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The Ginkgo biloba extract (GbE) is a commercial product used as a nutraceutic herbal remedy in Europe and US. It contains 27%
of the polyphenols isorhamnetin, kaempferol, and quercetin, as antioxidants. We used male adult Wistar rats (200–300 g), divided
into four groups: control group (treated with 5.0mg/kg of sodium chloride, intravenous), titanium dioxide nanoparticles (TiO

2
-

NPs) group (5.0mg/kg, intravenous), GbE group (10mg/kg, intraperitoneal), and GbE + TiO
2
-NPs group (treated 24 h before

with 10mg/kg of GbE, intraperitoneal), followed, 24 h later, by 5.0mg/kg of TiO
2
-NPs intravenously. The statistical analysis was

performed using Student’s 𝑡-test for grouped data with ANOVA posttest. The GbE protected renal cells against the effects of TiO
2
-

NPs because it reversed the increased activity of 𝛾-glutamyltranspeptidase and the enzymatic activity of dipeptidylaminopeptidase
IV at all times tested (0–5, 5–24, 24–48, and 48–72 h). Also it reversed the glucosuria, hypernatriuria, and urine osmolarity at three
times tested (5–24, 24–48, and 48–72).Thus, we conclude that GbE has a beneficial activity in the cytoplasmic membranes of brush
border cells on the renal tubules, against the adverse effects that can be produced by some xenobiotics in this case the TiO

2
-NPs,

in experimental rats.

1. Introduction

The main function of kidneys, in mammals, is the excretion
of metabolic end products from the body and the regulation
of extracellular fluid volume and electrolyte composition
[1]. Their high blood flow, combined with their ability to
concentrate solutes, exposes them to high concentration of
xenobiotics present in the systemic circulation. Because of the
rich blood supply of the kidneys, in relation to theirmass, this
organ is particularly liable to damage by toxic substances.

Most living organisms are exposed to nanoparticles (NPs)
through the gastrointestinal tract, the lungs, and the skin
[2–4]. Moreover, titanium dioxide nanoparticles (TiO

2
-NPs)

affect kidney cells in vitro [5–7] and in vivo [8].

Once into the body, the NPs can interact with cell struc-
tures like the plasmatic membrane and cause disruption of it.
Some of the biological effects of TiO

2
-NPs in nanomedicine,

after intravenous injection, deliver TiO
2
-NPs into the human

body: they induce pathological lesions in liver, spleen, kid-
neys, and brain [9]. Also, the intravenous administration
of TiO

2
-NPs (5mg/kg) in rats causes an accumulation of

nanoparticles in the kidneys with the highest burden on a day
1 after exposure and remains until day 14 [10]. Furthermore,
after a single oral administration (5 g/kg) in mice, these
nanoparticles change some serum biochemical parameters
(alanine aminotransferase (ALT), aspartate aminotransferase
(AST), LDH, and BUN), and pathology of the kidneys
indicated that renal injury was induced after exposure [11].

Hindawi Publishing Corporation
Biochemistry Research International
Volume 2016, Article ID 5781579, 9 pages
http://dx.doi.org/10.1155/2016/5781579

http://dx.doi.org/10.1155/2016/5781579


2 Biochemistry Research International

One of the first ultrastructural changes seen after treat-
ment with many nephrotoxins is sloughing of proximal
tubule brush borders [12]. The enzymes 𝛾-glutamyltranspep-
tidase (𝛾-GTP) and dipeptidylaminopeptidase IV (DAP-IV)
are predominantly located on the apical membrane (brush
border) of proximal cells [13, 14]. Thus, xenobiotics (in
this case TiO

2
-NPs) can produce release of 𝛾-GTP and

DAP-IV from their site in the brush border membrane of
renal tubules, causing their urinary excretion (enzymuria).
Moreover, along the nephron, the reabsorption and secretion
of solutes (sodium and glucose) are done by different cotrans-
porters such as sodium-glucose sodium-phosphate, sodium-
amino, Na-K-2Cl, and Na-Cl. Therefore, the damage of the
cytoplasmic membrane would disrupt the function of these
cotransporters. These transporters are the major participants
in urine osmolarity [15].

TheGinkgo biloba extract (GbE) is a commercial product,
considered as nutraceutic [16] with possible beneficial effects
on human health [17–23]. The GbE contains an average of
27% polyphenols isorhamnetin, kaempferol, and quercetin
[24–28] and 6% terpene lactones (terpenoid fraction). The
terpenoid fraction primarily contains ginkgolides A, B, C,
J, and M, as well as bilobalide. Its purported biological
effects include free radical scavenging, antiapoptotic, anti-
inflammatory, and antioxidative activities [29]. The GbE is
used in many applications such as the treatment of dementia,
cerebral insufficiency, or related cognitive decline [30]. The
possible mechanisms implied in the neuroprotective effect
are modulation of ion homeostasis, glucocorticoid levels,
and synthesis of growth factors [31]. In recent clinical and
experimental experiments, GbE has been reported to be
effective against ischemic brain injury [32, 33], cerebral
(or cerebrovascular) insufficiency [34], cognitive speed [35],
dementia and Alzheimer’s disease [36], peripheral vascular
disease such as arterial occlusive disease [37], and aging dam-
age [38]. In the case of renal cells, the GbE has renoprotective
effect against cisplatin-induced nephrotoxicity [29]. In other
study, changes in blood urea, serumcreatinine, and creatinine
clearance induced by gentamicinwere significantly prevented
by Ginkgo biloba extract [39]. Furthermore, the GbE dimin-
ishes adriamycin-induced proteinuria and hyperlipidaemic
nephrotoxicity in rats [40].

Our hypothesis was that pretreatment with GbE as a sin-
gle dose (10mg/kg of body weight), administered intraperi-
toneally, would reverse the renal effects of the intravenous
administration of a single dose of TiO

2
-NPs, in the kidneys

of adult male rats.

2. Materials and Methods

2.1. Animals and Reagents. Male adult Wistar rats (200–
300 g) were used and maintained in stainless steel cages with
a 12 h light/dark regime. The rats were handled according to
the Guiding Principles in the Use of Animals in Toxicology.

Ginkgo biloba extract was from Vasodil®, NYCOMED,
México, titanium dioxide nanoparticles were from Anatase,
Sigma Aldrich, St. Louis, MO, USA, and 𝛾-glutamyl p-
nitroanilide and gly-pro p-nitroanilide were from Sigma
Aldrich, St. Louis, MO, USA.

2.2. Experimental Design. Treatment was as follows. The
rats were divided into four groups: control group (treated
with 5.0mg/kg of sodium chloride aqueous solution, intra-
venously or i.v.), titanium dioxide group (5.0mg/kg of TiO

2
,

i.v.), Ginkgo biloba group (10mg/kg, intraperitoneal or i.p.),
and Ginkgo biloba + titanium dioxide group (treated 24 h
before with 10mg/kg of Ginkgo biloba extract, i.p.), followed,
24 h later, by 5.0mg/kg of TiO

2
, i.p.

The rats were kept with food and water ad libitum and
at room temperature (24 ± 1∘C). The urine was continuously
collected, in vessels attached to themetabolic cages, from 0 to
5 h, from 5 to 24 h, from 24 to 48 h, and from 48 to 72 h.

Biochemical assays were as follows. The specific activity
of 𝛾-glutamyltranspeptidase was determined in 50mM Tris-
Cl, pH 9.0, 10mM MgCl

2
, with 20mM glycylglycine and

𝛾-glutamyl p-nitroanilide as substrate, in a spectrophotom-
eter at 405 nm [41]. The specific activity of dipeptidylami-
nopeptidase-IV was assayed in 50mM Tris-Cl, pH 8.0, with
gly-pro p-nitroanilide as substrate, also at 405 nm [42] in a
spectrophotometer.The enzymatic activities were carried out
at room temperature (25 ± 1∘C), in 0.5mL final incubation
volume. The initial enzymatic rates were calculated from
continuous recording, usually in duplicates, in a Varian
UV/VIS spectrophotometer (Varian DMS 80).

Proteinwasmeasuredwith the Folin phenol reagent using
bovine serum albumin as standard [43]. We also measured in
urine the volume, the concentration of creatinine [44], the pH
in a pHmeter, the osmolality in amicroosmometer (Osmette,
Precision Systems Model 5004), and the concentration of
sodium in a flame photometer (Corning M410).

2.3. Statistical Analysis. We calculated the significance of
the differences between group means with the two-tailed
Student’s 𝑡-test for grouped data with ANOVA posttest of the
urinary parameters, using the software Prism 4 (GraphPad
Software Inc.); graphs were produced using Slide Write Plus
version 4.0 for Windows (Advanced Graphics Software Inc.).

3. Results

The pretreatment with a single and intraperitoneal dose of
the Ginkgo biloba extract (GbE) reversed the renal effects of
a single dose of TiO

2
-NPs (5mg/kg, intravenous), studied in

the urine of adult male rats.

3.1. The Effects of GbE on the Renal Effects of Titanium
Dioxide (TiO2) of the 𝛾-Glutamyltranspeptidase Enzymatic
Activity in Urine. The increased enzymatic activity of 𝛾-
glutamyltranspeptidase, generated by titanium dioxide, was
totally and significantly (𝑃 < 0.05) reversed with the 24 h
pretreatment of GbE, from 64.4 ± 10.7 to 6.9 ± 0.8 (0–5 h),
from 63.3±9.6 to 14.5±0.5 (5–24 h), from 40.9±0.6 to 5.8±0.9
(24–48 h), and from 48.3 ± 3.4 to 4.5 ± 0.2 nmol pNA/min ×
mg of protein (48–72 h), as shown in Figure 1.

3.2.The Effects of GbE on the Renal Effects of TitaniumDioxide
on the Enzymatic Activity of Urinary Dipeptidylaminopepti-
dase IV. The GbE partially and significantly (𝑃 < 0.05)
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Figure 1: The effects of GbE on the renal effects of titanium dioxide
(TiO
2
) of the 𝛾-glutamyltranspeptidase enzymatic activity in urine,

at different time periods, compared with control, GbE, and TiO
2
-

treated rats. The enzymatic activity is shown as nmol p-NA/min
× mg of protein. The values represent mean ± SEM, 𝑛 = 6. The
significance level is ∗∗𝑃 < 0.01; pNA: p-nitroanilide.

reversed the increase on enzymatic activity of dipeptidy-
laminopeptidase IV, produced by TiO

2
, from 11.1 ± 0.9 to

4.0 ± 0.3 (0–5 h), from 9.8 ± 0.5 to 6.7 ± 0.7 (5–24 h), from
8.1 ± 0.7 to 2.8 ± 0.1 (24–48 h), and from 8.5 ± 0.3 to 2.1 ±
0.1 nmol pNA/min ×mg of protein (48–72 h), as depicted in
Figure 2.

3.3. The Effects of GbE on the Renal Effects of TiO2 of the
Glucose Concentration in Urine. Figure 3 shows that the GbE
decreased significantly (𝑃 < 0.05) the glucosuria, produced
by titanium dioxide, only at 5 to 24 h (29.2 ± 3.2 to 2.5 ± 0.2),
and again from 48 to 72 h (19.1 ± 3.5 to 4.8 ± 0.6mg/dL).
The values from 24 to 48 hwere not significantly different that
control or GbE-treated rats.

3.4. The Effects of GbE on the Renal Effects of TiO2 of the
Urinary Sodium Concentration. In Figure 4 it is shown that
the GbE decreased significantly (𝑃 < 0.05) the hypernatruria
produced by titanium dioxide: from 5 to 24 h (85 ± 17 to
49 ± 9), from 24 to 48 h (104 ± 9 to 63 ± 5), and from 48
to 72 h (126 ± 8 to 73 ± 5mEq/L).

3.5.The Effects of GbE on the Renal Effects of TitaniumDioxide
in the Urine Osmolarity. The GbE diminished significantly
(𝑃 < 0.05) the urinary hyperosmolarity produced by TiO

2

only from 5–24 h (580 ± 19 to 272 ± 69) and again from 48 to
72 h (516 ± 7 to 357 ± 20mOsmol/L), as depicted in Figure 5.
The values from 24 to 48 hwere not significantly different that
control or GbE-treated rats.
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Figure 2:The effects of GbE on the renal effects of titanium dioxide
on the enzymatic activity of urinary dipeptidylaminopeptidase IV,
at different time periods, compared with control, GbE, and TiO

2
-

treated rats. The enzymatic activity is shown as nmol p-NA/min
× mg of protein. The values represent mean ± SEM, 𝑛 = 6. The
significance level is ∗∗𝑃 < 0.01; pNA: p-nitroanilide.
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Figure 3: The effects of GbE on the renal effects of TiO
2
of the

glucose concentration in urine, at different time periods, compared
with control, GbE, and TiO

2
-treated rats.The glucose concentration

is presented as mg/dL. The significance level is ∗∗𝑃 < 0.01.
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Figure 4: The effects of GbE on the renal effects of TiO
2
of the

urinary sodium concentration, at different time periods, compared
with control, GbE, and TiO

2
-treated rats.The sodium concentration

is presented as mEquivalents of Na+/liter.The significance levels are:
∗
𝑃 < 0.05, ∗∗𝑃 < 0.01.

3.6.The Effects of GbE andTitaniumDioxide onOtherUrinary
Parameters. Finally, the GbE alone did not significantly
modify the concentrations of protein and creatinine, the
volume, or the pH of urine, respectively, compared to control
orGbE-pretreated rats, as shown inTable 1. Likewise, theGbE
did not significantly modify the water and food intakes or the
body weight, respectively, also compared to control or GbE-
pretreated rats, as depicted in Table 2.

In Figure 6, we show a scheme about the possible mech-
anisms of the GbE polyphenols to protect the cytoplasmic
membrane from renal effects produced by the titanium
dioxide nanoparticles, at the luminal side of the brush border
cells, all along the renal tubules of rat kidneys.

4. Discussion

The administration of a single and intraperitoneal dose of
the Ginkgo biloba extract (GbE, 10mg/kg of body weight)
significantly (>0.05) reversed the renal effects of a single
and intravenous dose (5mg/kg) of titanium dioxide (TiO

2
)

nanoparticles, studied in the urine of adult male rats. The
dose of TiO

2
that we used is 11.8 times lower than its

LD
50

[45]. TiO
2
-NPs are a fine white powder, often used as

pigments or additives for ceramics, paints, paper, plastics,
food, sunscreens, and toothpaste [46]. Living organisms are
exposed to TiO

2
-NPs and may develop toxic effects. The

toxicity of TiO
2
-NPs has mainly been studied in vitro [47–

50] but with fewer studies in vivo [51] and a growing need for
in vivo research on the effects of nanoparticles [52, 53].
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Figure 5:The effects of GbE on the renal effects of titanium dioxide
in the urine osmolarity, at different time periods, compared with
control, GbE, and TiO

2
-treated rats. The osmolarity is shown as

mOsmoles/liter. The significance level is ∗∗𝑃 < 0.01.

Ginkgo biloba is one of the most widely used herbal
remedies in Europe andUS [54]. It is well known that theGbE
contains 27% of the polyphenols isorhamnetin, kaempferol,
and quercetin [24–27].

We believe that the renoprotective effects of the GbE,
against the effects of TiO

2
nanoparticles, are mainly due

to the higher content and the interaction of the three GbE
polyphenols with the cytoplasmic membrane of the brush
border cells on the renal tubules and perhaps also to a
synergistic effect among them.

The polyphenols interact withmodel membranes [55–67]
and with erythrocyte membranes [68–70]. Some of the pre-
vious authors report evidence that this interaction is mainly
due to hydrogen bonding between lipid polar head groups
of membranes and the hydroxyl groups of polyphenols. This
interaction would stabilize the membranes and influence
their fluidity by decreasing packing in the hydrophilic region
of membrane.

In relation to the specific activity of 𝛾-glutamyltran-
speptidase (𝛾-GTP) and dipeptidylaminopeptidase IV (DAP-
IV), because they are in contact with the lumen of the
renal tubules, and due to their location in the brush border
membrane of renal proximal tubules [13, 14], they are the
most susceptible parameters to the direct adverse effect by
TiO
2
-NPs, and thus, they are the most benefited by the

GbE at all times tested. This can be explained because the
polyphenols exert a screen effect combined with its chelating
and antioxidant activity. These properties have been well
studied in quercetin [71, 72].
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Figure 6: Scheme on the possible mechanisms of the GbE polyphenols for the renoprotection of the cytoplasmic membrane against the
effects generated by the TiO

2
nanoparticles, at the luminal side of the brush border cells, along the renal tubules of rat kidneys. 𝛾GT:

𝛾-glutamyltranspeptidase, DAP-IV: dipeptidylaminopeptidase IV, CoT: electroneutral Na-K-Cl cotransporter, and Gluc T2: Glucose-Na
cotransporter 2.

According to the other parameters, the time-related
effects of TiO

2
-NPs were detected after the enzymuria,

as increased concentration of the urinary glucose (gluco-
suria) and increased concentration of the urinary sodium
(hypernatriuria), along with increased of urine osmolality.
Similarly, with its polyphenols, the GbE exerted its beneficial
mentioned properties [71, 72], protecting and preventing
a dysregulation in the function of nephron cotransporters
involved in the regulation of sodium, glucose, and therefore
the osmolarity, produced by the TiO

2
-NPs.

Likewise, it is possible that the GbE renoprotection is
potentiated by its components as reported in vivo for their
pharmacokinetics in rats [73] and for the treatment of cancer
[74–76]. We also believe that the polyphenols of the GbE
participate, as antioxidants [77], in the renoprotective effects
against TiO

2
, mainly at later times [78].

We do not rule out the participation of the antioxidant
effects of GbE components on the renal effects like oxida-
tive stress, generated by nanoparticles, reported by several
authors [55, 79–82].

Finally, we could not find significant differences among
the control, the GbE, and the TiO

2
-treated rats for the fol-

lowing urinary parameters: the volume, the concentration of
protein, the concentration of creatinine, or the pH. Likewise,
the water and food intakes as well as the gain in body weight
were not statistically different in control rats, compared with
the GbE, and the TiO

2
-treated rats.

5. Conclusions

The administration of Ginkgo biloba extract (GbE, 10mg/kg
of body weight) by the intraperitoneal route and as a single
dose reversed the renal effects of a single and intravenous
dose (5mg/kg) of titanium dioxide (TiO

2
) nanoparticles in

male and adult rats, studied in the urine. The GbE recovered
the enzymatic activities of 𝛾-glutamyltranspeptidase and of
dipeptidylaminopeptidase IV. The GbE also reversed the
glucosuria, the hypernatruria, and the hyperosmolarity gen-
erated by titanium dioxide. These effects appear to be mainly
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Table 1: The effects of the Ginkgo biloba extract (10mg/kg b.w.,
intraperitoneal) administered 24 h before titanium dioxide
(5mg/kg b.w., intravenous) on other urinary parameters studied.

Parameter 0–5 h 5–24 h 24–48 h 48–72 h
Protein (mg/mL)

Control 4.5 ± 0.3 8.8 ± 0.4 8.2 ± 0.2 8.8 ± 0.2
Control Gb 6.8 ± 2.2 7.5 ± 1.8 10.7 ± 0.8 8.2 ± 0.8
Treated TiO

2
5.3 ± 0.5 5.6 ± 0.3 6.9 ± 0.3 7.8 ± 0.1

Pretreated Gb 6.9 ± 0.3 6.6 ± 1.5 8.3 ± 0.2 7.3 ± 0.2
Total creatinine (mg/dL)

Control 57 ± 2.1 87 ± 1.7 77 ± 2.7 62 ± 5.1
Control Gb 46 ± 6.9 67 ± 12.8 68 ± 1.9 55 ± 3.9
Treated TiO

2
47 ± 1.5 77 ± 1.3 83 ± 0.6 84 ± 6.5

Pretreated Gb 47 ± 7.9 56 ± 6.3 63 ± 2.2 50 ± 1.7
Volume (mL)

Control 4.0 ± 0.5 8.7 ± 0.7 8.7 ± 0.5 13.7 ± 1.4
Control Gb 2.5 ± 0.2 8.0 ± 2 7.0 ± 1.3 7.0 ± 0.9
Treated TiO

2
3.0 ± 0.15 9.0 ± 1.0 9.0 ± 1.0 9.0 ± 1.0

Pretreated Gb 2.6 ± 0.2 10 ± 2 10 ± 1 11 ± 1
pH

Control 7.6 ± 0.2 7.4 ± 0.3 7.3 ± 0.3 6.9 ± 0.4
Control Gb 8.0 ± 0.05 7.0 ± 0.5 6.5 ± 0.2 7.8 ± 0.1
Treated TiO

2
6.5 ± 0.3 6.5 ± 0.3 6.8 ± 0.2 6.3 ± 0.2

Pretreated Gb 7.0 ± 0.3 7.8 ± 0.2 7.8 ± 0.2 7.7 ± 0.2
Values represent mean ± SEM (𝑛 = 6).

Table 2: The effects of the Ginkgo biloba extract (10mg/kg b.w.,
intraperitoneal) administered 24 h before titanium dioxide
(5mg/kg b.w., intravenous) on general parameters studied.

Parameter 5–24 h 24–48 h 48–72 h
Water consumption (mL in 19 or 24 h)

Control 35 ± 3.4 32 ± 3.1 35 ± 1.9
Control Gb 23 ± 5.0 42 ± 7.2 32 ± 5.2
Treated TiO

2
35 ± 5.1 32 ± 4.1 30 ± 4.1

Pretreated Gb 25 ± 3.3 38 ± 2.4 33 ± 2.2
Food consumption (g in 19 or 24 h)

Control 18 ± 1.3 19 ± 0.7 21 ± 1.4
Control Gb 14 ± 1.5 14 ± 5.1 12 ± 4.1
Treated TiO

2
19 ± 1.1 16 ± 1.3 15 ± 1.4

Pretreated Gb 18 ± 1.2 17 ± 1.4 17 ± 1.2
Body weight (g in 19 or 24 h)

Control 305 ± 10 302 ± 10 299 ± 11
Control Gb 282 ± 24 280 ± 18 269 ± 23
Treated TiO

2
227 ± 13 237 ± 14 246 ± 16

Pretreated Gb 278 ± 13 270 ± 16 273 ± 33
Values represent mean ± SEM (𝑛 = 6).

due to the interaction and protection of the GbE polyphenols
with the cytoplasmic membrane on renal tubules of the
male adult rats. Thus, we conclude that GbE has a beneficial
activity in the cytoplasmic membranes of brush border cells
on the renal tubules, against the adverse effects that can be
produced by some xenobiotics, in this case the TiO

2
-NPs,

in experimental rats. Therefore, our research highlights the
pharmacological activity of the Ginkgo biloba extract, which
can be used as an alternative treatment to protect renal cells
against the toxicity produced by TiO

2
-NPs.
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