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Minter, B.E. et al. recently published an article titled “Differential Effects of MitoVitE, α-Tocopherol
and Trolox on Oxidative Stress, Mitochondrial Function and Inflammatory Signalling Pathways in
Endothelial Cells Cultured under Conditions Mimicking Sepsis” [1]. The authors used a model of
sepsis that involves treating endothelial cells with bacterial glycopolymers to trigger oxidative stress
and inflammation. Using this model, they investigated three different Vitamin E compounds that differ
in structure, function, and cellular localisation.

The authors found that all compounds had antioxidant effects, as expected; however,
the mitochondria-targeted form of vitamin E (mito-VitE) had by far the most profound anti-inflammatory
profile. Despite the clearly superior beneficial effect of mito-VitE to lower expression of proinflammatory
genes, the authors make the confusing interpretation that their results “challenge the concept that
protection inside mitochondria provides better protection” in conditions mimicking sepsis.

This study has several limitations that should also be noted:

1. The effects of vitamin E compounds on Alamar Blue (resazurin) metabolism should not
be used as the only indication of “mitochondrial function”, because Alamar Blue has a
redox-based mechanism. At a minimum, a direct readout of mitochondrial oxidative metabolism,
ATP-dependent respiration, and spare respiratory capacity in a mitochondrial stress test would
be needed to make conclusions about mitochondrial function.

2. The focus of this article was to determine the effects of “compartmentalised antioxidants”
on different parameters, including oxidative stress. The authors used carboxy-DCFDA to
measure oxidative stress. However, readouts from this dye do not provide information on
subcellular location. Other dyes may have been more useful, including a mito-specific dye such
as MitoSOX Red. A complimentary approach would be to measure the dimerization/oxidation
of ROS-sensitive peroxiredoxins (PRDX) that occur in different subcellular compartments.
Specifically, PRDX3 is localised to mitochondria and PRDX2 is found in the nucleus and
cytoplasm [2]. These experiments would provide valuable information about how cells respond
to LPS/PepG and how each of the antioxidants (MitoVitE, α-Tocopherol and Trolox) alter this
phenotype in these subcellular locations.
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3. Only one concentration of each vitamin E derivative was tested. It is well known that mito-VitE
accumulates by orders of magnitude in mitochondria [3], and thus the localised concentrations
could mean that mito-VitE has an efficacy/toxicity ratio that is different from other compounds.

4. There is no control gene expression for each vitamin E form under normal conditions (in the
absence of LPS/PepG), so the upregulation and/or downregulation of genes is likely masked by
stimulation with LPS/PepG.

5. The authors described α-tocopherol as the “most biologically active” vitamin E form, which is
misleading since vitamin E forms γ-tocotrienol, γ-tocopherol, and δ-tocopherol have all
demonstrated superior antioxidant and anti-inflammatory properties, and would have been better
comparisons for this experiment [4,5]. As well as this, Trolox was described as a “potent
antioxidant” by the authors, despite the protective ability of Trolox in oxidative damage
previously being compared to mito-VitE (MitoE2, MitoE10), where it was shown to be much less
protective [6,7].

6. The data on inflammation is minimal and could be markedly improved with examination of
inflammasome activation. The data show that neither α-tocopherol nor Trolox appear to be
protective by the same mechanism as mito-VitE, which sustained mitochondrial membrane
potential at a level similar to vehicle control cells. α-tocopherol and Trolox significantly increase
expression of PTGS2 (COX2), which is responsible for prostanoid biosynthesis (e.g., PGE2),
while mito-VitE downregulated the expression of PTGS2; however, the reasons for this are neither
discussed nor investigated further. Non-canonical inflammasome (caspase-11) activation has
been shown to be more important than Caspase-1 in sepsis [8], and was inhibited by PGE2 in
asthma [9]. NLRP3 inflammasome activation is also achieved through caspase-11 induction [10]
and mtROS production [11], and has been shown to be inhibited by PGE2 [12].

These connections are missing in the present paper but may be vitally important to consider
in the context of concluding whether mitochondrial redox protection is more or less superior to
nontargeted approaches.
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