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Developing biomarkers for accurately predicting the efficacy of immune

checkpoint inhibitor (ICI) therapies is conducive to avoiding unwanted side

effects and economic burden. At the moment, the quantification of

programmed cell death ligand 1 (PD-L1) in tumor tissues is clinically used as

one of the combined diagnostic assays of response to anti-PD-1/PD-L1

therapy. However, the current assays for evaluating PD-L1 remain imperfect.

Recent studies are promoting the methodologies of PD-L1 evaluation from

rough to precise. Standardization of PD-L1 immunohistochemistry tests is

being promoted by using optimized reagents, platforms, and cutoff values.

Combining novel in vivo probes with PET or SPECT will probably be of benefit

to map the spatio-temporal heterogeneity of PD-L1 expression. The dynamic

change of PD-L1 in the circulatory system can also be realized by liquid biopsy.

Consider PD-L1 expressed on non-tumor (immune and non-immune) cells,

and optimized combination detection indexes are further improving the

accuracy of PD-L1 in predicting the efficacy of ICIs. The combinations of

artificial intelligence with novel technologies are conducive to the intelligence

of PD-L1 as a predictive biomarker. In this review, we will provide an overview

of the recent progress in this rapidly growing area and discuss the clinical and

technical challenges.
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Introduction

The immune checkpoint inhibitors (ICIs) targeting PD-1 and

PD-L1, which have improved the outcomes of patients with various

forms of advance-stage tumor, mark a landmark breakthrough in

cancer treatment (1). Various anti-PD-1/PD-L1 drugs are currently

clinically approved. At the moment, owing to the low objective

remission rate (2), reliable biomarkers for screening patients eligible

for anti-PD-1/PD-L1 therapies are urgently required.

To a certain degree, PD-L1 is considered as a good predictor of

the response to ICI treatment in clinical cancer immunotherapy.

Some reports suggest that high PD-L1 expression in tumor tissues is

positively correlatedwith theprognosisofpatients receivinganti-PD-

1/PD-L1 therapy (3, 4). The United States Food and Drug

Administration (FDA) has approved immunohistochemistry

(IHC) for assessing PD-L1 expression in patients with non-small

cell lung cancer (NSCLC), melanoma, bladder cancer, and cervical

cancer (5, 6). However, some clinical studies report that there is an

insufficient direct correlation between PD-L1 expression and

therapeutic impression (7). The effect of anti-PD-1/PD-L1 therapy

is not only limited to patients with high PD-L1 expression but also to

patientswith lowPD-L1expressionwhocanbenefit fromanti-PD-1/

PD-L1 treatment (8–11). Check-Mate 017 and Check-Mate 057

studies demonstrate that PD-L1 expression is positively associated

with a greater overall survival (OS) profit fromnivolumab inNSCLC

patientswith≥50%PD-L1expression; however, an effective response

is still observed in patients with ≤1% PD-L1 expression (12).

Furthermore, various factors have been associated with the

failure of PD-L1 in predicting the efficacy of ICI therapy.

This review clarifies the possible reasons why it is difficult for

PD-L1 to predict the efficacy of immunotherapy accurately and

discusses the strategies involved in acquiring precise predictions

of immunotherapy response assessment.
Advanced IHC protocols for
PD-L1 detection

IHC and flow cytometry have been clinically used to detect PD-

L1 expression in cancer tissues. However, conventional IHC assay

lacks accuracy and reliability as the staining of cytoplasmic proteins

interferes with the estimation of cell membrane proteins.

Additionally, flow cytometry can only be used for fresh tissue

sample detection, thus limiting its application (13). Fortunately,

diverse optimizations are available in testing reagents, platforms,

and scoring methods for PD-L1 IHC assessment (14, 15).
Detection reagents

Various antibodies for PD-L1 IHC assessment are available

(Table 1). The Blueprint PD-L1 Immunohistochemistry
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Comparability Phase II Project has been carried out to assess

the clinical use of five commercial PD-L1 IHC assays, including

22C3, 28-8, SP142, SP263, and 73-10 (not in phase I) clones.

According to the PD-L1 detections in a mixture of lung cancer

samples (39 adenocarcinomas, 26 squamous cell carcinomas, six

poorly differentiated non-small cell carcinomas, and 10 small

cell carcinomas), there was a comparable sensitivity between

22C3, 28-8, and SP263 assays, while the sensitivity of SP142

assay was lower. Compared to other anti-PD-L1 antibody clones,

73-10 assay showed greater sensitivity (16). However, different

reports have different conclusions. Dako’s Autostainer Link 48

and 22C3 anti-PD-L1 antibody, an automatic diagnostic assay,

have been reported to be optimized for high sensitivity and

specificity in patients with NSCLC who were treated with

pembrolizumab (17). Adam et al. performed IHC tests on 41

NSCLC surgical specimens with five anti-PD-L1 monoclonal

antibodies (28-8, 22C3, E1L3N, SP142, and SP263) in seven

centers, including Dako Autostainer Link 48 (three centers),

Leica Bond (two centers), or Ventana BenchMark Ultra (two

centers) platforms. The results demonstrated that SP263

achieved the highest concordance rate in all platforms (18).

To promote the consistency of PD-L1 measurement results,

the International Association of Lung Cancer Research initiated

the Blueprint project to compare the two detection platforms

(Dako Autostainer Link 48 and Ventana Benchmark Ultra) and

four antibodies (22C3, 28-8, P263, and SP142). Tests reveal

consistent staining in three antibodies—22C3, 28-8, and SP263

—when detecting PD-L1 expression in tumor cells, with the

positive rate of SP142 antibody lower than the rest (19–21).

However, owing to the low penetration of 22C3, 28-8, and the

detection platform Autostainer Link 48, their application in PD-

L1 assays are limited (22). Furthermore, according to the anti-

PD-L1 IHC evaluation on 150 paired histological and cytological

smears of NSCLC patients, Costantino et al. found that clone

SP263 showed higher accuracy than 28-8 and 22-C3 clones, with

good cyto-histological agreement when the cutoff value is 50%

(23). Therefore, anti-PD-L1 SP263 IHC detection of PD-L1 in

solid tumor tissues is recommended and prospective.
Establishment of PD-L1
detection platforms

Various institutes are currently carrying out laboratory

development tests (LDTs) which measure PD-L1 expression by

adjusting conditions such as tissue controls, thresholds on

existing testing platforms (Dako, Ventana, or Leica), and

trailing antibodies from other clones that conflict with the

detection platforms. The diagnostic results of LDTs vary

greatly, failing to obtain a clinically acceptable diagnostic

sensitivity (21), which can be attributed to the use of specific

and different clones by different laboratories. According to a

Canadian 22C3 IHC LDT validation project, it was possible to
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exploit highly accurate 22C3 IHC LDT for both 1 and 50%

tumor proportion score (TPS) in NSCLC across 20 Canadian

pathology laboratories with different platforms (24). Moreover,

22C3 PD-L1 IHC was cross-validated to detect PD-L1

expression in 23 NSCLC specimens by Benchmark Ultra (eight

centers) and Leica Bond (12 centers) platforms. In addition, five

centers performed Ventana SP263 assay. The results showed that

SP263 assay was well concordant with 22C3 on Benchmark

Ultra (25). It suggests that the establishment of a reference

standard and unified test platform protocol, which is based on

diagnostic accuracy, contributes to improve the sensitivity and

specificity of the clinical application of LDTs. The improvement

and application of 22C3 IHC LDT and SP263 IHC LDT for PD-

L1 detection are recommended.
Optimal cutoff value for
PD-L1 measurement

The cutoff value of PD-L1 positivity chosen by different clinical

institutions varies, mainly consisting of 1, 5, 10, and 50% (23). A

study in renal cell carcinoma suggests that the objective response

rate of atezolizumab in patients with PD-L1-positive is 56% when

the cutoff value is 5%, whereas the objective response rate of patients

with PD-L1-negative is 25%, with a significant difference. However,

when the cutoff value is 1%, the objective response rates of positive

and negative patients are 50 and 55%, respectively, with no

statistical significance (13). Keynote-024 set the cutoff value to

50% or greater and showed that pembrolizumab significantly

improved the prognosis of patients with NSCLC and PD-L1

≥50%, with OS extending to 30 months, compared with 14.2

months for patients receiving chemotherapy (26). Generally, a

higher cutoff value indicates a positive correlation with more

accurate prediction; however, it also indicates the reduced

sensitivity of the test and increased false negatives, which might

neglect some patients who could benefit from anti-PD-1/PD-L1

therapy. Therefore, a method to determine practicable cutoff values

of PD-L1 positivity is required.
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PD-L1 combined positive score

Apart from tumor cells, PD-L1 is also widely expressed in

various immune cells (ICs) and non-ICs, such as T cells (27, 28),

macrophages (29, 30), B cells (31, 32), dendritic cells (33),

neutrophils (34), and fibroblasts (35). PD-L1 in non-tumor

cells is involved in regulating antitumor immunity, which

affects the efficacy of anti-PD-1/PD-L1 therapy in patients by

interacting with tumor cells.

Sometimes, classifying PD-L1 as negative or positive in tumor

tissue via TPS may be inaccurate. PD-L1 combined positive score

(CPS) is calculated as the total number of PD-L1-positive cells

(tumor cells, lymphocytes, and macrophages) divided by the

amount of surviving tumor cells in the whole section and

multiplied by 100 (36). During anti-PD-1/PD-L1 therapy, taking

into account both PD-L1 expression on tumor cells and non-

tumor cells could contribute to improving the accuracy of PD-L1

as a biomarker (37–40). Paintal et al. evaluated the consistency of

PD-L1 CPS value in 20 paired head and neck squamous cell

carcinoma cases, which were separated into two groups: excisional

group (excisional biopsy and resection specimen) and small

biopsy group. When a PD-L1 CPS of 20 was the cutoff, the

accordance between the two groups was 90% but reduced to 70%

at a threshold of PD-L1 CPS ≥1. This indicates that a higher PD-

L1 CPS value correlates with a higher PD-L1 expression,

providing a more reliable predictive accuracy (41). The phase III

KEYNOTE-181 study in advanced oesophageal cancer indicates

that pembrolizumab, a monoclonal antibody of PD-1, can prolong

OS in patients with PD-L1 CPS ≥10 (42). However, another

research in metastatic triple-negative breast cancer (TNBC) shows

that pembrolizumab monotherapy in patients with PD-L1 CPS ≥1

or PD-L1 CPS ≥10 did not improve OS compared with

chemotherapy, whereas PD-L1 CPS of 20 or more indicates a

higher PD-L1 expression and a longer median OS in patients

undergoing pembrolizumab treatment, which was approximately

18% of the total study population (43). Hence, a higher value of

PD-L1 CPS is beneficial in accurately selecting subpopulations

undergoing pembrolizumab monotherapy.
TABLE 1 Food and Drug Administration (FDA) and European Medicines Agency (EMA)-approved immune checkpoint blockades.

Name Trade name IHC diagnostic assays

Antibody clone Platform Clinical application of cancer therapy

PD-1 inhibitors Nivolumab Opdivo 28-8 Dako Autostainer Link 48 NSCLC, UC, and HNSCC

Pembrolizumab Keytruda 22C3 Dako Autostainer Link 48 NSCLC, GEJ adenocarcinoma, ESCC, cervical cancer,
UC, TNBC, and HNSCC

Cemiplimab Libtayo 22C3 Dako Autostainer Link 48 NSCLC

PD-L1 inhibitors Atezolizumab Tecentriq SP142 Ventana Benchmark Ultra UC, NSCLC, and TNBC

Durvalumab Imfinzi SP263 Ventana Benchmark Ultra UC
Data comes from FDA (https://www.fda.gov/) and EMA (https://www.ema.europa.eu/en).
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Characteristics of PD-L1 in
tumor tissues

Intra-tumoral heterogeneity of
PD-L1 expression

As PD-L1 expression is coupled with considerable intra-

tumoral heterogeneity, it is difficult to judge the true PD-L1 status

accurately in whole primary tumor sections using a single core

biopsy (44). In NSCLC, based on PD-L1 IHC 22C3 pharmDx assay

performed by Hwang et al., intra-tumoral heterogeneity is related to

an increase in the proportion of patients with high PD-L1

expression in metastatic site biopsies and might result in the

misjudgment of PD-L1 status (45). It is conducive to reduce the

misclassification of PD-L1 expression when the size of biopsy is not

less than 8 mm2. Using tissue microarrays, Stovgaard et al.

evaluated PD-L1 expression in the surgical specimens of 110

patients with TNBC. A total of 31% (n = 34) of the cases showed

an inconsistent PD-L1 expression on tumor cells (TCs) among the

four different tissue microarray cores (each core ≥100 TCs).

Moreover, compared with the tumor borders, the central areas

contained almost no ICs. The staining results showed that the cores

obtained from the center were negative for PD-L1 expression,

whereas those from the border, with abundant ICs, were positive

(46). Alexander et al. assessed PD-L1 expression via IHC using the

SP263 clone. After digital imaging using a new “squares method”,

the intra-tumoral heterogeneity of PD-L1 in resected primary

NSCLCs was demonstrated to be variable in pattern and extent,

with 78% for small scale (mm²), 50% for medium scale (cm²), and

46% for large scale (between tumor blocks) (47). Studies regarding

thymoma and thymic carcinoma also report that the PD-L1

staining of different sections of the same tumor specimen from

one patient differs (48). Therefore, the intra-tumoral biopsy

location, core numbers, cell numbers, and sampling area

significantly affect the determination of PD-L1 expression.
Inter-tumoral (primary tumor vs.
metastatic lesions) heterogeneity
of PD-L1 expression

Numerous studies have reported that PD-L1 expression is

highly heterogeneous between primary and metastatic tumor

lesions. Therefore, ignoring the differences in PD-L1 expression

between primary and metastatic sites could increase tumor

misclassification risks and poor treatment decisions (45, 49).

Tretiakova >et al. performed IHC assays to detect PD-L1 levels

in 235 urothelial cancer tissue samples. The PD-L1 positivity

rates differed between primary and metastatic sites, with primary

tumor-positive rate of 28.9% (41/142), metastatic lymph node-

positive rate of 16.9% (13/77), and positivity rate in distant

metastatic tissues of 12.5% (2/16) (50). Another study noted that
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the proportion of primary tumor specimens (n = 1,285) with

high PD-L1 expression is lower than that of metastatic

specimens (n = 428). The proportion of primary tumor

specimens with TPS ≥50% was 26.9%, while that of metastases

was 38.3%, with a significant difference in lung cancer (45).

Patients with metastatic NSCLC (n = 398) were divided into the

lung, lymph node, and distant metastasis groups. In the lung and

distant metastasis groups, higher PD-L1 levels corresponded

with a better prediction of ICI therapy response rates and longer

progression-free survival and OS. However, in the lymph node

group, the PD-L1 levels were not significantly related to ICI

therapy response rates (51).
Dynamic expression of PD-L1 before and
after the therapy

The dynamic expression of PD-L1 is not only regulated by

cellular intrinsic factors (52) but also affected by disease progression

and treatment schedules (53). Studies have found that PD-L1

expression changes before and after surgery (54), neoadjuvant

chemotherapy, targeted therapy, or immunotherapy. In NSCLC,

Hwang et al. identified that there was a 62% concordance in PD-L1

expression of biopsy–resection pairs (45). Matsumoto et al. (55)

evaluated PD-L1 expression in puncture and surgical samples from

94 patients with pancreatic cancer. When the cutoff value was set to

5%, seven puncture and 16 surgical samples were PD-L1-positive,

and the consistency rate was 44%. When the cutoff value was set to

10%, six puncture samples and 11 surgical samples were PD-L1

positive, with a consistency rate of 55%. Thus, the expression of PD-

L1 is different before and after surgery. Another study using samples

from patients with ovarian epithelial cancer undergoing

neoadjuvant chemotherapy reported that 30% (15/50) were PD-

L1-positive before treatment (cutoff value of PD-L1 is 5%), while

53% (27/51) were PD-L1-positive after treatment (56). Additionally,

among the 13 patients with NSCLC treated with epidermal growth

factor receptor tyrosine kinase inhibitor, Omori et al. report that

PD-L1 expression in the tumor tissues increased significantly in five

patients (57). Herbst et al. obtained biopsy samples from patients

receiving atezolizumab treatment at different timepoints and proved

that PD-L1 expression increases when the tumor volume decreases

(58). Hence, PD-L1 detection is greatly influenced by the biopsy

time and therapeutic regime. Moreover, continuous sampling at

multiple timepoints could be used to optimize the current

testing methods.

Therefore, the heterogeneous expression of PD-L1 in tumor

tissues and the dynamic changes limit the feasibility of PD-L1-

related IHC analysis in tissue biopsy and the accuracy of PD-L1

as a predictor of treatment efficacy (59). Ongoing studies have

improved PD-L1 detection capability, with specimens being

collected from a single core in one tumor section to multiple

regions in different tumor sections. Moreover, sampling from a

combination of edge and center areas in whole tumor sections
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would be ideal. A study in patients with primary NSCLC who

underwent surgical resection revealed that three or four core

biopsy specimens are the optimal minimum number for the

determination of PD-L1 expression in whole tumor sections,

which show a sensitivity value higher than 0.9 at cutoffs of 1 and

50% (60). According to another report, a minimum of 100 tumor

cells in a single tumor tissue biopsy sample is required to

evaluate PD-L1 expression for predicting the response of

patients with nonsquamous NSCLC to nivolumab therapy (61).

It is still difficult to overcome the temporal heterogeneity of

PD-L1 expression in tumor tissues using IHC assays alone. Real-

time detection of dynamic changes in PD-L1 expression may be

an ideal means, so researchers use radioisotope labeling, a

dynamic mapping and real-time quantitative analysis of PD-L1

expression to reduce the prediction error, which is due to the

dynamic changes of PD-L1 expression during treatment. The

molecular imaging of PD-L1 expression and dynamics with

positron emission tomography (PET) or single-photon emission

computed tomography (SPECT) using radiolabeled antibodies

targeting PD-L1 has shown clinical applications (62–65).

Hannan et al. developed a novel probe 99mTc-MY1523 targeting

PD-L1, which is conducive to the efficacy prediction of PD-L1

blockade immunotherapy (65). The probe comprises a nanobody

MY1523, which has a high binding affinity and specificity to PD-

L1, and 99mTc radioisotope labeling. 99mTc-MY1523 shows high

tissue permeability and fast metabolism, revealing a high tumor

contrast at 1 to 2 h post-injection. In mouse bearing A20, MC-38,

and 4T1 tumor models, 99mTc-MY1523 SPECT/CT allowed the

dynamic mapping and real-time quantitative analysis of PD-L1

expression, which was upregulated by IFN-g intervention. Hence,

it considers the dynamic expression of PD-L1 in tumors and

enhances PD-L1 blockade immunotherapy efficacy (Figure 1).

Another clinical trial demonstrates that SPECT/CT assessment of

PD-L1 expression in NSCLC patients can present and image

characteristics correlating with PD-L1 immunohistochemistry

well by using 99mTc-NM-01-labeled anti-PD-L1 single-domain

antibody, which is safe and has favorable biodistribution (66).
N-glycosylation of PD-L1

PD-L1 is a type of highly glycosylated protein, which can be

N-glycosylated at sites N35, N192, N200, and N219. Particularly,

the glycosylation of N192, N200, and N219 is crucial in

maintaining PD-L1 protein stability by inhibiting PD-L1

degradation through the GSK3b-mediated 26S proteasome

pathway (67). Importantly, due to the high level of PD-L1 N-

linked glycosylation, PD-L1 surface polypeptide antigens cannot

be fully recognized by anti-PD-L1 antibodies during the IHC

analysis of tumor tissue samples (67, 68). Lee et al. performed

immunofluorescence detection using anti-PD-L1 antibody after

treating A549 and BT-549 cells with PNGaseF (a recombinant

glycosidase that removes N-linked glycosylation), revealing
Frontiers in Immunology 05
enhanced PD-L1 fluorescence intensity compared with the

control group. Moreover, the binding affinity of PD-L1

antigen–antibody was increased by 25 and 55 times after PD-

L1 expression in A549 and H1299 cells was modified by

deglycosylation, respectively (68). Thus, exposing non-

glycosylated PD-L1 antigens to the diagnostic antibodies of

PD-L1 by removing the glycan structures on PD-L1 is a

practical strategy for improving the accuracy of PD-L1

measurement (Figure 1), which aids in predicting the

effectiveness of anti-PD-1/PD-L1 immunotherapy.
Nuclear translocation of PD-L1

Apart from cell membrane surface distribution, PD-L1 can

also undergo nuclear translocation (Figure 1), and nuclear PD-

L1 (nPD-L1) expression is associated with a poor prognosis.

Blocking PD-L1 nuclear translocation contributes to immune-

related gene reprogramming and enhances anti-tumor response

to PD-1 blockade (69). As a transcription factor, nPD-L1

promotes the expression of molecules associated with the

immune response, which are not associated with PD-1/PD-L1

blockade targets after acetylation by EP300 acetyltransferase on

the K263 residue. Moreover, the combination of PD-1/PD-L1

blockade and HDAC2 inhibitor reduces the acetylation-

dependent PD-L1 nuclear localization and acquired

immunotherapy resistance (70). Furthermore, PD-L1 nuclear

translocation facilitates NSCLC cell proliferation through the

Gas6/MerTK signaling pathway using KPNB1 as a cytoplasm-

to-nucleus partner. nPD-L1 promotes Gas6 transcription by

coupling with transcription factor Sp1, which results in Gas6

secretion and MerTK activation (71). Therefore, nPD-L1

measurement in combination with KPNB1 or MerTK

detection could improve the accuracy of clinical anti-PD-1/

PD-L1 treatment efficacy prediction. Additionally, another

physiological role of PD-L1 nuclear translocation induced by

hypoxia has been identified in MDA-MB-231 cells, wherein

nPD-L1, in cooperation with p-STAT3, converts TNFa-
induced apoptosis to non-canonical pyroptosis, which is

mediated by the GSDMC/caspase-8 pathway, and leads to a

poor antitumor immune response (72). Therefore, evaluating the

efficacy of ICI treatment based on nPD-L1 detection through

IHC in tumor tissues could be an effective strategy to improve

the prediction accuracy.
Methylation of PD-L1

DNA methylation has been reported to affect tumorigenesis.

Moreover, it works as a biomarker for the diagnosis, response,

and prognosis in cancer therapy (73, 74). Accordingly, Xue et al.

developed an initial DNA methylation profile to predict the

objective response rate (ORR) of PD-1/PD-L1 inhibition therapy
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and identify 269 CpG signatures related to ORRs in 18 cancer

types (75). The hypermethylation of PD-L1 is associated with

poor OS in several cancer types, such as colorectal cancer,

prostate cancer, and melanoma. Pre-clinical evidence indicates

that a combination of hypomethylating agents and ICIs could

improve treatment efficacy (76). PD-L1 methylation (mPD-L1)

can also be applied with other types of biomarkers to achieve

increased prediction performance, which helps oncologists to

select patients who are more likely to benefit from ICI therapy

(77, 78). A study in intrahepatic cholangiocarcinoma indicates

that a high ALKBH5 (m6A demethylase) expression in tumor

cells inhibits m6A modification in the 3′-UTR region of PD-L1

mRNA, increasing the sensitivity to anti-PD-1 immunotherapy

(Figure 1). Therefore, detecting mPD-L1 and ALKBH5

expression simultaneously could improve the accuracy of ICI

treatment response prediction (79). A number of approaches for

DNA methylation analysis have been used, such as direct Sanger

sequencing, bisulfite sequencing PCR, pyrosequencing,
Frontiers in Immunology 06
methylation-specific PCR, and methylation-specific high-

resolution melting. Moreover, the methylation of PD-L1 DNA

can also be analyzed by using validated and registered kits for

methylation detection (80).
Assessments of PD-1/PD-L1 proximity

The interaction between PD-1 and PD-L1 has been reported

to be responsible for immunosuppression. The recruitment of

the tyrosine phosphatases (SHP-1 and SHP-2) to the

immunoreceptor tyrosine-based switch motif of PD-1 induces

the combination of PD-1 and PD-L1, thereby promoting an

increase in immune evasion (81). After blocking the interaction

between PD-1 and PD-L1 to inhibit the tumor immune escape,

PD-L1 antibodies have better therapeutic efficiency (82–84).

According to a study involving six laboratories, multiplex

immunofluorescent (mIF) imaging approaches support PD-1/
FIGURE 1

The complex characteristics of PD-L1 play important roles in predicting the efficacy of anti-PD-1/PD-L1 therapy, including spatiotemporal
heterogeneity, transcriptional and post-translational modification, nuclear translocation, and PD-1 and PD-L1 interaction.
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PD-L1 proximity assessments across multiple sites and

contribute to the accurate quantification of %PD-L1

expression in NSCLC tissue sections (85). Compared to

conventional single-IHC stains, six-plex mIF technology has

multiple advantages, including high controllability, image

analysis of multiple markers on a single or more slides, spatial

relationship evaluation at the single-cell level, quantitative

analysis of markers, inter-site comparison for PD-1/PD-L1

proximity, and implementation adapted to a daily schedule.

However, the high operation requirements and reproducibility

of staining intensity hinder its widespread clinical application.

Therefore, a more rigorous and normalized operation protocol

should be recognized and employed in prospective clinical trials

and clinical practice. The emerging immune-Forster resonance

energy transfer (iFRET) technology can be utilized to measure

the distance between PD-L1/PD-1 on TCs or ICs, which reflects

the degree of PD-1/PD-L1 interaction (86). The iFRET assay

relies on two-site labeling that provides a quantitative read-out

of protein–protein interactions between cells by fluorescence

lifetime imaging microscopy, and FRET acts as a “chemical

ruler”. First, PD-1 and PD-L1 are identified and labeled by their

respective primary monoclonal antibodies. Then, two primary

antibodies are stained with Fab fragments conjugated to the

donor chromophore: ATTO488 for PD-1 and ALEXA594 for

PD-L1 (Figure 1) separately. When the distance between PD-1

and PD-L1 is 1–10 nm, fluorescence change can be defined as

positive (82). Clinical trials also show that PD-1/PD-L1

interaction is observed in patients with clear cell carcinoma of

the kidney, including patients with negative PD-L1.

Additionally, the degree of PD-1/PD-L1 interaction is

positively correlated with the prognosis of patients with renal

clear cell carcinoma, malignant melanoma, and metastatic

NSCLC. Therefore, the detection of the interaction between

PD-1 and PD-L1 using iFRET could be a potential approach

in providing personalized immunotherapy.
Liquid biopsy of PD-L1

Liquid biopsy is a non-invasive method which is safer and

more commonly preferred than traditional tissue biopsies (87). It

uses fluid samples from the circulatory system, including blood,

cerebrospinal fluid, ascites, or other body fluids. Until now, liquid

biopsy has been used for circulating tumor cells (CTCs),

extracellular vesicles, circulating tumor DNA, and circulating

free DNA detection (88). Moreover, liquid biopsy can be used

to perform longitudinal analyses for monitoring therapy response

(89, 90). Researchers have detected the dynamic changes of PD-L1

expression in the circulatory system by using a liquid biopsy

technique, including soluble PD-L1 (sPD-L1), exosomal PD-L1

(exoPD-L1), blood PD-L1 mRNA, and PD-L1 expression in

circulating tumor cells (PD-L1+CTCs) (Figure 2).
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sPD-L1 can be translated from the splice variant mRNA

lacking the transmembrane domain of PD-L1 (91) or cleaved

from membrane-type PD-L1 using matrix metalloproteinases

(92). In four patients experiencing a recurrence of NSCLC after

anti-PD-L1 treatment, Gong et al. identified two types of stably

expressed sPD-L1 (PD-L1v242 and PD-L1v229), which act as

negative regulators in anti-PD-L1 antibody treatment by

competing with membrane-type PD-L1 (93). After the

inoculation of mice with MC38 mouse colon cancer cells that

expressed sPD-L1 and membrane-type PD-L1 at a cell number

of 1:99 followed by anti-PD-L1 antibody treatment, the whole

tumor showed resistance to PD-L1 treatment despite 1% of

tumor cells expressing sPD-L1. Additionally, Zhou et al. propose

that the increase of sPD-L1 is negatively correlated with the

prognosis of patients with renal cell carcinoma and multiple

myeloma who received anti-PD therapy (91). However,

the use of sPD-L1 in predicting the efficacy of ICIs at an

early stage or before treatment remains unclear and requires

further exploration.
ExoPD-L1

ExoPD-L1 is present on the surface of tumor-derived exosomes

and positively correlated with the PD-L1 expression on the cell

surface, which can mediate immune escape in tumor tissues (69,

94). A high level of exoPD-L1 has been considered as one of the

immunosuppressive factors that inhibit T cell activation and lead to

ICI treatment resistance (95). After evaluating the PD-L1

expression in various tumor tissues, Poggio et al. suggested that

cancer cells secret a large amount of PD-L1 in exosomes, while only

a small part exists on the cell surface. In PD-L1 antibody-resistant

tumor tissues, cancer cell growth is inhibited by removing exoPD-

L1 by knocking out RAB27A (member RAS oncogene family) and

NSMASE2 (sphingomyelin phosphodiesterase 3) (96).

Consequently, blocking exoPD-L1 is expected to remove the

resistance to anti-PD-1/PD-L1 therapy. However, drugs that can

effectively block exoPD-L1 are scarce. Currently, although GW4869

and Nexinhib-20 are drugs targeting key enzymes NSMASE2 and

RAB27A in the exosome, restraining exosomal releases in various

cancer cell lines, such as PC3 and MC38, proves difficult (97–99).

Therefore, an effective drug that can block the release of exoPD-L1

and be combined with anti-PD-L1 antibody in cancer treatment

could aid in achieving a better anti-tumor therapeutic effect (94).

Besides ELISA or the magnetic beads coupled with exoPD-

L1 surface markers (such as CD63, CD9, CD81, et al.) that can be

used to separate exosomes from the patient’s serum or plasma

and determine the level of exoPD-L1 (100), a novel method for

exoPD-L1 detection called HOLMES-ExoPD-L1 has been recently

developed. A short single-stranded DNA (MJ5C) smaller than
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the PD-L1 antibody acts as an adapter of PD-L1. MJ5C is highly

selective and can overcome the steric hindrance caused by PD-

L1 glycosylation. Compared with the PD-L1 antibody, MJ5C

shows higher molecular recognition ability. Additionally,

thermal electrophoresis technology is utilized to bind PD-L1

in a homogeneous solution without separation. Compared with

ELISA, HOLMES-ExoPD-L1 can promote the binding kinetics

between aptamer and exoPD-L1 with a higher combination and

detection efficiency (101).
Blood PD-L1 mRNA

Yang et al. collected paired tissue and blood samples from 51

patients with advanced NSCLC after 2 months of ICI treatment

to detect the expression of blood PD-L1 for correlation analyses.

The positive tissue PD-L1 (tPD-L1) showed a significantly

higher PD-L1 mRNA than those with negative tPD-L1.

Moreover, the combination of PD-L1 mRNA and exoPD-L1

could be used to screen for patients suitable for immune

checkpoint PD-1/PD-L1 blockades (102). However, whether

the dynamic change of blood PD-L1 mRNA can serve as an

optimistic biomarker in predicting immunotherapy efficacy

requires further study.
PD-L1 expression on CTCs

CTCs originate from the primary tumor and are distributed

in the circulatory system as individuals or clusters, playing an
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important role in tumor metastasis and revealing tumor

heterogeneity better than tissue biopsies (87, 88) CTC samples

can be collected using liquid biopsy technique, and multi-time

sampling can be carried out for longitudinal monitoring due to

its non-invasive characteristic (103, 104). Research in NSCLC

indicates that the analysis of PD-L1 expression on CTCs (PD-

L1+CTCs) is a potential factor in overcoming the tumor biopsy

spatiotemporal heterogeneity of PD-L1 expression (103).

Similarly, Ilie et al. evaluate the levels of PD-L1 in CTCs and

WBCs (white blood cells) and point out the potential of CTC

assessment as a real-time biopsy to detect PD-L1 expression in

patients with NSCLC (105). At present, the CellSearch system is

the only method approved by the FDA for CTC detection (88).

Sinoquet et al. report that PD-L1+CTCs can predict clinical

therapeutic effects in patients with NSCLC using the FDA-

cleared CellSearch® analysis system. A study in head and neck

cancer patients also highlights that PD-L1+CTCs are positively

correlated with response to anti-PD-L1 therapy (106).

However, contrary reports do exist (107–109)—for example, in

patients with advanced NSCLC, Guibert et al. found that PD-

L1+CTC analysis is highly feasible, and CTCs were more PD-L1-

positive than in tissues. However, there is no correlation between

PD-L1 expression in tissues and on CTCs. Moreover, PD-L1

expression on CTCs has no remarkable prognostic impact (107).

The scarcity of CTCs in the circulatory system and the lack of unified

guidelines for clinical PD-L1+CTC analysis could be responsible for

the poor accuracy and inconsistent results (110). Perhaps the

effective enrichment of CTCs can be an effective strategy for

improving accuracy. Additionally, the validity and uniformity of

PD-L1+CTC test results require a large-scale clinical validation.
FIGURE 2

Liquid biopsy is a non-invasive method, which is safer and commonly preferred than traditional tissue biopsies. The dynamic changes of PD-L1
in the circulatory system can be detected using a liquid biopsy technique, including soluble PD-L1 (sPD-L1), exosomal PD-L1 (exoPD-L1), PD-L1
mRNA, and PD-L1 expression in circulating tumor cells.
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The combination of PD-L1
and potential tumor type-
dependent biomarkers

A positive or negative regulatory relationship exists between

specific markers and PD-L1 in different cancers. Herein we

propose that PD-L1 combined with specific markers of

different tumor cells might improve prediction accuracy.

In K-RAS-driven pancreatic cancer specimens, PD-L1 is highly

expressed, which is induced by exogenous ROS and FGFR1 signal

activation. Antioxidants and FGFR1 knockout cause a decrease in

PD-L1 expression and a remarkable increase in T cell-mediated

tumor suppression (111). Research shows that CDKN2A is

significantly upregulated in PD-L1 blockade therapy responders

(112). The expression of tumor cell-intrinsic PD-L1 can be

increased via RAS-MEK signaling, which modulates PD-L1

mRNA stability and strengthens immune escape in cancer (113).

Perhaps RAS oncogenes can be used as a joint marker to predict

efficacy in combination with PD-L1 in patients treated with ICIs.

Moreover, in patients with non-squamous NSCLC, the functional

STK11 mutations result in resistance to PD-1/PD-L1 blockade

(anti-PD-L1 antibody durvalumab ± anti-CTLA-4 antibody

tremelimumab) immunotherapies, highlighting STK11 as a

potential co-biomarker in screening the optimal subpopulation

for personalized immune checkpoint therapy (114). A study in

hepatocellular carcinoma indicates that, apart from the CPS of PD-

L1, Wnt/b-catenin activation and CD8+ tumor-infiltrating

lymphocyte (TIL) numbers are also conducive in predicting the

response to anti-PD-1 antibody treatment (115). The positive

expression of human endogenous retrovirus-H long terminal

repeat-associating protein 2 (HHLA2), a new member of the B7

family, has been associated with a significantly shorter OS and

progression-free survival (PFS) in clear cell renal cell carcinoma

(ccRCC). When compared with HHLA2−/PD-L1−, HHLA2−/PD-

L1−, and HHLA2−/PD-L1+ groups, HHLA2+/PD-L1+ shows the

highest density of CD8+ and CD4+ TILs and risk of ccRCC

progression. Therefore, HHLA2+/PD-L1+ is positively associated

with poor response to ICI treatment in patients with ccRCC (116).

Briefly, there exists a close correlation between non-immune

signals and immune checkpoint blockade outcomes. Perhaps a

combination of PD-L1 and specific molecular biomarkers could

be suitable for the screening of subpopulations that show a good

response to ICI therapies.
The expression of PD-L1 on different
subpopulations of non-tumor cells

Except for tumor cells, PD-L1 is also widely expressed on

various immune and non-immune cells, such as T cells,

macrophages, B cells, dendritic cells, neutrophils, and

fibroblasts. PD-L1 expression on non-tumor cells participates
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in antitumor immunity regulation by interacting with tumor

cells or other cells to affect the efficacy of anti-PD-1/PD-L1

therapy in patients (117).
T cells

After T cell activation, immune-inhibitory receptor PD-1 is

expressed by stimulated CD4+ and CD8+ T cells and restrains

antitumor immune responses (118). In a pancreatic ductal

adenocarcinoma mouse model, Diskin et al. demonstrate that

PD-L1 is expressed on ~40% of CD4+ T cells and ~60% of CD8+

T cells (28). The number of PD-L1+ T cells increases with tumor

progression; thus, PD-L1 expression on T cells might play a vital

role in forecasting the therapeutic effect of anti-PD-L1

antibodies. In NSCLC, Wu et al. find that patients with a high

level of PD-L1+CD25+CD4+ T cell (Treg cell) abundance have a

better response to ICI treatments (27).
Macrophages

It has been reported that PD-L1 expression on macrophages

promotes tumor resistance to anti-PD-1 antibody by interacting

with CD80 expressed on T cells and inducing their differentiation

into regulatory T cells, thereby causing tumor resistance to anti-PD-

1 antibody (29). However, studies also show that PD-L1 expression

on macrophages may have no impact on anti-PD therapy—for

example, in the early stage of lung cancer, PD-L1 expression on

most tumor-associated macrophages (TAM) does not affect the

tumor cell killing by tumor-specific T cells (30), which only plays a

role in regulating the interaction between TAM and homologous

effector T cells and protecting TAM from being killed by T cells.

This part of PD-L1 does not participate in the process of T cells

killing tumor cells, even if, after treatment with anti-PD antibody,

patients still do not achieve a remarkable therapeutic effect.

Therefore, the anti-tumor immune response of PD-L1 expression

on macrophages is different based on the tumor type and tumor

development stage, so it is still controversial whether macrophage-

expressed PD-L1 can be used as a biomarker to predict the efficacy

of ICI therapy.
Dendritic cells

Dendritic cells (DCs) represent a significant source of PD-

L1. DCs in tumor tissues are known to play critical roles in

tumor antigen cross-presentation and activating CD8+ T cells in

the lymph nodes (119), which mediate the initiation of immune

response and regulate the function of multiple immune cells

(120). CD80 expressed on DCs can bind to CD28 on T cells to

activate T cells. Specifically, on the one hand, PD-L1 expression

on DCs directly inhibits T cell activation by binding to PD-1 on
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T cells. On the other hand, it prevents CD80 from interacting

with CD28 on T cells by competitively binding to CD80 and

then inhibits T cell activation indirectly (121). After treatment

with anti-PD-L1 antibody, the signal intensity of CD80 and

CD28 binding is increased from 32 to 52% based on the results

of Tag-lite detection technology, and DCs initiate T cell

activation and proliferation when PD-L1 is blocked.

Furthermore, patients with high DC abundance are found to

have 75% lower risk of death compared to those with low DC

abundance. Lin et al. also prove that PD-L1 expressed on DCs is

valuable for predicting the therapeutic efficacy of immune

checkpoint blockades in melanoma and ovarian cancer

treatment (122). Therefore, PD-L1 expression on DCs might

become the target of PD-L1 antibody (33, 123). Even PD-L1

expression on CD11c+ DCs show potential in predicting the

efficacy of anti-PD therapy, but not all DCs can express PD-L1.

Hence, after treating the tumor cells with CD11c and anti-PD-L1

antibodies, immunofluorescence analysis can be performed by

flow cytometry or laser scanning confocal microscopy to

quantitatively determine the level of PD-L1 expression on

CD11c+ DCs. Despite that the cost might be higher than IHC

testing of total PD-L1 in tumor tissues, the prediction results of

immunofluorescence analysis can be more accurate.
Other non-tumor cells

In addition to the non-tumor cells mentioned above, PD-L1

expression on neutrophils, fibroblasts, and B cells also has been

reported to play an important role in regulating anti-tumor

immunity and influencing patients’ response to anti-PD therapy

(124). Shi et al. discover that gastric cancer cell-derived extracellular

vesicles can induce PD-L1 expression on neutrophils through the

STAT3 pathway, and PD-L1+ neutrophils can suppress the function

of T cells and facilitate gastric cancer progression via promoting the

PD-1/PD-L1 interaction (34). Research in cancer-associated

fibroblasts of NSCLC patients suggests that IFN-g induces anti-

tumor immune responses and contributes to a better prognosis of

patients by upregulating the expression of PD-L1 (35). Adnan et al.

find that PD-L1 expression on regulatory B cells can weaken the

humoral immune response mediated by follicular helper T cells

(31). Moreover, the continuous activation of IL-21/STAT3/IRF1

and CD40L/ERK signals that induced the PD-L1 upregulation on B

cells inhibits CD8+ T cell function (32).
The combination of PD-L1 with the
features of tumor microenvironment

The complex tumor microenvironment (TME) is one of the

key factors that affect tumor immunotherapy response (125).

The 3D organoid system for the culture of different cell groups in
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microenvironment and can retain the heterogeneity originality

of the tumor tissues (126). Patient-derived ex vivo organoid

models for the dynamic monitoring of PD-L1 expression have

been reported. Ex vivo assays for immunotherapy response

evaluation in patients guarantee that all tumor and non-tumor

cells of the TME can survive, with testing lasting for at least 7–10

days to capture the effects of immune therapies (126).

To assess the early response of different cancer types in ex

vivo PD-1 blockade, a patient-derived tumor fragment (PDTF)

platform based on the 3D organoid culture has been developed

(127). In this system, fresh surgical tumor tissues are fragmented

to approximately 1 mm3 to allow sufficient nutrient and reagent

intake while preserving the cellular architecture of the tumor.

The fragments are then embedded into the artificial extracellular

matrix. During culturing, cellular and soluble factors are

monitored continuously at different timepoints after anti-PD-1

treatment. To determine the correlation between the ex vivo

immunological response of surgical lesions and clinical response,

12 patients subsequently treated with PD-1 blockade were

selected. Furthermore, the ex vivo PDTF outcomes of the 12

cases are fully consistent with the clinical response. Moreover,

based on the phenotype analysis of T cells in PDTF responder

tumors, PD-1+CD8+ T cells (CD8+ T cells with a higher PD-1

expression level than that in peripheral blood T cells), PD-

1TCD4+ T cells, and PD-1TCD45+ lymphocytes were increased,

which strongly reflect the anti-PD-1 response given the high area

under the curve ≥0.84. However, based on previous studies, this

technique can support multiple factors to efficiently predict and

screen for optimal subpopulations rather than the use of a single

factor like PD-L1 expression (128). Therefore, to a certain

degree, patient-derived ex vivo organoid technology furthers

the application of personalized and precise ICI therapy and

the development of more sensitive biomarkers for predicting the

response in pre-clinical and clinical trials.
Spatially informed simultaneous
evaluation of multiple biomarkers:
digital spatial profiling technology

Actually, the spatio-temporal heterogeneity of PD-L1

expression in tumor tissues, the PD-L1 expression on various

immune cells or fibroblasts, and the complex tumor

microenvironment are important factors leading to the many

limitations of one-dimensional IHC analysis in PD-L1 detections.

Therefore, multi-dimensional space needs to be considered. Maria

et al. proved that digital spatial profiling (DSP) technology using a

44-plex antibody cocktail could be used to find potential novel

biomarkers for the prediction of immunotherapy response in

melanoma. It was demonstrated that high CD3, CD8, CD11c,

HLADR, IDO1, and TIM3 in tumor were predictive for PFS. In
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macrophages, high CD3, CD4, CD8, PD-L1, and beta-2-

microglobulin (B2M) were associated with a longer overall

survival. High B2M was predictive in lymphocytes (129). High

throughput and automation are the advantages that belong to DSP

technology, but the cost is high. Although DSP has been used to

identify novel biomarkers for predicting response to ICI therapies in

different tumor types, including NSCLC (130) and melanoma (83),

prior to its clinical translation, a standardized instruction manual

for increasing operator convenience and obtaining a more precise

analysis is still needed (131).
Conclusions

Various clinical studies have adopted PD-L1 to screen for

patients suitable for ICI treatment and formulate personalized

immunotherapy regimes, which can reduce the psychological,

physical, and economic burden of the patients. This review

summarizes the challenges of PD-L1 expression as a predictive

biomarker for anti-tumor efficacy prediction in anti-PD-1/PD-L1

immunotherapy. Furthermore, the feasibility of the current PD-L1

expression detection and their practical improvement methods

are proposed.

Currently, numerous pre-clinical and clinical research data and

novel detection technologies are indispensable to precisely assess

PD-L1 expression. However, international standardized protocols
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regarding clinical sample acquisition and processing, antibody clone

number selection, and standardized data analyses are required,

which are curated to specific detection platforms. Moreover, for

different cancer types, the development of more sensitive and

combined biomarkers related to PD-L1 expression is a potential

avenue to explore. Finally, compared with tumor tissue samples,

liquid biopsy has great benefits, especially in reducing the patient’s

pain and in real-time PD-L1 detection in the circulatory system. In

Table 2, we preliminarily evaluated the usefulness of different PD-

L1 detection methods mentioned above in daily implementation,

including the cost, transformation time, and accreditation, which

was done for reference.

So far, in addition to PD-L1, various biomarkers have been

proved to be related to a better response rate in anti-PD-1/PD-

L1 therapies, including tumor mutation burden, high

microsatellite instability, neutrophil-to-lymphocyte ratio,

deficient mismatch repair, TILs, tumor inflammation signature

(TIS), T cell CX3C chemokine receptor 1 (CX3CR1) expression,

etc. (132–137). Therefore, the combined detections of the above-

mentioned indicators can also be considered candidate strategies

in comprehensively determining the prognosis of ICI therapies.

Furthermore, new technologies, such as artificial intelligence

(AI), have also been used in the precise assessment of PD-L1

detection. Based on the AI system, the computer-assisted PD-L1

score is highly consistent with the pathologists’ score, thereby

improving test reproducibility and providing a promising
TABLE 2 Preliminary evaluation of the usefulness of different PD-L1 detection techniques.

Optimization of indicators and strategies Cost Turnaround
time

Accreditation References

PD-L1 in tumor tissues Intra/inter-tumoral
heterogeneity of PD-L1

Immunohistochemistry (IHC):
a. Core number: three or four
b. Cell numbers of each core: ≥100
c. The size of biopsy is not less than 8 mm2

d. Detection of PD-L1 in the primary and
metastatic tumor lesions is necessary

+ + +++ (44, 48, 59,
60)

Dynamic expression of
PD-L1

SPECT/PET
(99mTc-MY1523- or 99mTc-NM-01-labeled)

+ + ++ (61–65)

N-glycosylation of PD-L1 PNGaseF-IHC + ++ + (67)

Nuclear translocation of
PD-L1

IHC + + ++ (68–71)

Methylation of PD-L1 BSP/MS-PCR/MS-HRM/registered kits ++ ++ + (74–79)

Assessments of PD-1/PD-
L1 proximity

Six-plex mIF technology +++ ++ + (84)

iFRET technology ++ + + (85)

Liquid biopsy of PD-L1 sPD-L1 ELISA + + ++ (90–92)

ExoPD-L1 ELISA, HOLMES-ExoPD-L1 quantitation method,
or Simoa TM PD-L1 Kit

+ + + (93–100)

Blood PD-L1 mRNA RT-QPCR + + + (101)

PD-L1+CTCs CellSearch® analysis system + + +++ (87, 102–105)

PD-L1 expression on
non-tumor cells

Immune cells Multi-dimensional: digital spatial profiling
technology

+++ ++ ++ (129–131)

Fibroblasts
fr
The symbol “+” represents the degree of accreditation: in vivo+—cell, in vivo, and retrospective studies; in vivo++—cell, in vivo, retrospective studies, and prospective clinical trials; +++—
Food and Drug Administration and European Medicines Agency approval.
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diagnostic tool in clinical pathology (138–140). One recent AI-

assisted diagnosis study confirmed that the AI system

contributed to enhancing the efficiency and repeatability of

untrained pathologists’ operations. TPS calculations of PD-L1

expression in NSCLC indicated a high consistency between the

AI system and the pathologists (R = 0.9787) based on the

Ventana PD-L1 (SP263) assay (141). AI systems in

combination with other technologies, such as mIF imaging,

iFRET assay, PET or SPECT, liquid chromatography tandem

mass spectrometry, patient-derived ex vivo organoid models,

and single-cell sequencing (Figure 3), can revolutionize the

clinical application of PD-L1 evaluation, especially in

predicting the efficacy of PD-1/PD-L1 blockades.
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FIGURE 3

Strategies for improving the detection accuracy of PD-L1. Artificial intelligence systems in combination with other technologies, such as mIF
imaging, iFRET assay, PET or SPECT, liquid chromatography tandem mass spectrometry, patient-derived ex vivo organoid models, and single-
cell sequencing, can revolutionize the clinical application of PD-L1 evaluation, especially in predicting the efficacy of PD-1/PD-L1 blockades.
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PD-1 programmed cell death-1

PD-L1 programmed cell death ligand 1

ICIs immune checkpoint inhibitors

IHC immunohistochemistry

NSCLC non-small cell lung cancer

OS overall survival

TNBC triple-negative breast cancer

ICs immune cells

TPS tumor proportion score

EGFR epidermal growth factor receptor

PET positron emission tomography

SPECT single-photon emission computed tomography

RCC renal cell carcinoma

nPD-L1 nuclear PD-L1

ORRs objective response rates

mPD-L1 PD-L1 methylation

HDAC2 histone deacetylase 2

Gas6 growth arrest-specific 6

MerTK MER proto-oncogene tyrosine kinase

KPNB1 karyopherin b1

TNF-a tumor necrosis factor-a

STAT3 signal transducers and activators of transcription 3

GSDMC gasdermin C

SHP-1 Src homology region 2 domain-containing phosphatase-1

SHP-2 Src homology region 2 domain-containing phosphatase-2

mIF multiplex immunofluorescent

iFRET immune-Forster resonance energy transfer

CPS combined positive score

ROS reactive oxygen species

FGFR1 fibroblast growth factor receptor 1

CDKN2A cyclin-dependent kinase inhibitor 2A

UC urothelial carcinoma

RCC renal cell carcinoma

RAS rat sarcoma

MEK mitogen-activated protein kinase kinase 7

MAP mitogen-activated protein

ERK extracellular regulated MAP kinase

HCC hepatocellular carcinoma

HNSCC head and neck squamous cell carcinoma

HHLA2 human endogenous retrovirus-h long terminal repeat-
associating protein 2

TILs tumor-infiltrating lymphocytes

PFS progression-free survival

ccRCC clear cell renal cell carcinoma

CTCs circulating tumor cells

sPD-L1 soluble PD-L1

exoPD-L1 exosomal PD-L1
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RAB27A;
NSMASE2;

member RAS oncogene family; sphingomyelin
phosphodiesterase 3;

HOLMESExoPD-
L1

homogeneous low-volume, efficient, and; sensitive exosomal
PD-L1

tPD-L1 tissue PD-L1

FDA United States Food and Drug Administration

IFN-g interferon gamma

LDT laboratory development test

TME tumor microenvironment

PDTF patient-derived tumor fragment

DSP digital spatial profiling

IDO1 indoleamine 2,3-dioxygenase 1

B2M beta-2-microglobulin

TMB tumor mutation burden

MSI-H high microsatellite instability

NLR neutrophil-to-lymphocyte ratio

dMMR deficient mismatch repair

TIS tumor inflammation signature

CX3CR1 cx3c chemokine receptor 1

AI artificial intelligence

GEJ gastroesophageal junction

ESCC esophageal squamous cell carcinoma
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