
Microtubule Reassembly from Nucleating Fragments 
during the Regrowth of Amputated Neurites 
Peter  W. Baas  and  Steven R.  H e i d e m a n n  

Department of Physiology, Michigan State University, East Lansing, Michigan 48824-1101 

Abstract. We have proposed that stable micrombule 
(MT) fragments that resist depolymerization may serve 
as nucleating elements for the local control of MT dy- 
namics in the axon (Heidemann, S. R., M. A. Ham- 
borg, S. J. Thomas, B. Song, S. Lindley, and D. Chu, 
1984, J. Cell Biol., 99:1289-1295). Here we report 
evidence that supports this proposal in studies on the 
role of MTs in the regrowth of neurites from the distal 
segments of amputated chick sensory neurites. Ampu- 
tated neurites collapse to "beads" of axoplasm that rap- 
idly regrow (Shaw, G., and D. Bray, 1977, Exp. Cell 
Res., 104:55-62). We examined both unarrested 
regrowth and regrowth after MT disassembly by either 
cold ( -5°C  for 2 h) or nocodazole (0.1 0g/ml for 
15-20 rain). In all these cases regrowth occurred at 
3.5-4.5 ttra/min with no delay times other than the 
times to reach 37°C or rinse out the nocodazole. Elec- 
tron micrographs of untreated beads show many MTs 
of varying lengths, while those of cold- and 
nocodazole-treated beads show markedly shorter MTs. 
The robust regrowth of neurites from beads containing 
only very short MTs argues against unfurling of intact 
MTs from the bead into the growing neurite. Electron 
micrographs of cold-treated beads lysed under condi- 
tions that cause substantial MT depolymerization in 

untreated intact neurites show persistent MT fragments 
similar to those in unlysed cold-treated beads. We in- 
terpret this as evidence that the MT fragments in cold- 
treated beads are somehow distinct from the majority 
of the MT mass that had depolymerized. Collapsed 
neurites treated with a higher dose of nocodazole (1.0 
~tg/ml for 15-20 min) were completely devoid of MTs 
and regrew only after a 15-20 min delay in two cases 
but never regrew in ll other cases. We found that MTs 
did not return in beads treated with 1.0 ttg/ml nocoda- 
zole even 30 rain after removal of the drug. It was un- 
likely that the inability of these beads to reassemble 
MTs was due to incomplete removal of nocodazole in 
that a much higher dose (20 ttg/ml nocodazole) could 
be quickly rinsed from intact neurites. Beads treated 
with 1.0 ttg/ml nocodazole could, however, be stimu- 
lated to reassemble MTs and regrow neurites by treat- 
ment with taxol. We conclude that the immediate, ro- 
bust regrowth of neurites from collapsed beads of 
axoplasm requires MT nucleation sites to support MT 
reassembly. Our data suggest that mbulin within the 
bead can elongate existing MTs normally but has a 
limited capacity for self-nucleation relative to brain 
tubulin in vitro. 

M 
ICROTUBULES (MTs) ~ are dynamic structures that 
are critical for the growth and maintenance of 
axons (7, 24, 47, 48). Axonal MTs enjoy a high de- 

gree of spatial organization (6, 14, 15, 36), yet are apparently 
not under the influence of a traditional MT-organizing center 
(29, 39, 49). Indeed, a growing body of evidence suggests 
that local and environmental cues play an important role in 
the control of the axonal cytoskeleton (5, 10, 20, 27). It has 
been speculated (see Morris and Lasek [31] and Brady et al. 
[4]) that cytoskeletal nucleation sites may be woven through- 
out the axon for the local maintenance of cytoskeletal mor- 
phology. We previously reported that MTs of cat sympathetic 
nerves are oriented in polar fashion (14), and are able to 
recapitulate their polar organization during recovery from 
1. Abbreviations used in thispaper: GEP buffer, 0.1 M Pipes, pH 6.9, with 
KOH, 1 mM EGTA, and 2.5 mM GTP; MT, micmtubule. 

cold- or drug-induced depolymerization (15). We proposed 
that MT fragments that resist depolymerization may play a 
role in MT organization by acting as nucleating "seeds" for 
MT elongation. Morris and Lasek (31) and Brady et al. (4) 
have similarly suggested that stable polymers in the 
cytoskeleton may play an important role in cytoskeletal 
organization. Biochemical evidence (18) suggesting that sta- 
ble MTs exist in vitro as short, disassembly-resistant regions 
of longer, otherwise labile MTs has been confirmed by ob- 
servations in vivo (22, 37). Stable MTs have been shown to 
be biochemically distinct from the labile polymer (2, 4, 16, 
18, 21, 45). Nucleated assembly from stable fragments seems 
attractive in that elongation from an existing MT is faster and 
more energetically favorable than de novo initiation (1, 34, 
35). A functional role for stable fragments as nucleation 
seeds would lend substance to speculations on individual 
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nucleating elements for each MT (42, 44). Stable fragments 
may also provide the physical "cap" against treadmilling pro- 
posed by Kirschner (23), and may be of particular impor- 
tance in MT organization if axonal MTs share the kind of 
"dynamic instability" recently reported of MTs in vitro (30). 

Shaw and Bray reported that distal segments of amputated 
neurites from cultured chick sensory neurons collapse to 
shortened segments or '~oeads" of axoplasm that subse- 
quently regrow neurites entirely similar to ordinary neurites 
on the light microscopic level (40). WesseUs et al. (46) 
demonstrated the same phenomenon in ciliary ganglion neu- 
rons and provided evidence for the importance of growth 
cone motility in cytoskeletal organization during regrowth. 
George and Lasek have suggested that the collapse of ampu- 
tated neurites may involve the same kinds of regulatory 
mechanisms that coordinate the cytoskeleton during slow 
transport (13). Although completely divorced from the cell 
body, the amputated neurites dearly contain all the informa- 
tional cues required for cytoskeletal reorganization underly- 
ing collapse and regrowth. In an effort to understand this 
cytoskeletal reorganization we have examined the disassem- 
bly and reassembly of MTs during the collapse and regrowth 
of amputated neurites. 

Materials and Methods 

Cell Culture 
Embryonic chick sensory neurons were cultured using a procedure ~lightly 
modified from that of Shaw and Bray (40). Dorsal root ganglia were dis- 
sected from the lumbusacral regions of 12-d embryos, and placed in L-15 + 
medium (L-15 purchased from Gibco, Grand Island, NY; supplemented 
with 0.6 % glucose, 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml 
streptomycin). The ganglia were rinsed twice, then treated with 0.25 % tryp- 
sin for 25 min at 37*C. The trypsin was removed, L-15 + with 10% fetal 
calf serum (Hazleton Dutchiand, Inc., Denver, PA) was added, and the gan- 
glia were triturated with a pipette into a single call dispersion. The cells 
were rinsed twice, and plated in L-15 + with 10% fetal calf serum, 0.6% 
methyl cellulose (Metbocel A4M, Dow Coming Co., Midland, MI), and 
100 Ixg/ml nerve growth factor from mouse saliva (8). The cells were plated 
into 35-ram Coming tissue culture dishes at a density sufficiently low so 
as to render non-neuronal contamination inconsequential. Cultures were 
kept in a humid, 37"C incubator for 18-30 h before experimentation. 

Amputation Experiments 
Cultures were covered with a thin layer of mineral oil to prevent evaporation 
and maintain pH, and placed on a microscope stage warmed to 37°C with 
a Sage air curtain incubator. Temperatures of warming cultures were moni- 
tored by submerging the feedback thermister of the air curtain incubator 
directly into the culture medium, and taking the cooling mode as an indica- 
tor that the set temperature had been reached. Control experiments using 
larger volumes of fluid showed the air curtain incubator to be accurate 
within I°C. Amputations were performed with a Leitz micromanipulator 
using glass needles made on a microeleetrode puller. The needles were often 
broken to a diameter of adO ttm, and neurites were cut from directly above 
to minimize lateral displacement. In an effort to maximize the number of 
amputated neurites that collapsed completely to beads of axoplasm, i.e., 
with no visible processes remaining after collapse, unbranched neurites 
with modest growth cones were selected for amputation and cut •100 ttm 
from the growth cone. Regrowth of collapsed neurites was arrested in three 
sets of experiments using conditions known to depolymerize MTs. Cultures 
were cold treated by incubating the dishes in a -50C bath for 2 h, or treated 
with either 0.1 llg/ml or 1.0 Ixg/ml nocodazole (Aldrich Chemical Co., Mil- 
waukee, WO for 15-20 min at 370C. ARer these treatments, regrowth prop- 
erties were examined by rewarming the cold-treated beads on the micro- 
scope stage, or rinsing the nocodazole-treated beads twice with PBS then 
returning them to undrugged medium. 

In another set of experiments, cold-treated beads were permeabilized un- 

der conditions slightly modified from a procedure reported by Cande et al. 
(11) to depolymerize spindle MTs in PtK1 cells. In these experiments, cul- 
tures were gently lysed after cold treatment for 4-5 rain at 370C in a buffer 
containing 0.1 M Pipes adjusted to pH 6.9 with KOH, 1 mM EGTA, and 
2.5 mM GTP (GEP buffer), with 0.08-0.1% Brij 58. Normal neurites were 
also lysed in this buffer with or without added 2 M glycerol. The latter con- 
ditions have been found to stabilize assembled MTs against dissassembly 
by dilution while allowing diffusion of free tubulin in a variety of cells 
(3, 43). 

Regrowth properties of collapsed neurites treated with 1.0 ~tg/ml nocoda- 
zole were examined 15 and 30 rain after rinsing by exposing them to either 
2.3 x 10 -5 M or 4.6 x 10 -8 M taxol. Taxol, a drug reported to promote 
MT assembly (38), was a gift from the Developmental Therapeutics Pro- 
gram of the National Cancer Institute. 

Electron Microscopy 
Cultures were fixed for electron microscopy using one of two methods. Neu- 
rites and untreated collapsed neurites were fixed by replacing the medium 
with a solution containing 0.1 M cacodylate, I mM MgCI2, and 2% glu- 
taraldehyde for 20-30 rain. Because collapsed neurites treated under MT 
depolymerizing or lysis conditions tended to lift from the dish surface dur- 
ing exchanges of fluid, these cultures were fixed by the addition of an equal 
amount of the same medium or buffer containing 4% glutaraldehyde. The 
cultures were then rinsed twice in 0.1 M cacodylate with 5% sucrose, 
treated with 0.15% tannic acid for 5 rain, rinsed twice, postfixed in 1% 
OsO4 for 5 min, dehydrated in ethanol series, and embedded in Polybed 
812 (Polysciences, Inc., Warrington, PA). Thin sections cut parallel to the 
substratum were stained with uranyl acetate and lead citrate, and observed 
with a Phillips 300 transmission electron microscope. 

Serial Reconstruction of Beads 
To determine whether the MTs left in collapsed neurites after cold treatment 
were in the form of fragments, a modification of the method of Nicklas et 
al. (33) was used for serial reconstruction. Outer boarders and MTs together 
with many membranous vesicles within the collapsed neurite were traced 
from the micrographs onto transparent plastic sheets. The tracings were 
aligned first by the membranous registration markers, then adjusted to max- 
imize the matches of MT ends in consecutive sections by moving the trac- 
ings within a range of two MT diameters. MT length and orientation were 
then depicted in the form of a composite drawing. 

Results 

Collapse of Amputated Neurites 
Our studies confirmed the observations of Shaw and Bray 
(40). Distal segments of amputated neurites collapsed to 
beads of axoplasm (hereafter "beads") which then regrew 
neurites almost immediately. Because we were interested in 
examining collapse and regrowth separately, we selected for 
amputation unbranched neurites with modest growth cones 
(Fig. 1 a), and amputated distal segments ,~100 ~tm in length. 
We found such neurite segments most likely to completely 
collapse to beads before beginning regrowth. Fig. 1 shows 
a typical sequence of amputation, collapse, and regrowth. 
Fifty-three amputations were performed in a set of experi- 
ments to monitor regrowth. In 16 cases, regrowth began be- 
fore the complete collapse of the neurite. In 37 cases, how- 
ever, the amputated neurite collapsed to a flattened sphere or 
"bead" of axoplasm with no visible processes before the onset 
of regrowth. Initially, the growth cone flaired and began to 
"melt" almost immediately upon severing the neurite. Then, 
as reported by Shaw and Bray (40), the distal segment coiled 
(Fig. 1 b) as it collapsed to a bead (Fig. 1, c and d). Electron 
micrographs of distal segments at various times after am- 
putation show varying degrees of MT depolymerization 
roughly correlated to the degree of coiling suffered by the 
neurite. 
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Figure I. Phase-contrast micrographs of a sequence of collapse and regrowth of chick sensory neurons after amputation. (a) Neurite before 
amputation. (b) 3 min after amputation, growth cone is flaired and neurite is coiled and retracted. (c) 12 min after amputation, collapse 
to a bead is almost complete. (d) 13 min after amputation, collapse is complete and minor regrowth has begun. (e) 16 min after amputation, 
multipolar regrowths are apparent. (f)  18 rain after amputation, regrowths have lengthened. Bar, 20 l~m. 

Ultrastructure of  Collapsed Neurites 
with and without MT Depolymerization 

We examined the ultrastructure of 10 amputated, untreated 
neurites collapsed to beads. All 10 clearly showed many long 
MTs in addition to multiple cross sections and apparent frag- 
ments (Fig. 2). Electron micrographs of four beads that were 
cold treated for 2 h in a -5°C  bath (Fig. 3 a) show the 
marked absence of any long MTs similar to those found in 
the untreated beads. To confirm that the MTs left in the cold- 
treated bead were indeed short fragments, we reconstructed 
nine consecutive serial sections, '~75 %, of one typical bead. 
The reconstruction (Fig. 3 b) shows many cross sections of 
MTs and 158 longitudinal fragments. In this particular bead 

all MTs were found to be <0.5 I~m in length while over 80% 
were <0.2 ~tm in length. Treatment of collapsed neurites 
with 0.1 IJg/ml nocodazole for 15-20 min likewise resulted 
in substantial MT depolymerization. We examined four such 
beads and found short fragments as well as some longer MTs 
in the peripheral regions (Fig. 4 a). However, treatment with 
a higher dose of 1.0 ~g/ml nocodazole appeared to com- 
pletely depolymerize MTs. We examined sections from three 
such beads and could find no unambiguous MTs (Fig. 4 b). 

We wished to determine if the MT fragments that persisted 
in the cold-treated bead were merely "mass action fragments" 
that could not depelymerize in the high tubulin concentration 
of the cold treated bead, or if they were in some way distinct 

Figure 2. Transmission electron microl 
graph of a distal portion of an amputated 
neurite collapsed to a bead and fixed be- 
fore regrowth. Many MTs of varying 
lengths are apparent. Bar, 0.5 ~tm. 
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Figure 3. (a) Transmission electron micrograph of a collapsed neurite fixed after 2 h at -5°C showing many randomly arranged MT cross 
sections and short longitudinal sections (arrows). (b) Serial reconstruction of nine consecutive sections through the cold-treated bead show- 
ing MT longitudinal sections as line segments, and cross sections as dots. Bar, 0.5 ttm. 

from the majority of MT mass that had depolymerized. We 
reasoned that detergent lysis would release soluble tubulin 
dimer allowing depolymerization of any ~mass action frag- 
mentsY The efficacy of this treatment in depolymerizing MTs 

in neurites was examined by comparing the MT array left in 
intact neurites lysed in an MT reassembly buffer (GEP 
buffer; see Materials and Methods) with the array left in 
neurites lysed in the same buffer supplemented with 2 M 
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Figure 4. (a) Transmission electron micrograph of a collapsed neurite fixed after 15-20 rain of treatment with 0.1 lig/ml nocodazole. Partial 
MT depolymerization is apparent, although MTs of varying lengths persist (arrows). (b) Transmission electron micrograph of a collapsed 
neurite fixed after 15-20 rain of treatment with 1.0 ~g/ml nocodazole. MT depolymerization is complete. Arrow marks an ambiguous vesicu- 
lar element. Bar, 0.5 ~tm. 
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Figure 5. (a) Transmission electron mi- 
crograph of a neurite lysed in GEP buffer 
supplemented with 2 M glycerol. The MT 
array is intact, (b) Transmission electron 
micrograph of a neurite bundle lysed in 
GEP alone. Substantial MT disassembly 
is apparent. (c) Transmission electron 
micrograph of a cold-treated, collapsed 
neurite lysed in GEP alone. MT fragments 
similar to those found in unlysed cold- 
treated beads persist. Bar, 0.5 ~tm. 

glycerol. The latter conditions have been found to stabilize 
assembled MTs against dissassembly by dilution while al- 
lowing diffusion of free tubulin in a variety of cells (3, 43). 
Light microscope observations of neurites lysed in GEP 
without glycerol showed a transient beading within 1 rain of 
adding lysis buffer, an effect symptomatic of MT depolymer- 
ization in neurites (17, 22). Neurites lysed in GEP with 

glycerol showed no such beading. Electron micrographs of 
neurites lysed in GEP with glycerol show a dense array of 
long MTs (Fig. 5 a), while electron micrographs of neurites 
lysed in GEP alone show substantial MT depolymerization 
(Fig. 5 b). Electron micrographs of cold-treated beads lysed 
in GEP without glycerol (Fig. 5 c) show MT fragments simi- 
lar to those MT fragments in unlysed, cold-treated beads. 
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Table L Summary of  Regrowth Data 

o. 1 ~tglrnl 
Cold Nocodazole 

Unarrested arrested arrested 

Number of collapse/regrowth 
events observed 53 10 6 

Numbers of events in which 
regrowth occurred from a 
completely collapsed bead 37 10 6 

Rate of regrowth for regrown 
neurites averaged per bead 
(gm/min) 3.5-4.5 3.5-4.5 3.5-4.5 

Numbers of beads sectioned 
and observed under the 
electron microscope 10 4 4 

That is, lysis of cold-treated beads caused no major addi- 
tional MT disassembly. 

Regrowth f rom Collapsed Neurites 

Regrowth of neurites from beads began either within the first 
30 s after collapse or often before collapse was complete. We 
followed regrowth in some cases for 45-60 min after col- 
lapse. In these cases the total length of the regrown neurites 
approximated that of the original distal segment, although 
the bead never entirely disappeared. The fastest and most ro- 
bust regrowth typically occurred over the first 15 min. Table 
I summarizes the regrowth data. Out of 53 amputations, 16 
began regrowth before the complete collapse of the neurite. 
In these cases, the remnants of the growth cone or neurite 
elongated to form the regrown neurite(s). In the 37 cases in 
which the amputated neurite collapsed completely, there was 
no relationship between the number and/or orientation of 
regrown neurites with the original neurite/growth cone. In all 
cases regrowth ensued at rates of 3.5-4.5 gm/min per 
regrown neurite averaged per bead. These rates were at least 
double those reported by Shaw and Bray (40), perhaps due 
to our use of plastic instead of glass substrata. Electron 
micrographs of regrown beads show paraxial MT arrays in 
the regrown neurites (Fig. 6, a and b) entirely similar to those 
in ordinary neurites, and fewer MTs in the bead than before 
regrowth (Fig. 6 a). 

After rewarming, regrowth from cold treated beads was 
very similar to regrowth from untreated beads. Cold arrested 
regrowth resumed within 30 seconds of the cultures reaching 
a narrow temperature range within 1-2°C of 37°C. The rates 
of regrowth from cold treated beads were in the same range 
of 3.5-4.5 microns/minute as regrowth from untreated 
beads. 

The regrowth of nocodazole treated beads was more 
difficult to study in that the rinsing required to remove the 
nocodazole often caused detachment of the bead from the 
dish surface. Both cold and nocodazole treated beads were 
less adherent to the substratum than untreated beads. How- 
ever, cold treated beads did not require a medium change and 

Figure 6. Transmission electron micrographs of an amputated neu- 
rite that collapsed to a bead then regrew neurites (a) in the region 
of the bead and (b) in the region of the regrown neurite. MTs are 
randomly oriented and of varying lengths in the bead, but are parax- 
ially oriented and entirely similar to arrays in ordinary neurites in 
the regrown neurites. Bar, 0.5 Ixm. 
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cases, we were able to obtain sections covering ,090% of the 
bead and all were devoid of MTs. The single bead that regrew 
did so after a 15-rain delay, its regrown neurite contained 
MTs as expected (not shown), and the bead was on the same 
plate as a non-regrowing bead found to be devoid of MTs. 
To determine whether the apparent inability of such beads 
to initiate MT assembly was due to the incomplete removal 
of nocodazole by our rinsing method, we examined the 
recovery of normal neurites treated with a 20-fold higher 
dose (20 lxg/ml) of nocodazole. These unamputated neurites 
retained a very few MT fragments (Fig. 8 a) and reassembled 
a dense array of MTs after 15 minutes in undrugged medium 
(Fig. 8 b). 

To determine whether beads treated with 1.0 gg/ml 
nocodazole were inviable and/or whether MT reassembly 
was no longer possible, we treated such beads with taxol. All 
four beads treated with 1.0 lxg/ml nocodazole for 15 rain, 
then rinsed and treated with 4.6 x 10 -s M taxol, rapidly 
regrew after a delay of ,03 min (Fig. 9). Such regrown neu- 
rites contained an array of MTs similar to those of unarrested 
regrown beads (not shown). Six of 6 beads treated with 
nocodazole, rinsed, and treated with 2.3 x 10 -5 M taxol 
failed to regrow but showed substantial MT reassembly in 
the beads (Fig. 10). 

Figure 7. Transmission electron microgmph of a collapsed neurite 
treated with 1.0 I~g/ml nocodazole for 15-20 rain, rinsed twice with 
PBS, and returned to undmgged medium for 30 rain before fixation. 
No MT reassembly has occurred. Bar, 0.5 gin. 

thus could be regrown with minimal disturbance. Only 6 of 
40 beads remained attached after rinsing of the lower dose 
(0.1 Ig/mi) of nocodazole and only 5 of 50 beads survived 
rinsing of the higher dose (1.0 I~g/ml). All 6 of the beads 
treated with the lower dose began regrowth within 30 sec- 
onds of their return to undrugged medium at a rate of 3.5-4.5 
microns/minute. However, the beads treated with the higher 
dose of nocodazole showed very poor regrowth. Only 1 of 
the 5 beads recovering from the higher dose regrew and this 
was only after a 20 minute delay. The other 4 never regrew 
even after 4 hours of observation. 

We wished to determine whether MT assembly was occur- 
ring without regrowth in beads rinsed after treatment with 
1.0 ~tg/ml nocodazole. Eight beads were treated with 1.0 
gg/rnl nocodazole, rinsed twice, and returned to undrugged 
medium. Seven of the 8 failed to regrow. Electron micro- 
graphs of two such beads fixed after 15 rain in undrugged 
medium and three such beads fixed after 30 rain in un- 
drugged medium show no MTs (Fig. 7). In two of the 30-rain 

Figure 8. Transmission electron micrographs of(a) an intact neurite 
treated with 20 ~g/ml nocodazole for 15-20 min showing persistent 
MT fragments (arrows), and (b) an intact neurite treated with 20 
gg/mi nocodazole, rinsed twice with PBS, and returned to un- 
drugged medium for 15 min before fixation. Such neurites rapidly 
recover a normal array of MTs. Bar, 0.5 ~tm. 
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Figure 9. Phase-contrast micrograph of a collapsed neurite (arrow) 
treated with 1.0 ltg/ml nocodazole for 15-20 rain, rinsed twice with 
PBS, then treated with fresh medium containing 4.6 x 10 -s M 
taxol showing robust regrowth that began 3 min after adding taxol. 
All four neurites treated in this manner regrew neurites after a short 
delay. Bar, 20 Itm. 

Discussion 

We report here an investigation of the role of MT assembly 
and disassembly in the regrowth of neurites from the col- 
lapsed, distal segments of amputated neurites of chick sen- 
sory neurons. Fully collapsed beads contained many long 
MTs (Fig. 2). One possibility was that these MTs might sim- 
ply "unfurl" into the axon during regrowth in a manner 
roughly analogous to Lasek's proposal for slow axonal trans- 
port of MTs in the form of assembled polymers (26). How- 
ever, beads treated at - 5 °C  for 2 h (Fig. 3) or with 0.1 l~g/ml 
nocodazole for 15-20 rain (Fig. 4 a) contained only short 
fragments of MTs, and yet regrew with no delay after reach- 
ing 37°C or rinsing out the nocodazole in the absence of MTs 

Figure 10. Transmission electron micrograph of a collapsed neurite 
treated with 1.0 ~tg/ml nocodazole for 15-20 rain, rinsed twice with 
PBS, then treated with fresh medium containing 2.3 x 10 -5 M 
taxol for 30 rain. No regrowth ensued, but substantial MT reassem- 
bly is apparent. Bar, 0.5 ~tm. 

long enough to "unfurl: The rates of regrowth in all three 
cases were indistinguishable and in the range of 3.5-4.5 
I~m/min. The rapidity of regrowth and lack of a delay before 
the onset of regrowth argue in favor of nucleated reassembly 
of MTs and against the possibility of de novo initiation (1, 19, 
34, 35). Indeed, beads treated with a higher dose of 1.0 
lxg/ml nocodazole were devoid of MTs (Fig. 4 b), and failed 
to regrow in 11 out of 13 cases. Although the poor adhesion 
of the treated beads to the substrata might also disable 
regrowth by not allowing a growth cone to form, beads 
treated with cold or with the lower dose of nocodazole were 
equally precariously attached yet regrew without delay. 
Taxol, not known to increase cell adhesion, enabled beads 
treated with 1.0 ~tg/ml nocodazole to regrow. Incomplete 
removal of nocodazole by our rinsing method also seems an 
unlikely factor in that a very high dose of 20 ~tg/ml was rap- 
idly reversible in normal neurites (Fig. 8). Further, neurites 
treated with the lower dose of nocodazole began regrowth 
within 30 s of rinsing. The rapidity of this reversal would not 
be expected if nocodazole was sequestered by some peculiar- 
ity of the bead. Nocodazole poisoning has been found to be 
immediately reversible in a variety of cell types (12, 41). We 
conclude that rapid regrowth of axonal fragments is depen- 
dent upon the presence of MTs or MT fragments that serve 
as nucleating elements for MT elongation. 

In the absence of nucleating elements, the expectation on 
the basis of MT assembly in vitro would be a delay in 
regrowth while initial nucleation occurred, after which as- 
sembly would occur rapidly (1, 19, 34, 35). In 2 out of 13 
cases, beads treated with the higher dose of nocodazole ap- 
parently sufficient to completely depolymerize MTs indeed 
responded in this fashion, while the majority, 11 of 13, did 
not. One possibility is that in the two cases of regrowth, the 
1.0 ~tg/ml nocodazole was not sufficient to completely 
depolymerize bead MTs. Given the 15-20 min delay before 
regrowth, it is more likely that the bead tubulin managed 
self-nucleated MT assembly after complete depolymeriza- 
tion. However, the failure of 11 out of 13 to regrow even after 
extended periods suggests a limited capacity of bead tubulin 
for self-nucleation. This suggestion is supported by the ob- 
servation that beads that failed to regrow after 15 or 30 min 
in undrugged medium were still devoid of MTs (Fig. 7). 
Beads rinsed of 1.0 ~tg/ml nocodazole and then treated with 
taxol, a drug that promotes MT assembly (38), was sufficient 
to stimulate bead tubulin into initiating assembly de novo. In 
4 out of 4 cases, beads treated with 4.6 x 10 -8 M taxol after 
being rinsed of 1.0 ~tg/ml nocodazole regrew after a 3-min 
delay (Fig. 9). In six other cases, a higher dose of 2.3 x 
10 -5 M taxol failed to stimulate regrowth, but did cause 
substantial MT reassembly in the beads (Fig. 10). Letour- 
neau and Ressler had previously reported that neurite out- 
growth from chick sensory neurons was limited to low levels 
of taxol and that higher doses inhibit neurite outgrowth (28). 
The ready regrowth when MT assembly is stimulated by 
taxol suggests that it was indeed the lack of MT assembly that 
inhibited regrowth previously, rather than inviability of the 
bead or loss of competent tubulin. It is unclear from our ex- 
periments whether the limited capacity of tubulin to initiate 
assembly is characteristic of neuronal tubulin or of the bead 
only. Morris and Lasek (32) found in squid axoplasm that 
the amount of tubulin in subunit form is higher than what 
would be predicted by in vitro studies given the total tubulin 
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concentration. They concluded that there are factors in the 
cell that inhibit the polymerization of tubulin. Our evidence 
suggests that such factors may function in part by inhibiting 
de novo initiation. On the other hand, we found that the bead 
had some MT disassembly properties not shared by the intact 
neurite. Nocodazole was more effective at completely 
depolymerizing MTs in beads than in intact neurites (Figs. 
4 b and 8 a). Lasek's model for the slow transport of 
cytoskeletal elements maintains that MTs are selectively 
degraded in axon terminals (25). Burton has recently re- 
ported evidence of MT disassembly at the distal ends of in- 
tact frog axons (9). During collapse of the neurite, its termi- 
nal growth cone becomes incorporated into the bead. If a 
degradation factor similar to that in synaptic terminals exists 
in the growth cones of advancing neurites, it might account 
for both the increased sensitivity of bead MTs to nocodazole 
and their limited ability to self-nucleate. 

If neuronal tubulin has only a limited capacity for self- 
nucleation, the importance of MT nucleating elements would 
be paramount for cytoskeletal reorganizations occurring dur- 
ing axonai growth. Abundant evidence suggests that certain 
neuronal MTs are especially stable (2, 4, 16, 18, 21, 45), and 
that these MTs exist in the form of short regions of otherwise 
labile MTs (18, 22, 37). We wondered whether the fragments 
left in the cold-treated bead were merely "mass action frag- 
ments" maintained because of a high tubulin concentration 
in the bead, or if they were intrinsically stable regions of 
longer MTs. We reasoned that if the fragments were "mass 
action fragments" they would depolymerize if the free tubu- 
lin were allowed to escape from the bead by lysing. If, how- 
ever, the fragments were intrinsically stable, they would not 
depolymerize upon subunit dilution. Indeed, as shown in 
Fig. 5, MT fragments persisted in cold-treated beads lysed 
under conditions that caused substantial MT depolymeriza- 
tion in normal neurites. All available evidence indicates that 
the lysis buffer we used causes MT disassembly by dilution 
since it supports MT assembly in vitro while allowing solu- 
ble tubulin to diffuse from lysed cells (3, 11, 43). We interpret 
this as indirect evidence that the fragments in the cold- 
treated beads were different from the majority of the MT 
mass. Job et al. (18), Brady et al. (4), and others have 
provided evidence that cold stable MTs differ in either MAP 
or tubulin composition. The fragments left in the cold- 
treated beads might similarly vary from the soluble MT frac- 
tion for these reasons. 
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