulated sparks is a consequence of  “ sampling ”  

the simulated fl uorescence at the confocal line scan 

interval, a procedure detailed in Materials and methods. 

Such sample-rate periodicity is less conspicuous in 

the experimental data, probably due to the effects of 

photon noise. No signifi cance is attached to this appar-

ent periodicity.) 

 The green circles plot averaged  a  s  ( ± SEM) in 23 bins 

of  T  containing  � 300 events each. The pink circles 

plot bin averages of a second, related set, in this case of 

8,000 sparks simulated with a 30-pA current and a sin-

gle release duration, 5 ms. Finally, the orange circles 

plot bin averages of 4,667 sparks simulated assuming 

the inverse relationship between release time and  m  3  

given by Eq. 6. It is obvious from these plots that simu-

lated line scanning readily distinguishes the three types 

of dependence. 

 It is interesting that averaged scanned amplitudes of 

sparks generated with a single current and release time 

(pink symbols) decrease monotonically with  T . While 

then from  m  to  T . Predicting  a  requires inverting these 

two operations, which was done as follows: for each 

value of  m  3  the corresponding  T  was obtained using 

Eq. 6. Then the backward algorithm was inverted in a 

 “ forward ”  calculation, a simulation that starting from 

fl ux yields a spark. Of course the simulation copied the 

 “ removal ”  properties of the medium that were assumed 

in the backward calculation of  m  3 . 

 The aim of the simulation was twofold: to generate a 

spark, a distribution of fl uorescent Ca-bound dye and 

associated variables, given a fl ux and its duration, and 

to reproduce the deformations or  “ errors ”  intrinsic to 

confocal line scanning, namely the blurring of sparks 

scanned in focus and the further reduction in intensity 

and other deformations of sparks that originate away 

from the line of scanning. The errors were reproduced 

by placing large numbers of simulated sparks at random 

 y  and  z  distances from the scanning line (or  x  axis in 

spark space), and convolving with the experimentally 

determined PSF of the scanner. This was done for the 

time range of interest, to generate line scans that were 

then analyzed to determine  a ,  T , and other morphologi-

cal parameters. We denote as  a  s  the amplitude measured 

on the simulated line scans, which is less or equal than 

the amplitude measured on sparks scanned in-focus. 

 a  s  corresponds in the simulation to  a  observed in the 

experiments. When considering models and simulations 

we will also need to distinguish between   �  , the release 

duration or source open time, and its close experimen-

tal measure, rise time  T . 

 Figure 5.   Amplitudes and rise times of 
simulated sparks. Dots plot detected am-
plitude,  a  s  vs. rise time in the line scan,  T , 
for sparks generated at random locations 
in the simulation volume, using a current 
of 30 pA and release durations   �   between 
0.5 and 35 ms. The sparks represented 
had  a  s   >  0.3. Green circles, average val-
ues ( ± SEM) in bins of  T  containing 300 
sparks each. Line, single exponential fi t to 
bin averages (Eq. 7, with  b  = 0.9409 and 
 k  = 0.7337 ms  � 1 ). Note that for sparks of 
constant release fl ux amplitude increases 
with  T  in a saturating manner. Pink sym-
bols, bin averages of  a  s  for a set of 8,000 
sparks simulated with current of 30 pA and 
  �   = 5 ms. Note that while   �   is constant, 
 T  varies in a narrow range, being in most 
cases greater than   �  . Orange circles, bin 
averages of  a  s  of a set of 4,667 sparks simu-
lated assuming the inverse relationship 
between   �   and  m  3 . (  �   was exponentially 
distributed, with a minimum of 0.5 ms. 
 m  3  was calculated from   �   by an approxi-
mate solution of Eq. 6 and   �    �   T ). Note 
that the dependence between averaged 
amplitude and  T  refl ects well the inverse 
relationship between fl ux and release time 
assumed in the simulation.   
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 This curve (with parameters listed in the fi gure leg-

end) summarizes the relationship expected between  T  

and  a  for observed sparks of the same fl ux but variable 

release time. Representing the functional dependence 

that links spark amplitude to the two main simulation 

parameters by  a  s (  � , m 3  ), which is approximately equal 

to  a  s ( T, m 3  ), then the exponential function in  Fig. 5  is 

 a  s ( T , 30 pA), namely: 

   a T pA bes
kT( , ) .30 = −    (7) 

 Assuming that  a  is proportional to  m  3 ,  a  can be pre-

dicted for every  m  3  by 

   a T m m
m

bes
kT m( ( ), ) ,( )

3 3
3

30
3= −φ

   (8) 

 with  T ( m  3 ) given by Eq. 6.   �   is a factor, greater than 1, 

necessary to correct for the blurring of experimentally 

detected sparks associated to the imaging system. The 

value of   �   required for best fi t is 1.9, but a similar value 

was calculated using the PSF of our imaging system ( Fig. 4 ; 

 R í os et al., 1999 ). 

  Fig. 6  A reproduces the scatter plot ( a  vs.  T ) of all 

events in  Fig. 1 A , plus the bin averages of  Fig. 1 B .  In 

blue is the predicted amplitude, computed using Eq. 8, 

that is 

   a T m T
m T

bes
kT( , ( ))

( )
,3

3

30
= −φ

   (9) 

 where  m  3 ( T ) is the functional inverse of Eq. 6, obtained 

numerically, and   �  , 1.9, was determined for best fi t of 

the decaying portion of the bin-averaged plot. It should 

be clear at this point that the model (named  “ model 1 ” ) 

reproduces well the observed  a  vs.  T , but only in the 

range where this relationship is decreasing. Clearly, 

model 1 does not work at lower values of  T . 

 A simple justifi cation of the error results from exam-

ining the underlying dependence on release current, 

 m  3 .  m  3  is a parameter in Eq. 9, explicitly displayed in 

Fig. 6 B as a curve in ( T ,  m  3 ,  a  s ) space.  m  3  varies between 

12.4 pA at the highest values of  T  and 154 pA at the low-

est.   �  m  3 , which more accurately corresponds to the re-

lease current, reaches 294 pA. Considering that these 

currents originate from a fi nite group of channels prob-

ably limited to one couplon (Stern et al., 1997  ), there 

must be an upper limit to the release current. Specifi -

cally, the increase of  a  with  T  that occurs at brief  T  up to 

a certain  T p   may refl ect the dependence when current is 

maximal, at a value corresponding to the activation of 

the full cluster of channels. Such modifi cation,  “ model 

2, ”  is implemented by imposing the condition  m  3 ( T ) = 

 m  3 ( T p  ) at all  T   <   T p  . In the example,  T p   is 4.4 ms and   �  
m  3 ( T p  ) = 37.0 pA. The prediction, calculated through 

Eq. 9 but using a constant  m  3  at  T   <   T p   is represented 

in red in  Fig. 6 . Fig. 6 B displays clearly the modifi ed 

neither the narrow range nor the steepness of this de-

pendence can mimic the experimental values, the exis-

tence of a range in the abscissa confi rms that  T  is a close 

but not entirely equivalent measure of release time, 

while the decreasing relationship indicates that sparks 

that are farther away from the scan line will systemati-

cally give rise to longer  T  in the line scan image. 

 As expected, the set with constant current and vari-

able release time yields amplitude averages that increase 

with  T . The continuous line represents a best exponen-

tial fi t to the bin averages of this set. This exponential 

reproduces in a scaled-down version the clear depen-

dence that exists between  T  and the maximum of  a  s  

(the amplitude of sparks in-focus). 

 Figure 6.   Model prediction of spark amplitudes. A, dots repre-
sent  a  vs.  T  for the fi rst set of experimental sparks (as in  Fig. 1 A ). 
Circles represent their bin averages (as in  Fig. 1 B ). The curve in 
blue plots  a  as a function of  T , calculated with  “ model 1, ”  that is, 
Eqs. 9 and 6, with parameter values given in the legends of  Figs. 4 
and 5 . The curve in red is by  “ model 2, ”  for which  m  3  is assumed 
constant (37 pA) at  T   <  4.4 ms. Note that in this range of  T  the 
 a ( T ) dependence is exponential, given by Eq. 7 scaled by 37/30. 
(B) Bin-averaged experimental  a  (circles), prediction by models 1 
(blue line) and 2 (red), plotted as a function of both  T  (as in A) 
and  m  3 . The plot illustrates the model calculation of  a , which relies 
on the bijective correspondence between  T  and  m  3  given by Eq. 6.   
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total number of sparks per unit volume, and  �  is the 

standard deviation of the point spread function of the 

microscope, assumed to be Gaussian and symmetric. 

This function is valid between the minimum detectable 

amplitude  a  min , and the full in-focus amplitude  � . With 

the distribution in hand (Eq. 10) it is possible to calcu-

late the expected value of  a  

   a

da
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da
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 While Eq. 12 was derived for a population of sparks of 

homogeneous amplitude, it can be shown numerically 

that the variance due to focusing error for groups of 

sparks of different in-focus amplitudes will have the 

same value as that of a homogeneous population, with 

single intermediate amplitude. Take the group of 1,900 

sparks in  Fig. 1 A ; the mean value of their measured 

amplitude is 0.98. According to confocal sampling the-

ory ( R í os et al., 2001 ), the in-focus amplitude  �  of a 

spark is 2 – 2.5 times its average measured value, hence 

the variance in amplitude due to out-of-focus error can 

be estimated applying Eq. 12 with  �  = 0.98  ×  2.25 (or 2.2) 

and  a  min  = 0.3 (as defi ned by the detection algorithm). 

The result is 0.285, quite close to the unexplained vari-

ance (0.316). This estimate demonstrates that the com-

ponent due to out-of-focus errors is by far the largest 

fraction of the total variance. In this light, the predictive 

power of the theory resulting in Eq. 6, and hence the 

contribution of CDI to spark termination, appears to be 

much more signifi cant. 

 As shown before ( Pape et al., 1995 ;  Rengifo et al., 

2002 ) open channels beyond those in the Ca 2+  source 

can contribute signifi cantly to the local [Ca 2+ ], which 

during the peak of a cell-wide transient may therefore 

increase beyond the level of the immediate source and 

render CDI more effective. (Addition of Ca 2+  domains 

beyond spark boundaries of course negates the view of 

sparks as truly independent building blocks of the cell-

wide signal. Based on multiple lines of evidence, others 

 dependence of  m  3  on  T . Model 2 fi ts the data; and inter-

estingly, 37 pA is a reasonable upper bound of current 

from arrays that may include one or two couplons, i.e., 

60 or 120 channels ( Franzini-Armstrong et al., 1999 ), 

each contributing 0.35 – 0.5 pA ( Kettlun et al., 2003 ). 

 Explanatory Power of the CDI Model 
 While this analysis implies that a Ca 2+ -driven inacti-

vation (CDI) contributes to the termination of Ca 2+  

sparks, and by extension Ca 2+  release at the cell-wide 

level, it does not tell how important this contribution 

is. The question was addressed by examining the re-

duction in variance of  a  achieved by subtracting the 

model prediction. 

 The total variance of the distribution of amplitudes in 

the set of 1,900 sparks of  Fig. 1  A, i.e.,  � ( a   �    a   ) 2  � , where 

angle brackets represent expected value and   a    =  �  a  � , was 

0.344. This was compared with the unexplained variance, 

that of the difference between measured amplitude and 

amplitude predicted by the model, i.e.,  � ( a   �   a  s ) 2  � . 
 Using model 2, the variance of  a   �   a  s  was 0.316; in 

other words, the model only explained 7.8% of the vari-

ance in spark amplitudes. While this explaining power 

appears meager, additional considerations change this 

impression. First, the averages of  a  in successive bins of 

 T  (in green in  Fig. 6 ) provide a maximum explanatory 

power of the  a  vs.  T  dependence in  a , T  space, as these 

bin averages are the values that minimize the squared 

deviation from all the points in the set. The  a  s  vs.  T  de-

pendence, in red, does not differ from the averages in 

any systematic way. Indeed, the mean square deviation 

from the bin averages is 0.317; in other words, the ex-

planatory power of model 2 is as good as can be for a 

one-dimensional model (one assuming that the spark is 

determined by only one independent variable,  T , which 

is bijectively linked to  m  3 , in this case). 

 Understanding the explanatory power of the model 

also requires considering the contribution of out-of-

 focus errors to the total variance. Indeed, among spark 

parameters, amplitude is the one most sensitive to 

these errors. A very large part of the variance is due to 

the unknown separation between spark source and line 

of scanning. 

 Our theory of confocal sampling ( R í os et al., 2001 ), 

directly tested with simulations in the Appendix, makes 

it possible to evaluate the out-of-focus contribution to 

the variance in  a . Let   �   be the measured in-focus amp-

litude of a set of identical sparks originated at random 

distances  y  and  z  from the scanning line; then, as dem-

onstrated in Appendix 1 of  R í os et al. (2001) , the mea-

sured amplitudes  a  are distributed according to 

   f a
n

a
( )=

2 2πσ
  for all  a   ≤   � ,  (10) 

 where  f  is the density (number of sparks per unit length 

of scanning with amplitude in the interval  a ,  a  +  da ),  n  is 
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interpret the effects of partial SR calcium depletion. 

This geometry, however, will necessarily be complex, 

due to the coexistence of junctional and parajunctional 

channels ( Felder and Franzini-Armstrong, 2002 ) facing 

cytosolic regions with different constraints to diffusion 

and different Ca 2+  transport devices. The success of the 

extremely simplifi ed model presented here, together 

with the absence of other good candidates, suggest that 

CDI is the chief mechanism of release termination in 

Ca 2+  sparks. The kinetic similarities with cell-wide Ca 2+  

release illustrated by  Fig. 1  indicate that mechanisms 

operative at the level of sparks also determine the evolu-

tion of cell-wide signals. The present considerations are 

strictly valid for amphibian muscle. Mammalian muscle, 

in which Ca 2+  sparks (and CICR) do not play a similar 

role (e.g.,  Shirokova et al., 1996, 1998 ;  Lamb et al., 

2001 ), still has a powerful mechanism of spontaneous 

termination (with kinetics similar to that of amphibians, 

as illustrated by  Baylor, 2005 ). CDI may play a crucial 

role in this termination as well. 

 A Plausible Explanation of the Effects of Sulfate 
 The CDI model can be used to interpret some of the ef-

fects of sulfate on spark morphology. Sulfate increases 

the width of sparks and slightly reduces their amplitude 

( Zhou et al., 2005 ). Because its calcium salt has low solu-

bility, it may precipitate with Ca 2+  inside the SR and 

lower [Ca 2+ ] SR . This effect, however, is unlikely to ex-

plain the change in spark morphology, given the weak de-

pendence of spark parameters on [Ca 2+ ] SR  ( Launikonis 

et al., 2006a ). More probably, the changes in sparks are 

due to the cytosolic buffer action of sulfate. We showed 

with  Fig. 1 D  that sulfate causes  T  p , the rise time of maxi-

mum amplitude, to shift to higher values. In the frame-

work of model 2, this amounts to prolonging the channel 

open time at maximum release current, i.e., delaying 

inactivation. This combination of promotion of activa-

tion (by delaying inactivation) and reduction of local 

[Ca 2+ ] is consistent with other features of the effects un-

explained heretofore, including spatial widening of 

sparks with reduction in their amplitude ( Zhou et al., 

2005 ) and the frequent occurrence of events that prop-

agate over distances of several micrometers. 

 Ca 2+  Release Termination in Skeletal and Cardiac Muscle 
 Studies of cardiac muscle in which SR calcium content 

is modifi ed by extrinsic or intrinsic buffers (e.g.,  Terentyev 

et al., 2002, 2003 ) support a picture of release termina-

tion based largely on Ca 2+  depletion, with additional 

contributions from an inactivation process (for review 

see  Stern and Cheng, 2004 ; see also  Sobie et al., 2005 ). 

It is surprising that Ca 2+  release termination is slower 

(giving rise to sparks of longer rise times) in cardiac 

muscle, where it relies on at least two cooperative mech-

anisms, than in skeletal muscle, where termination ap-

pears to rely on CDI but not depletion. One possible 

have argued that a strictly  “ autonomic ”  view of sparks 

cannot be maintained anyway (e.g.,  Brum et al., 2003) ). 

 Other Candidate Mechanisms of Release Termination 
 The dearth of other candidate mechanisms is consis-

tent with our conclusion that the role of CDI is crucial 

in termination of Ca 2+  release. In cardiac muscle, where 

most, if not all, of the Ca 2+  release necessary for con-

traction occurs in the form of sparks, the termination 

of Ca 2+  release is  “ timed ”  or synchronized (i.e., not 

Markovian, see for instance Wang et al., 2002  ) and this 

synchronization results, to a large extent, from deple-

tion of Ca 2+  in the SR (for reviews see Gy ö rke et al., 

2002;  Stern and Cheng, 2004 ). We recently reviewed 

the evidence for a similar mechanism in skeletal muscle 

( R í os et al., 2006 ) and concluded that only experiments 

with release channels reconstituted in bilayers ( Beard 

et al., 2002, 2005 ;  Wei et al., 2006 ) showed clear effects 

of Ca 2+ , acting from the SR side, on gating of the chan-

nels. When studied in living cells instead, the effects 

were either absent ( Launikonis et al., 2006a ) or oc-

curred in the wrong direction (depletion caused an in-

crease in Ca 2+  release permeability) explicable by a 

cytosolic locus of (inhibitory) action by the Ca 2+  that 

fl ows through the channels (Jong et al., 1993  ). More-

over, the actual reduction in [Ca 2+ ] SR  measured or in-

ferred from cytosolic Ca 2+  measurements during sparks 

( Launikonis et al., 2006b ), or twitches ( Rudolf et al., 

2006 ;  Pape et al., 1995 ;  Launikonis et al., 2006b ), was at 

most 17%, but probably substantially less, especially in 

the case of sparks, thus completing the evidence that 

depletion does not play a terminating role in physio-

logical Ca 2+  release. 

 On the other hand there is much evidence in favor of 

Ca 2+ -dependent inactivation as a mechanism of termina-

tion of cell-wide Ca 2+  release (fi rst suggested by  Baylor 

et al., 1983 ;  Melzer et al., 1984 ). This includes the increase 

in release permeability associated with the presence of a 

Ca 2+  chelator ( Baylor and Hollingworth, 1988 ; Jong 

et al., 1993  ), the relationship between Ca 2+  release recov-

ery and decay of [Ca 2+ ] in the cytosol ( Schneider and 

Simon, 1988 ), and the effects of SR depletion on release 

permeability ( Jong et al., 1995 ;  Pape et al., 1995, 1998 ; 

 Pape and Carrier, 1998 ;  Pizarro and R í os, 2004 ). It is be-

lieved that this inactivation refl ects binding to a low af-

fi nity  “ I ”  site, which keeps the release channel shut when 

either Ca 2+  or Mg 2+  are bound ( Meissner, 1994 ;  Laver 

et al.,1997 ). Because such inhibition works regardless of 

the occupancy of the activation site, the effect is ade-

quately classifi ed as an inactivation. 

 The successful model embodied in Scheme 1 and 

Eqs. 3 – 6 could in principle be used to derive germane 

information, like geometry and binding affi nity of the 

inactivation site. For this purpose the model should be 

refi ned to include geometric features of the spark 

source, as was done for example by  Pape et al. (1998)  to 
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This relationship can then be inverted under simplify-

ing assumptions to derive in general the distribution of 

spark amplitude  g ( a ) from the histogram of measured 

amplitudes  f ( a ). The operator, Eq. 6 of  R í os et al. (2001) , 

is the following: 

   σ2( ) ( )
( )

,a g a
d af a

da
∝ [ ]    (A1) 

 where  �  is the standard deviation of the observed amp-

litude as a function (assumed isotropic) of displacement 

from the scanned line. 

 As argued above, Eq. 10 directly provides a measure 

of the variance in  a  due to the random placement of 

spark sources relative to the line of scanning (because 

the sole source of variance contemplated by the equa-

tion is the placement of the source). Therefore a favor-

able testing of the theory will confi rm the estimate of 

variance derived from the theory (Eq. 12). 

 A second goal is to provide a direct estimate of this 

variance, which can be derived from the simulated sparks 

whether the simulation supports the theory or not. 

 A test of Eq. 10 is illustrated in  Fig. A1 .  10,720 sparks 

were simulated assuming the same current, 30 pA, and 

release duration   �  , 5 ms, placed at random  y  and  z  dis-

tances from the scanning line. Fig. A1   displays the histo-

gram  f ( a ) of observed amplitudes for the 4,501 events 

with  a   >  0.3. The continuous line is the best fi t by Eq. 10. 

Clearly, the inverse function provides only a rough ap-

proximation to the distribution of scanned amplitude. 

A deviation was expected because neither the spark nor 

the PSF are truly Gaussian functions of  y  and  z  as re-

quired by the theory. 

reason for the greater terminating effi ciency of CDI in 

skeletal muscle is that it makes use of a higher local 

[Ca 2+ ]. However, no specifi c comparisons have been re-

ported of spark intensity in cardiac vs. skeletal muscle. 

Another reason may be a lower susceptibility of the car-

diac RyR isoform to inhibition by cis [Ca 2+ ] (which is 

observed in bilayer experiments, e.g.,  Fill and Copello, 

2002 ). If it applied to the millisecond time scale re-

actions in vivo, this difference could justify the need to 

rely on depletion in heart muscle. Perhaps to enhance 

the role of depletion, cardiac muscle has evolved a 

structure with stores of smaller size and Ca 2+  capacity 

(e.g.,  Brochet et al., 2005 ). Such depletion-centered 

regulation, which allows cardiomyocytes to function 

without a strong Ca 2+ -dependent inactivation, may be 

an advantage for cells that require Ca 2+  transients of 

longer duration than fast twitch skeletal muscle. 

 A kernel of the present results is that release fl ux and 

its duration in Ca 2+  sparks are (roughly) inversely re-

lated. Consequently, their product, that is, the total Ca 2+  

released, is (roughly) constant. That simple CDI models 

account for this relationship stresses a teleological ad-

vantage of CDI; it will keep constant the amount of re-

leased Ca 2+  under varying loads. This insight was fi rst 

provided by Jong et al. (1993  ), who showed that chan-

nels undergoing CDI could under specifi c assumptions 

 “ count ”  the ions that they allowed to pass, and  Posterino 

and Lamb (2003) , who observed that Ca 2+  released by 

an action potential remained constant within a range of 

SR loads. By contrast, in cardiac muscle Ca 2+  release ap-

pears controlled by what is left in the SR. The advan-

tages of these different regulatory schemes to serve their 

respective functional needs are yet to be elucidated. 

In a fi rst approximation, the skeletal muscle approach 

appears more suited to fulfi l the immediate demands of 

force or speed, regardless of the state in which it leaves 

the store, while that of cardiac muscle could lead to 

greater longer term stability of beat strength. 

 In conclusion, termination of Ca 2+  release in amphib-

ian skeletal muscles appears to depend on an effi cient 

Ca 2+ -dependent inactivation, the details of which can-

not be elucidated without a better defi nition of the geo-

metry and channel composition of the source of Ca 2+  

sparks. Mammalian skeletal muscle probably shares 

these termination mechanisms, which are much more 

developed than those of cardiac muscle. 

 A P P E N D I X 

 Off-focus Error, Computed with Simulated Sparks 
 The goal of this appendix is to test the theory of confo-

cal line scanning ( R í os et al., 2001 ) by means of spark 

simulations. This theory provides the relationship be-

tween distribution of observed (scanned) amplitudes 

and in-focus (or  “ true ” ) amplitudes, through Eq. 10. 

 Figure A1.   A fundamental property of measured spark ampli-
tudes. Histogram  f ( a  s ) of scanned amplitudes,  a  s , for 10,720 sparks 
simulated with 30 pA current and 5 ms release duration, placed at 
random  y  and  z  distances from the scanning line. Line plots best 
fi t by the inverse function (Eq. 10). Similar deviations between  f  
and fi t were observed in simulations with other parameter values.   
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extent on the binning interval (a fi ner interval resolves 

small size sparks better, but becomes inadequate as  a  in-

creases and  f  decreases). In spite of these inaccuracies, 

the simulations support the algorithm represented by 

Eq. A1 as a suitable tool to derive true amplitude distri-

butions (i.e., correct the off-focus error). 

 The calculation of variance due to off-focus error, 

based on this theory of line scanning, was also tested 

with simulations. The continuous curve in  Fig. A3  rep-

resents the variance of scanned amplitude of sparks, 

calculated using Eq. 12, against their in-focus amplitude.  

The symbols represent the variance for the three sets of 

sparks in  Fig. 8 . Again, the simulations demonstrate the 

predictive value of the theory. On this basis, and as 

stated in the text, an estimate of 0.285 is reached for the 

component of the variance due to off-focus error. 

 That scanned amplitude is the least robust of the mor-

phometric parameters of sparks has been recognized 

since early on in their study (e.g.,  Pratusevich and Balke, 

1996 ). Our theory of confocal scanning, supported by 

the present simulations, provides a quantitative measure 

of this variability. The contribution of the off -focus dis-

placements to the variance in spark amplitude is 80 –

 90%. Given this strikingly high value, even small changes 

in observed amplitude associated with any intervention 

or spark parameter may have mechanistic signifi cance. 

The quantitative estimate embodied by Eq. 12 provides 

a tool to appraise the relevance of such changes. 
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 The next simulation was designed to test the evalua-

tion of true amplitudes provided by Eq. A1. 32,160 

sparks were simulated using three values of current 

(5, 20, and 50 pA) with   �  =  5, 10, and 20 ms, respec-

tively. The distribution was therefore concentrated at 

three values of true amplitude. Among all sparks, 12,134 

yielded scanned amplitudes above the detection thresh-

old (0.3). These were then processed to derive  g ( a ). 

 f ( a ) was computed for three binning intervals, yielding 

curves represented in  Fig. A2 A .  Application to these 

functions of Eq. A1 yielded three versions of  �  2 ( a )  g ( a ) 

represented with the same color code in  Fig. 8 B . These 

curves have three modes at  � 0.6, 2.3, and 3.7, which are 

very close to the actual in-focus amplitudes of the three 

sparks, marked with vertical lines in Fig. 8 B. While the 

frequencies of the three sparks were exactly the same in 

the simulation, the third mode of  g  is somewhat higher. 

This difference may refl ect a greater  �  (which tends to 

increase at longer release times) or the fact that a 

greater fraction of greater sparks will satisfy the detec-

tion criterion ( a   >  0.3). The result also depends to some 

 Figure A2.   Recovery of  “ true amplitudes ”  from distributions of 
scanned amplitudes. (A) Histograms  f ( a  s ) of scanned amplitudes 
for a set of sparks consisting in three groups with equal num-
bers, simulated using three values of current (5, 20, and 50 pA) 
at three durations (5, 10, and 20 ms). Three alternative binning 
intervals were used, as indicated. The distribution of true ampli-
tudes in the simulation consists therefore of three Dirac deltas 
(see below). (B) Distributions  g ( a ) of true amplitudes, derived 
from  f ( a  s ) in A using Eq. A1. Dashed lines mark the position of 
true (in-focus) amplitudes of simulated sparks, 0.634, 2.27, and 
3.66. Narrow binning is best at locating low amplitude modes and 
vice versa.   

 Figure A3.   The amplitude variance due to off-focus spread of 
spark locations. Circles plot variance of scanned amplitude vs. in-
focus amplitude for the three groups of simulated sparks repre-
sented in  Fig. A2 . The curve plots variance vs. true amplitude  � , 
calculated by Eq. 12.   
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