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The classification of ankle movements from non-invasive brain recordings can be applied

to a brain-computer interface (BCI) to control exoskeletons, prosthesis, and functional

electrical stimulators for the benefit of patients with walking impairments. In this research,

ankle flexion and extension tasks at two force levels in both legs, were classified

from cortical current sources estimated by a hierarchical variational Bayesian method,

using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)

recordings. The hierarchical prior for the current source estimation from EEG was

obtained from activated brain areas and their intensities from an fMRI group (second-level)

analysis. The fMRI group analysis was performed on regions of interest defined over

the primary motor cortex, the supplementary motor area, and the somatosensory area,

which are well-known to contribute to movement control. A sparse logistic regression

method was applied for a nine-class classification (eight active tasks and a resting control

task) obtaining a mean accuracy of 65.64% for time series of current sources, estimated

from the EEG and the fMRI signals using a variational Bayesian method, and a mean

accuracy of 22.19% for the classification of the pre-processed of EEG sensor signals,

with a chance level of 11.11%. The higher classification accuracy of current sources,

when compared to EEG classification accuracy, was attributed to the high number of

sources and the different signal patterns obtained in the same vertex for different motor

tasks. Since the inverse filter estimation for current sources can be done offline with the

present method, the present method is applicable to real-time BCIs. Finally, due to the

highly enhanced spatial distribution of current sources over the brain cortex, this method

has the potential to identify activation patterns to design BCIs for the control of an affected

limb in patients with stroke, or BCIs frommotor imagery in patients with spinal cord injury.
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INTRODUCTION

Patients with walking impairments often use wheelchairs for
transportation; however, this transportation means can cause
pressure soars in the long-term if the patients do not perform
pressure-relieving movements frequently (Stockton and Parker,
2002). Other devices such as exoskeletons and functional
electrical stimulation (FES) systems allow patients to stand
up and take steps however their control rely on the patient’s
unaffected motor abilities (pressing switches, trunk shifts,
remaining muscle activity, etc.; Gancet et al., 2012; Contreras-
Vidal et al., 2016). An alternative of control for these systems,
which rely less heavily on the remaining motor abilities, is
a brain-computer interface (BCI), in which brain signals are
recorded and translated into control commands for assistive and
communication devices (Wolpaw et al., 2002; Shih et al., 2012).

Breakthroughs in BCI have demonstrated the potential of
this technology for motor rehabilitation, by controlling virtual
environments and upper limb robots from implanted electrodes
on the brain cortex (Wessberg et al., 2000; Serruya et al., 2002;
Taylor et al., 2002; Carmena et al., 2003; Velliste et al., 2008;
Hochberg et al., 2012). A study by Fitzsimmons et al. (2009) in
non-human primates using implanted electrodes, demonstrated
that it is possible to decode bipedal walking patterns (leg
kinematics and EMG activities), from cortical ensembles in M1
and S1 during forward and backward walking tasks, showing
the feasibility to use invasive BCIs for the restoration of
gait in humans with intact locomotion centers in the brain.
While invasive recordings can provide signals with high spatial
resolution that allow for the decoding of more kinematic and
physiological variables relevant to gait, the need for surgery
limits the population that can access to this technology and,
furthermore, there is always a risk of infection with implanted
electrodes (Lesser et al., 2010). In this sense, non-invasive BCI
techniques are preferred because they are safer and patients
do not need to meet strict inclusion criteria to participate
in this type of BCI studies. Among non-invasive techniques,
electroencephalography (EEG) has a high temporal resolution
and therefore is suitable for real time applications; nevertheless,
movement artifacts and other sources of noise easily affect it.
Despite its limitations, EEG is widely used in BCIs because of its
portability.

Studies of BCIs based on binary classifications (i.e., detection
of movement intention) using EEG have shown promising results
for the development of assistive devices for gait restoration
in patients with movement impairments (Waldert et al., 2008;
King et al., 2013; Xu et al., 2014; Barsotti et al., 2015; Jiang
et al., 2015; Severens et al., 2015; Yang et al., 2015; Pereira
et al., 2017). Furthermore, long-term training with non-invasive
BCIs has showed significant improvement in cortical plasticity
in M1 and S1 areas in patients with paraplegia (Donati et al.,
2016), demonstrating potential in the practical use of BCIs for
the rehabilitation of walking impairments. However, in order
to design a more natural non-invasive BCI for walking, it is
necessary to classify more categories of motor tasks. Since the
motor areas in the brain that represent right and left leg and
foot are in close proximity (Meier et al., 2008), the multi-class

classification of motor tasks in the lower limbs becomes a more
challenging task for EEG signals.

To improve the spatial resolution and classification accuracies,
various techniques to estimate cortical current sources from
EEG, magnetoencephalography (MEG) and functional magnetic
resonance imaging (fMRI) have been developed (Baillet et al.,
2001). Among these techniques, we use a hierarchical Bayesian
method that imposes fMRI as a hierarchical soft constraint on
EEG for current source estimation (Sato et al., 2004; Yoshioka
et al., 2008). This method was selected because it preserves
the high temporal resolution of the EEG and the high spatial
resolution of the fMRI, and it has been successfully implemented
in previous offline BCI studies (Toda et al., 2011; Yoshimura
et al., 2012, 2016; Kawase et al., 2017). In the context of this
study, a current source can be defined as the average neuronal
activation in each 3 × 3 × 3mm voxel in the brain cortex.
The voxels from MRI provide information on the location and
orientation of dipoles on the brain cortex, while from the fMRI
data the region of interest (area prior) and the relative amplitudes
of dipole currents (activity prior) are extracted. Area and activity
priors are imposed as a soft constraint to estimate cortical current
sources from the EEG data.

In our study, anatomically known areas in the brain
contributing to motor planning and execution for ankle
movements were obtained from the fMRI analysis. Each
participant executed the same ankle movements as experimental
tasks during both the fMRI and the EEG experiments, which
were carried out separately on different days. Since from the
fMRI information we can obtain good anatomical locations, with
high resolution, for brain activations related to foot movements,
we expect that the estimated current sources are a reasonable
representation of the true current sources (group of neurons in
each voxel) generated in the brain cortex. After current sources
were estimated, we apply a multiclass classifier based on sparse
logistic regression (SLR) (Yamashita et al., 2008), for the time
series signals of the estimated current sources and EEG sensor
signals, to classify ankle flexion and extension with two different
force levels (i.e., nine tasks for both legs including a no-motion
condition). This method was selected because it is suitable for
brain activity data with high-dimensional features, and it has
been reported to be more robust in the presence of irrelevant
features when compared to other methods such as support vector
machine and regularized logistic regression (Yamashita et al.,
2008).

Our objective in this research is to estimate cortical current
sources from EEG and fMRI recordings, and decode activation
patterns in the brain for ankle flexion and extension movements
at two force levels in both legs. These motor tasks were selected
because of the major role these tasks play in the normal walking
cycle, and because the classification of these tasks in healthy
participants shows the feasibility to design control strategies for
walking aids for patients with walking impairments. Based on the
methods described here, classifiers can be created, for example,
from motor imagery of ankle movements in patients with spinal
cord injury, or from the healthy brain activation related to
contralateral ankle or foot movement in patients affected by
stroke.
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MATERIALS AND METHODS

Participants
Eight healthy participants (5 males and 3 females) aged 22–50
years (Mean: 29.67 ± 8.81) participated in this study. Signed
informed consents approved by the ethics committee of the
National Center of Neurology and Psychiatry (NCNP) and Tokyo
Institute of Technology were obtained from each participant
prior to each experiment.

Experimental Design
Two types of experiments were conducted in different days: an
fMRI and an EEG experiment. The experimental tasks consisted
of isometric ankle flexion and extension at high (< ∼30%
of maximum voluntary contraction level) and low force levels
(about half of the high force) in each foot, yielding 8 active
task conditions named “High Left Extension” (HLE), “High Left
Flexion” (HLF), “High Right Extension” (HRE), “High Right
Flexion” (HRF), “Low Left Extension” (LLE), “Low Left Flexion”
(LLF), “Low Right Extension” (LRE), “Low Right Flexion” (LRF),
and a resting control condition called “Still.” Images showing the
motor tasks throughout the experiments were created in Poser
2012 (Smith Micro Software, Inc., California, United States).
In both fMRI and EEG experiments the same task pictures
were shown, however in the EEG experiment, additional figures
indicating the “blinking” and “set” intervals (fixed crosses before
each task to reduce eye-movement artifacts in task periods), were
included (Figure 1).

fMRI Experiment
The fMRI experiment was conducted to obtain the activated
brain areas and the corresponding intensities to the experimental
tasks. This information was used as prior for the cortical current
sources estimation using the variational Bayesian multimodal
encephalography (VBMEG) toolbox forMatlab (Sato et al., 2004).

A block design was used for the fMRI experiment. In total,
the experiment consisted of 7 runs with 8 tasks blocks and one
still (control) block per run, as detailed in Figure 2A. Each block
consisted of one experimental task repeated 6 times during 2 s
with 1 s rest (18 s per block). The experimental program was
created using Presentation 16.3 (Neurobehavioral Systems, Inc.,
California, United States).

This experiment was conducted in the National Center of
Neurology and Psychiatry (Tokyo, Japan) in a 3 Tesla Verio MRI
Scanner (Siemens AG, Munich, Germany). Axial and sagittal
scans were acquired for the T1-weighted structural images with
a magnetization prepared rapid gradient-echo (MPRAGE). Both
images were used during the preprocessing of fMRI; however, the
sagittal image was also used to obtain a polygon model of the
brain surface for each subject. In total, 48 slices were obtained for
the axial images (repetition time = 2 s; echo time = 3.4ms; flip
angle= 8◦, field of view= 192× 192mm; imaging matrix= 192
× 192; voxel size= 1× 1× 1mm; inversion time= 0.99ms), and
224 slices were acquired for the sagittal images (repetition time
= 2 s; echo time = 3.41ms; flip angle = 8◦; field of view = 256
× 256mm; imaging matrix = 256 × 256; voxel size = 1 × 1 ×

1mm; inversion time = 0.99ms). T2∗-weighted fMRI data was

obtained with an echo planar imaging (EPI) with a generalized
autocalibrating partial parallel acquisition (GRAPPA) method,
recording 116 volumes per session (repetition time = 2 s; echo
time = 13ms; echo train length = 31ms; flip angle = 90◦; field
of view = 192 × 192mm; imaging matrix = 64 × 64; number of
slices= 48; voxel size= 3× 3× 3mm).

Electromyography (EMG) of ankle flexors and extensors was
recorded during the fMRI experiment with the purpose of
confirming task execution. EMG electrodes were attached prior
to the fMRI experiment to the Tibialis Anterior (dorsiflexor),
the Gastrocnemius (plantarflexor and knee flexor), the Soleus
(plantarflexor), and the Extensor Hallucis Brevis (toes extensor)
in both legs, and the participant was asked to practice the
experimental tasks. EMG data in this experiment was collected
with a BrainAmp ExG MR (Brain Products GmbH, Gilching,
Germany) using 8 pairs of Ag/AgCl electrodes. Inside the
scanner, the feet of the participants were fixed to fMRI compatible
custom made platforms (Right Mfg. Co., Ltd, Tokyo, Japan) with
detachable Velcro stripes, to allow them to exert isometric force,
and to reduce head motions inside the MRI scanner caused by
the leg movement tasks (Figure 2B).

EEG Experiment
The EEG program for experiment instruction was created in
MATLAB 2013b (The MathWorks, Inc., United States). In this
experiment, additional images for blinking and set (fixation
crosses indicating the participant to prepare for the task)
were included. This experiment was divided into 3 modules:
“Flexion vs. Extension,” “Right vs. Left,” and “High Force vs.
Low Force,” and participants were asked to take a rest after
each module completion. The EEG experiment was designed in
this manner attempting to reduce the potential mental fatigue
of the participants (Faber et al., 2012; Talukdar and Hazarika,
2017), in consideration of the number of experimental tasks (9
motor tasks with 50 repetitions each), the introduction of task
irrelevant images for blink and set (fixation crosses) events, and
the condition of exerting isometric forces. Four runs composed
each module and each run was repeated twice. According to the
current module, each run combined two tasks and a still task, that
is, in the “Flexion vs. Extension” module the tasks “LLF and LLE,”
“HLF and HLE,” “LRF and LRE,” and “HRF and HRE” and still,
were included (Figure 2C).

In preparation for the EEG experiment, the participants were
seated inside a soundproof room (AMC-3515, O’HARA & Co.,
Ltd.) with a 24 inches monitor to show the experiment directions.
The participant feet were fixed to the platform and instructed to
practice ankle flexion and extension at high and low force levels
to learn to restrain co-contraction of flexor and extensor muscles
(Figure 2D).

EEG signals were acquired with a sampling rate of 256Hz with
the ActiveTwo system and the ActiView software (BIOSEMI,
Amsterdam, Netherlands), using 32 Ag/AgCl active electrodes
placed accordingly to the 10–20 international system layout.
Two additional electrodes were placed on both earlobes and
its average was used as a reference. To place the EEG and the
reference electrodes, the head cap gaps were filled with highly
conductive gel and the earlobes were cleaned with 70% ethanol.
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FIGURE 1 | Images with motor task instructions used during the fMRI and the EEG experiments. Blink and fixation crosses were only used for the EEG experiment.

EEG electrodes positions were recorded with a Polaris Spectra
(Northern Digital Inc., Waterloo, Canada). Measurements were
done in the order of nasion, right pre-auricular, left pre-auricular,
and EEG electrodes according to the BIOSEMI electrodes labels.

To confirm task execution in the EEG experiment, EMG
signals were recorded a sampling rate of 2,000Hz with a
BagnoliTM Desktop EMG System (Delsys, United States) using 8
single differential electrodes on the same muscles as the fMRI
experiment. EMG signal conditioning and digitalization was
done with a NI-USB 6259 BNC (National Instruments, Canada).

fMRI Data Preprocessing
fMRI data was processed using SPM8 (Wellcome Department
of Cognitive Neurology, UK; http://www.fil.ion.ucl.ac.uk/spm),
for individual and group (second-level) analyses. In preparation
for the analyses, the first five volumes of the EPI images were
discarded for stabilization of the magnetization, and the last
10 volumes were discarded to avoid their use as a baseline,
therefore, from the original 116 volumes, 101 volumes were used
for the analyses. For the individual analyses T1-weighted axial
and sagittal images were bias corrected and segmented into gray

matter, white matter and cerebrospinal fluid. EPIs were corrected
for differences in image acquisition time, and realigned to the
mean EPI image. To register all images, the T1-weighted axial
image was co-registered to the T1-weighted sagittal image and
then the EPIs were co-registered to the T1-weighted axial image.
It is worth mentioning that this co-registration method is not
standard for fMRI analysis, and it is used only for current source
estimation purpose in VBMEG. After images registration, all
images were normalized to the Montreal Neurological Institute
(MNI) coordinates, and smoothed with a full-width spatial
Gaussian kernel of 8mm at half maximum.

Statistical analyses were performed with a general linear
model (GLM). Boxcar functions were used to model the nine
periods corresponding to the nine blocks. Each execution period
consisted of one block of 18 and 3 s of rest interval. These
functions were then convolved with the hemodynamic response
function to obtain parameters describing the blood oxygen level-
dependent (BOLD) response at each stimulus presentation (task
image). Finally, model parameters were estimated and statistical
parametric maps were created for each participant. Using the
contrasts obtained from individual analyses, a second-level
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FIGURE 2 | (A) Experimental paradigm for the fMRI experiment. The fMRI experiment consisted 7 runs. In each run, 9 blocks were included (8 active tasks and a

control task), and each block consisted of one experimental task and a rest interval, both repeated 6 times. (B) Experimental setting for the fMRI experiment. EMG

electrodes were attached to the participants to confirm task execution and the feet of the participant were fixed to a custom made-platform to reduce head

movements inside the scanner. (C) Experimental paradigm for the EEG experiment. The EEG experiment consisted of three modules: “Flexion vs. Extension,” “Right

vs. Left,” and “High Force vs. Low Force.” In each module, 2 active tasks were repeated 10 times (10 trials) and a still task was repeated 5 times (5 trials). The 2 active

tasks were selected based on the module (i.e., HLE and HLF for the “Flexion vs. Extension” module). After 25 trials (10 trials for each of the 2 active tasks and 5 trials

for the still task), the active tasks were changed until completing all the experimental tasks. (D) Experimental setting for the EEG experiment. A cap with 32 EEG

electrodes and 8 EMG electrodes were attached to the participant. A custom-made platform was also used in this experiment to attach the participant’s feet during

the EEG experiment in order to reduce movement artifacts and allow for isometric contractions.

(group) analysis was done with a full factorial design to extract
parametric maps common for all participants. Three factors
were used for the design: “Factor 1: left leg and right leg,”
“Factor 2: flexion and extension,” and “Factor 3: high force and
low force.” T-contrasts were obtained for each of the following
conditions: (all left leg tasks) and (all right leg tasks) with
p < 0.01 (uncorrected for multiple comparisons). Statistical
parametric maps from the group analysis were masked with
the anatomical atlas of Brodmann areas 4 (primary motor
cortex), 6 (premotor cortex and supplementary motor area), and
3,2,1 (primary somatosensory cortex) using the WFU PickAtlas
(Radiology Informatics and Imaging Laboratory, USA; http://
fmri.wfubmc.edu/software/pickatlas) tool for SPM to build the
area and activity priors for the purpose of cortical current sources
estimation in VBMEG. The two contrasts obtained were inversely
normalized into individual participant’s space and merged into
one activity prior and one area prior. These priors were named
Group-Con.

EEG Data Preprocessing
EEG data recorded in BDF format from BIOSEMI was converted
into Matlab format with EEGlab (Delorme and Makeig, 2004,
https://sccn.ucsd.edu/wiki/EEGLAB), band-pass filtered from 0.5
to 40Hz, downsampled to 200Hz, and epoched in intervals
of −0.5 s pre onset and 3 s post onset, in reference to the

stimulus presentation time. This pre-processed EEG was further
downsampled to 30Hz and epoched from 0 s (onset) to 1.5 s,
and these epochs of 1.5 s were used as features for the sparse
logistic regression classifier, to obtain the EEG sensor signals that
contributed to each of the nine experimental tasks.

Current Source Estimation with VBMEG
VBMEG is a type of distributed source method in which the
MRI information provides information about the positions and
orientations of dipoles, and the fMRI provides information about
a region of interest and the relative amplitude of the current in
each dipole (Yoshioka et al., 2008).

In conventional current estimation methods where the fMRI
is also used as a prior, the fMRI information is imposed
directly as the prior current variance in each dipole, and
therefore the current amplitude has a low influence when
the prior variance is too large or too small. In VBMEG,
the prior distribution of the variance is considered a random
parameter with gamma distribution, and the fMRI information is
imposed on the variance distribution, rather than as the variance
itself, using two hyperparameters: a variance magnification
parameter (µ0), controlling the current amplitude for a given
fMRI activation, and a confidence parameter (γ0), controlling
the width of the prior distribution. This hierarchical prior
provides a soft constraint on the current amplitude. A spatial
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smoothness constraint with a Gaussian profile with a full width
at half maximum (FWHM) of 6mm, was incorporated in the
estimation. This smoothness constraint considers that neurons
within a few millimeters radius tend to fire simultaneously (Sato
et al., 2004; Yoshioka et al., 2008; Toda et al., 2011; Yoshimura
et al., 2012).

Because of the hierarchical prior, the estimation of the inverse
filter becomes a non-linear problem that cannot be solved
analytically, therefore the approximate posterior distribution is
calculated by using a Variational Bayesian (VB) method, in which
the current and the variance from the observed EEG data and the
prior variance information given by the fMRI data are alternately
estimated. The inverse filter is calculated using the estimated
covariance matrix in the previous iteration (Attias, 1999; Sato,
2001). Once the inverse filter has been calculated, the current
estimation becomes al linear problem.

Current sources were estimated in VBMEG following the
standard procedures established in the toolbox documentation.
The following steps and parameters were used to estimate
cortical currents in VBMEG: firstly, a cortical surface model and
a three-layer head model for each participant were extracted
from the un-normalized bias-corrected T1-weighted sagittal
image from the SPM analysis. The cortical surface model was
created as a polygon model using FreeSurfer (Martinos Center
Software, https://surfer.nmr.mgh.harvard.edu/). The cortical
surfacemodel has single-current dipoles equidistantly distributed
on and perpendicular to the cortical surface, and the three-
layer model has the boundary information for skull, scalp, and
cerebrospinal fluid. VBMEG imports the cortical model to map
the estimated current dipoles, and uses the three-layer model to
create a head model for improving the accuracy in the leadfield
(i.e., forward model) calculation.

Secondly, the leadfield matrix is calculated from the cortical
surface model, the head model and the EEG sensor positions.
Thirdly, the variance of the electrical current from EEG is
estimated in the time range from−0.5 to 3 s with a baseline from
−0.5 to 0 s, and the fMRI information is imposed on the prior
distribution of the current variance using the hyperparameters
µ0 and γ0. High values for both hyperparameters indicate that
the brain activity was the same during both fMRI and EEG
experiments. Considering the experiments were carried out in
different days, and based on the previous work (Yoshimura et al.,
2016), the hyperparameters values for the Group-Con area and
activity priors were set as µ0 = 10 and γ0 = 1.

To estimate the inverse filters, the whole epoch of EEG data
(−0.5 to 3 s) was used for the analysis, being divided into 14
windows of 0.5 s of length with 0.25 s of overlap. This setting
calculated an inverse filter for each time window corresponding
to each epoch and trial. These current sources were estimated
for the area and activity priors determined by Group-Con. The
mean number of current dipoles estimated for each participant
was of 188 ± 7.07. The time series of estimated current sources
were further downsampled to 30Hz and epoched from 0 s (onset)
to 1.5 s, and these epochs of 1.5 s were used as features for
the sparse logistic regression classifier, to obtain which current
sources contributed most to each of the nine experimental
tasks.

Multi-class Classification with Sparse
Logistic Regression
Logistic regression (LR) is a well-known classifier originally
developed in statistics. SLR is a Bayesian extension of LR in
which a sparseness prior is imposed on LR (http://www.cns.atr.
jp/~oyamashi/SLR_WEB/Readme201102.pdf). The SLR method
combines the LR with the automatic relevance determination
(ARD), to simultaneously perform feature selection and training
of the model for classification. The ARD prunes irrelevant
features by automatically setting their associated weights to
zero, leading to a sparse weight vector for classification. This
allows the SLR to train high-dimensional classifiers without the
need of advanced feature dimension reduction, and to avoid
overfitting to some extent. SLR was applied in this research using
the SLR Toolbox v.1.2.1 (ATR Computational Neuroscience
laboratories in Kyoto, Japan; http://www.cns.atr.jp/~oyamashi/
SLR_WEB.html).

Multiclass classifications were done for the epochs of 1.5 s
of estimated current sources and EEG sensor signals, using
a leave-one-out (LOO) method for both current sources and
pre-processed EEG data. The features for classification were
obtained as described in section EEG Data Preprocessing for
EEG and section Current Source Estimation with VBMEG for
current sources. Mean classification accuracies from current
sources, EEG and random labeled data were compared using
non-parametric permutation tests (Nichols and Holmes, 2002).
To evaluate the contribution of current sources and EEG sensors
to each task classification, the corresponding weight values were
normalized by the maximum of each trial and averaged across
time points and trials. Finally, net weight values of the current
sources vertices selected in each area in our ROI, and weights in
each EEG sensor were averaged across participants. Location of
contributing selected current sources was determined using the
Anatomy toolbox v1.8 [Institute of Neuroscience and Medicine
(INM-1), Germany], using the Montreal Neurological Institute
(MNI) coordinates obtained from SPM.

RESULTS

Classification Results
In Figure 3 percentage of correct classifications in the test data
from current sources, EEG and random label are shown. The
classification accuracy from current sources was significantly
higher than chance level (Current sources: 65.64% ±4.11; p =

1.19e−04), and EEG sensor signals (EEG: 22.19%; p= 1.19e-04).
All p-values were obtained from permutation tests and corrected
for multiple comparisons using a false discovery rate of 0.05.
There was no significant difference between the random label
classification and the chance level.

Tables 1, 2 show the confusion matrix for the current sources
classification and pre-processed EEG classification for all trials
averaged across participants.

Localization of Contributing Features
Weight analyses were performed for EEG and current sources
classification results. For EEG, weights were averaged and
normalized across trials and participants in each EEG sensor
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FIGURE 3 | Classification accuracies across participants for current sources

estimated using priors from and fMRI group analysis (Group-Con),

pre-processed EEG signals (EEG), and a random label classification for current

sources. ***p < 0.001.

(Figure 4). For current sources, total weights across dipoles
located in the same Brodmann area were averaged across trials
and participants, and normalized per task. Current sources were
obtained across Brodmann areas 1, 2, 3, 4, 6, the inferior parietal
cortex (IPC) and the lateral operculum (OP3 and OP4). Finally,
activation patterns were obtained for each participant showing
the current sources distribution in each task (Figure 5).

DISCUSSION

This research presented a multi-class classification analysis of
ankle motor tasks using non-invasive brain recorded signals
from EEG and fMRI. As a result, we could successfully identify
activation patterns for flexion and extension tasks at two different
force levels in both feet. Due to the difficulty of measuring
brain activity during walk related motor tasks inside the fMRI
scanner, our approach focuses on the classification of ankle
flexion and extension tasks that can provide an insight of
control for a real time walking BCI. We obtained accuracies of
65.64% for the classification of estimated current sources, and of
22.19% for the classification of EEG sensor signals above chance
level (11.11%) and no significant difference was found among
classes across participants showing no disproportion of true
positives.

The high classification accuracy could be attributed to
the combination of VBMEG and SLR. From VBMEG, many
redundant (but not identical) time series patterns of current

sources are estimated and this output could give SLR many
candidates for features selection from the sparse regularization
point of view (Donoho, 2006). As a result, many similar
time series patterns remain for classification producing high
classification accuracies.

Additionally, the high-resolution fMRI prior may have also
contributed to the high classification accuracy despite the use of
32 EEG channels. While a low resolution prior and a low number
of electrodes affects the quality of the current sources estimated
in VBMEG, and consequently the classifications results, the high
spatial resolution area prior may be more important for proper
current source estimation in VBMEG, than the number of EEG
electrodes: a study performed by Aihara et al. (2012) showed that
the detection accuracy of current sources from simulated EEG
data and spatial priors at different resolutions, was largely affected
by the spatial resolution of the prior than by the number of
EEG sensors. Similar results were obtained with the experimental
data, using 19, 31, and 64 EEG channels, and fMRI and near-
infrared spectroscopy (NIRS) as priors. The fMRI prior and
64 EEG channels estimation was used as a reference. In both
simulated and real data cases, the use of 19 EEG channels along
with the lowest resolution prior (NIRS in the case of real data),
outperformed the use of 64 EEG channels without any prior
information for current source estimation.

Currently it is not possible to isolate or identify individual
muscle activity from EEG recordings, however a previous
study by Yoshimura et al. (2012) succeeded in reconstructing
individual muscle activities (flexor carpi radialis and extensor
carpi radialis brevis) from cortical current sources estimated
from 32 EEG electrodes using VBMEG and a sparse regression
method, in a five task experimental paradigm of wrist flexion and
extension at high and low forces. These results further support
the high performance of the current source estimation method
with VBMEG. As for this study, we have partially succeeded in
the reconstruction of ankle flexor (tibialis anterior) and extensor
(soleus) muscles activities using the methods described in the
paper.

As for the classification technique, we selected SLR as a
classifier because it has a better classification performance in
the presence of irrelevant features, when compared to more
popular methods such as support vector machine (SVM) and
regularized logistic regression (RLR; Yamashita et al., 2008).
Additionally, in the multiclass classification each class has its own
set of parameters, which allowed obtaining activation patterns of
current sources that are specific to each of the experimental tasks.

Location of Features Contributive to Task
Execution
The weights assigned by the classifier to EEG electrodes did
not offer relevant information about the execution of the motor
tasks of interest, however this result was reasonable considering
the low classification accuracy of these signals. Higher weights
tended to be assigned to electrodes placed over temporal and
parietal lobes (P7, P8, T7, and T8; Figure 4). This outcome could
be related to artifacts caused by eye movement or EMG artifacts
during the isometric task execution.
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TABLE 1 | Confusion matrix for current sources classification averaged across participants (50 test trials per class).

Current sources classification accuracies (%)

P
P
P
P
P
P

Target

Selected
HLE HLF HRE HRF LLE LLF LRE LRF Control

HLE 31.63 2.63 2.25 1.25 2.25 2.63 2.00 1.63 3.75

HLF 1.00 35.50 1.25 1.88 2.50 3.25 1.38 1.00 2.25

HRE 2.38 1.38 35.38 1.38 1.38 2.00 3.25 1.00 1.88

HRF 1.00 2.25 1.63 34.63 1.00 2.38 1.88 3.13 2.13

LLE 1.50 2.75 2.00 1.38 32.75 2.75 2.13 1.88 2.88

LLF 1.88 3.38 1.25 2.38 3.25 29.75 2.13 2.00 4.00

LRE 1.25 1.75 2.13 2.63 2.63 3.13 29.75 2.38 4.38

LRF 2.00 1.50 1.00 2.25 1.13 3.38 2.13 34.25 2.38

Control 1.88 1.38 1.25 1.25 3.25 4.38 2.75 2.13 31.75

Mean accuracy per class (%) 63.26 ± 8.28 71 ± 8.90 70.76 ± 6.26 69.26 ± 6.80 65.5 ± 8.40 59.50 ± 11.99 59.50 ± 6.58 68.5 ± 6.59 63.50 ± 7.11

Mean accuracy (%) 65.64 ± 4.11

TABLE 2 | Confusion matrix for EEG sensor signals classification averaged across participants (50 test trials per class).

EEG sensor signals classification accuracies (%)

P
P
P
P
P
P

Target

Selected
HLE HLF HRE HRF LLE LLF LRE LRF Control

HLE 9.00 6.50 5.75 4.75 6.00 6.38 4.13 3.88 3.63

HLF 7.13 9.13 4.13 4.88 5.75 7.25 3.13 3.38 5.25

HRE 4.00 4.25 10.75 8.25 3.38 3.75 6.63 6.00 3.00

HRF 4.88 4.88 6.75 11.13 3.25 3.25 4.75 6.75 4.38

LLE 5.88 6.00 4.38 3.00 10.63 7.50 5.13 3.25 4.25

LLF 7.13 6.25 4.50 2.50 6.00 9.50 4.38 3.88 5.88

LRE 5.25 3.50 6.50 5.38 4.63 3.88 10.63 6.25 4.00

LRF 4.00 3.00 4.75 7.75 3.63 3.88 6.38 12.63 4.00

Control 3.13 5.25 2.25 3.50 4.38 5.38 4.38 5.25 16.50

Mean accuracy per class (%) 18 ± 3.25 18.25 ± 2.70 21.5 ± 2.76 22.25 ± 3.64 21.25 ± 3.81 19 ± 2.45 21.25 ± 3.85 25.25 ± 4.41 33 ± 8.52

Mean accuracy (%) 22.19 ± 1.85

In the case of current sources classification, we obtained
different activation patterns distributed over known brain areas
involved in motor planning and execution. Vertices that were
selected by the classifier as relevant for more than one task,
had different signal patterns to which we attribute the higher
performance classification when compared to EEG sensor signals
classification. These activation patterns are shown in Figure 5 for
a representative participant. For conciseness, in Figure 5 single
task patterns were merged into (1) left leg versus right leg tasks,
(2) flexion versus extension tasks, and (3) high force versus low
force tasks.

The group analysis showed current sources widely distributed
along our ROI of Brodmann areas 1, 2, 3 (primary somatosensory
cortex), 4 (primary motor cortex), and 6 (premotor cortex and
supplementary motor area), however it also showed activations
in the IPC and the OP. The activations in these areas adjacent
to Brodmann areas 1, 2, 3, 4, and 6 were reasonable considering
the co-registration and normalization methods of fMRI and MRI

data are not optimal processes, and the inverse normalization is
as good as the initial normalization to the standard brain for each
participant.

Current sources located in the ipsilateral side of the brain
(resting leg) were observed throughout participants. While these
activations were expected by the use of a single fMRI prior and
co-contractions during task execution, these activations are also
reasonable considering that unilateral limb movements are not
exclusive of the contralateral brain and also show activations on
the ipsilateral brain (Chiou et al., 2013).

Brain Areas Contributive to Task Execution
Somatosensory information from Brodmann areas 1, 2, and 3 is
used in motor control: area 3 receives information relevant for
proprioception and skin touch, which is processed with areas 1
and 2 (Amaral, 2013). The primary motor cortex and the primary
somatosensory cortex have shown prominent activations during
walking experiments (la Fougère et al., 2010), which are strongly
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FIGURE 4 | (A) Normalized weights obtained for each task in EEG classification. Bars located on the green area correspond to the sensors located in the left

hemisphere, bars in the white area correspond to the midline, and electrodes in the pink area correspond to the right hemisphere. (B) Location of 32 EEG electrodes

over the scalp using the 10–20 extended system.

related to the goal of this study. Brodmann area 6 is involved
in preparing and organizing voluntary movements (Cunnington
et al., 1996; Sira and Mateer, 2014), and the highest activation
in this area across participants may be related to the complexity
of the task in which not only flexion and extension movements
needed to be prepared for both lower limbs, but also force
modulation was required. Activation in the IPC was observed in
the rostral and middle areas. The rostral areas are functionally
connected to motor, premotor, and somatosensory areas, thus
this activation may be related to sensorimotor integration of
motor task observation and task execution (Caspers et al., 2011),
while middle IPC is involved visually guided attention, and it may
have aroused as a result of the fixation crosses used during the
EEG experiment (Caspers et al., 2013). The operculum (OP3 and
OP4) is part of the secondary somatosensory cortex (SII). Studies
in the role of SII in sensory-motor integration (Inoue et al., 2002)
and its somatotopic map, have reported activations in SII as a
result of mechanical plantar stimulation (to produce a gait-like
somatosensory inflow; Labriffe et al., 2017) and somatosensory
stimulation in the legs, trunk, hands and head (Disbrow et al.,
2000; Eickhoff et al., 2007).

We also assessed the performance of the method in classifying
tasks from each brain hemisphere (each leg separately), as a
future application for patients with stroke. We created area
and activity priors using the t-contrasts from only left leg tasks
and only right leg tasks, and masked them with the previously
described ROI. Priors in the left brain only were used for right
leg tasks classification, and priors in the right brain only were

used for the left leg tasks classification, resulting in 5-class
classifications (4 active tasks per leg and a control task) with a
chance level of 20% for each classification. Accuracies obtained
from the current sources classification was significantly higher
than EEG and chance level in each left leg (current sources:
70.55% ± 5.31; EEG: 31.40 ± 2.69; p = 1.19e−04 corrected for
multiple comparisons) and right leg (current sources: 73.55 ±

2.82; EEG: 32.10 ± 3.07; p = 1.19e−04 corrected for multiple
comparisons).

Advantage of Using Group fMRI Priors for
Current Source Estimation
Various analyses using anatomical priors and fMRI priors
obtained from individual analyses were also conducted in this
study, obtaining current source classification accuracies similar
to the group analysis (9-class mean classification accuracy
in individual space: 69.25% ± 2.61). While the number of
participants needs to be increased in order to draw more robust
conclusions specifically for an fMRI second-level analysis, the
purpose of using the group prior is to show that the methods
described here are applicable using only structural MRI data, and
therefore can benefit patients unable to use the MRI scanner for
long sessions.

BCIs Application in Rehabilitation
Invasive BCI recordings in non-human primates have
successfully been used for decoding kinematic and physiological
activities (EMG), during forward and backward walking on
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FIGURE 5 | Activation patterns for a representative participant. Colored areas show Brodmann areas 1, 2, 3, 4, 6 OP3, OP4, and the IPC. Lower left panel shows the

merged activation patterns for all left and right leg tasks (all right leg tasks: HRE + HRF + LRE + LRF; all left leg tasks: HLE + HLF + LLE + LLF), and lower right

panel shows the activation patterns for all extension tasks, all flexion tasks, all high force tasks and all low force tasks (all flexion tasks: HRF + HLF + LRF + LLF; all

extension tasks: HRE + HLE + LRE + LLE; all high force tasks: HRF + HLF + HRE + HLE; all high force tasks: LRF + LLF + LRE + LLE). Time series represent the

temporal patterns for the current source vertex in bold black circles. These signals correspond to a vertex selected by the classifier as relevant for more than one task.

The vertex located in MNI [12, −36, 68], was selected by the classifier for both HLE and HLF task, and the vertex located in MNI [8, −36, 68] was selected for both

HLF and LLF tasks.

a treadmill. In humans, the use of this method, along with
exoskeletons or FES systems, could make it possible to create
walking strategies that facilitate spinal cord plasticity to help
recovering locomotion automatisms (Fitzsimmons et al., 2009).
As for non-invasive techniques, the use of different strategies
such as virtual reality, lower limb actuators, exoskeletons, etc.,
in patients with paraplegia, have already shown significant
improvement in functional cortical plasticity in S1 and M1 areas
(Donati et al., 2016). In this sense, the methods described here,
along with high density EEG, might allow also for the prediction
of kinematic variables in patients with limited mobility, aiming
to design a control strategy where the patient has more control
over the system than a robotic or neurostimulation solution.

In this study we have further assessed the potential of the
VBMEG and SLR methods to design BCIs to control assistive
and rehabilitation devices for the restoration of walking in

patients with motor impairments. The highly enhanced spatial
distribution of current sources over the brain cortex has the
potential to identify changes in cortical plasticity in patients with
stroke, to design interfaces that can identify vertices in the healthy
brain relevant to the affected limb control, or to design BCIs for
patients with spinal cord injury from current source estimation
from motor imagery.

Challenges toward the Development of a
Real-Time BCI
In order to design a reliable real time BCI, the accuracy of
the system needs to be increased and a generalized classifier
needs to be developed. In our experiment, blinking sessions were
performed independently of task execution sessions, therefore
online rejection of blinking artifacts should be implemented for
the online application. One of the most challenging goals in this
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project is to develop a generalized classifier able to achieve high
accuracies with all participants, due to, among other factors, the
non-stationary nature of brain signals, parameter tuning and
training of samples, internal artifacts, etc. Finally, a limitation in
this study is the small sample of participants used and therefore it
is necessary to increase the sample and extend these conclusions
to a larger population.

CONCLUSION

In this study we have classified ankle flexion and extension
movements at different force levels in healthy participants, using
non-invasive brain activity recording methods. The technique
applied in this research is applicable to real-time BCIs since the
filters estimation can be done offline. Also, the nature of the
recordings allows for this technique to be applied to a larger
population of patients with motor impairments since it does
not require surgery. Finally, different combinations of area and
activity priors from fMRI can be applied, and therefore specific
brain areas may be used to generate control strategies in patients
with stroke or spinal cord injury.
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