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Both neuroimaging and genomics datasets are often gathered for the detection of

neurodegenerative diseases. Huge dimensionalities of neuroimaging data as well as

omics data pose tremendous challenge for methods integrating multiple modalities.

There are few existing solutions that can combine both multi-modal imaging and multi-

omics datasets to derive neurological insights. We propose a deep neural network

architecture that combines both structural and functional connectome data with multi-

omics data for disease classification. A graph convolution layer is used to model

functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data

simultaneously to learn compact representations of the connectome. A separate set

of graph convolution layers are then used to model multi-omics datasets, expressed

in the form of population graphs, and combine them with latent representations of

the connectome. An attention mechanism is used to fuse these outputs and provide

insights on which omics data contributed most to the model’s classification decision. We

demonstrate our methods for Parkinson’s disease (PD) classification by using datasets

from the Parkinson’s Progression Markers Initiative (PPMI). PD has been shown to be

associated with changes in the human connectome and it is also known to be influenced

by genetic factors. We combine DTI and fMRI data with multi-omics data from RNA

Expression, Single Nucleotide Polymorphism (SNP), DNA Methylation and non-coding

RNA experiments. A Matthew Correlation Coefficient of greater than 0.8 over many

combinations of multi-modal imaging data and multi-omics data was achieved with our

proposed architecture. To address the paucity of pairedmulti-modal imaging data and the

problem of imbalanced data in the PPMI dataset, we compared the use of oversampling

against using CycleGAN on structural and functional connectomes to generate missing

imaging modalities. Furthermore, we performed ablation studies that offer insights into

the importance of each imaging and omics modality for the prediction of PD. Analysis

of the generated attention matrices revealed that DNA Methylation and SNP data were

the most important omics modalities out of all the omics datasets considered. Our work

motivates further research into imaging genetics and the creation of more multi-modal

imaging and multi-omics datasets to study PD and other complex neurodegenerative

diseases.
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1. INTRODUCTION

Neurodegenerative diseases such as Parkinson’s Disease (PD)
have been shown to be associated with both brain connectivity
and genetic factors. While measurements of cortical thickness
from structural Magnetic Resonance Imaging (MRI) have
produced contradictory findings about its utility to predict
PD (Yadav et al., 2016), analysis of Diffusion Tensor Imaging
(DTI) data has consistently shown that PD patients, with and
without cognitive deficits, have reduced fractional anisotropy in
prefrontal areas (Deng et al., 2013; Price et al., 2016). Studies
on functional MRI (fMRI) data have also consistently revealed
lower activity in the supplementary motor complex (Nachev
et al., 2008), reduced functional connectivity in the posterior
putamen (Herz et al., 2014), as well as changes in the activity
levels of the dopaminergic cortico-striatal (Tessitore et al., 2019)
and mesolimbic-striatal loops (Filippi et al., 2018) in PD patients.

On the genomics front, several genes (such as alpha-synuclein,
LRRK2 and PARK2) and their variants, in the form of Single
Nucleotide Polymorphism (SNP) data, have been associated with
PD (Klein andWestenberger, 2012). However, none of them have
complete penetrance and it is likely that there are multiple risk
factors involved in both familial and sporadic PD (Tran et al.,
2020), as well as influence from non-coding ribonucleic acid
(RNA) (Majidinia et al., 2016). Thus, small non-coding RNA
(sncRNA) such as micro RNA (miRNA) should be considered
as well. miRNA has been associated with PD: the mitochondrial
cascade hypothesis stems from miRNA dysregulation, which
causes oxidative stress in neurons and ultimately lead to
aggregation of alpha-synuclein and neurodegeneration (Watson
et al., 2019). With sporadic PD representing a much larger
proportion of PD cases as compared to familial PD, epigenetics
alterations (such as DNA Methylation) could be a potential
biomarker for PD (Miranda-Morales et al., 2017). Recent findings
have revealed that hypo-regulation of some PD-associated genes,
such as the SNCA promoter region, upregulates SNCA and leads
to the formation of Lewy bodies (Wang et al., 2019).

Neuroimaging and multi-omics data capture different aspects
of brain disease manifestations. Neuroimaging modalities such
as DTI and fMRI capture macroscopic differences in the
structure and function of healthy and diseased brains while
multi-omics data zoom into a microscopic view of various
molecular signatures in neurodegenerative diseases. Although
these modalities have been implicated in PD, their relative
importance over each other is less clear. Thus, integrating
imaging and omics modalities could reveal new links between
these levels of analysis and unravel the pathway of complex
neurodegenerative diseases such as PD (Antonelli et al., 2019).
However, methods to combine imaging and genetics data
are very limited. Existing studies typically study multi-modal
imaging data (Subramanian et al., 2020) and multi-omics data
(Chaudhary et al., 2018; Zhang et al., 2018; Jin et al., 2021)
separately, or combine one imaging modality with only one
omics dataset (Kim et al., 2017; Markello et al., 2021). Notably,
there have also been works that merged multi-modal imaging
data with non-imaging data such as demographic features
(Kazi et al., 2019a,b); as well as combining genetic data with

clinico-demographic data (Nalls et al., 2015). However, none
has attempted to combine both multi-modal imaging and multi-
omics data.

One reason for this is due to the very large number of
features involved in both imaging and omics datasets. Depending
on the choice of atlases, structural and functional connectivity
matrices could introduce several thousands of features, while
omics datasets are even bigger, ranging from thousands in
sncRNA to half a million in DNA Methylation data. Existing
methods to combine both data modalities are rudimentary and
often involve concatenation. This makes modeling challenging,
especially because number of data samples with both imaging and
omics data are very few. Models trained on such small datasets
overfit easily.

To overcome these issues, we propose a deep neural network
architecture that uses a combination of graph convolution layers
and the attention mechanism to model multi-modal imaging and
multi-omics datasets simultaneously. This is demonstrated on
the Parkinson’s Progression Markers Initiative (PPMI) dataset,
which has a rich collection of imaging (DTI, fMRI) and omics
datasets (SNP, sncRNA, miRNA, RNA sequencing and DNA
Methylation). However, the number of disease classification
studies based on this dataset has been limited, likely due to
the very imbalanced distribution of classes (many more PD
patients than controls). To alleviate the problem of imbalanced
data, we propose the use of CycleGAN to generate structural
and functional connectivity matrices of healthy subjects to
augment the existing dataset. Existing methods for addressing
class imbalance are not feasible for our problem—synthetic
data generation algorithms such as SMOTE and ADASYN
could generate more data but it will not be possible to
associate them to a particular set of omics data sample. Under-
sampling exacerbates the issue of having small datasets, while
over-sampling merely duplicates the existing dataset. Given a
structural connectivity matrix, CycleGAN is able to generate
a functional connectivity matrix (and vice versa) such that it
corresponds to the same subject and it is not just another repeated
data sample in the existing dataset.

With these augmented and less imbalanced datasets, we
propose an architecture named JOIN-GCLA (Joining Omics
and Imaging Networks via Graph Convolutional Layers and
Attention) to model both connectome and genomics data
simultaneously. Based on our proposed algorithm, a population
graph generated from both structural and functional connectivity
matrices is used as the graph of the graph convolution layer.
Thus, the learnt embedding of the feature vectors—which could
be arbitrarily chosen—will be influenced by the multi-modal
imaging data. The learnt representations are then passed into
multiple graph convolution layers, each based on a graph that
is built using different omics datasets. Each graph convolution
layer produces its own intermediate representations and interim
prediction. These are fused together via an attention mechanism,
leading to a final decision of the disease classification problem.

Experiment results showed that the best performing model
made use of both multi-modal imaging and multi-omics
data. Both were crucial for the good performance—model
performance fell significantly when only 1 imaging modality,
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only 1 omics or when no omics dataset were used. Data
augmentation was essential for the models to perform well—
without it, the extreme imbalance hinders proper model training
even with the use of class-weighted cost functions. JOIN-GCLA
was shown to outperform existing approaches of multi-modal
fusion (Long et al., 2012; Kazi et al., 2019b). Ablation studies
demonstrated the importance of the initial graph convolution
layer used to learn representations of the connectome data
- replacing the graph convolution layer with fully-connected
or convolution layers saw significant reduction in model
performance. The proposed attention layer was also shown to
outperform a self-attention baseline. Furthermore, JOIN-GCLA
provides improved model interpretability. With a carefully
designed attention mechanism, the resultant attention matrix
revealed that out of the omics datasets used, DNA methylation
was the most important omics data when predicting that the data
sample is a healthy control, while SNP was most important when
predicting PD patients.

In sum, we have made the following novel contributions in
this work:

• Proposed an architecture, JOIN-GCLA, that is able to
incorporate both multi-modal connectome datasets and
multi-omics datasets simultaneously.

• JOIN-GCLA provides better model interpretability from the
generated attention score matrix—it is able to identify which
omics modalities are being focused on when predicting a
certain disease class.

• Found that amongst all the multi-omics datasets used, DNA
methylation and SNP are the most important omics modalities
for PD classification.

2. METHODS

2.1. JOIN-GCLA Architecture
We propose a deep neural network architecture, named
Joining Omics and Imaging Networks via Graph Convolutional
Layers and Attention (JOIN-GCLA), that consists of multiple
graph convolution layers and an attention mechanism to
combine multi-modal imaging data and multi-omics datasets
for prediction of PD. Figure 1 illustrates the JOIN-GCLA
architecture that is made up of 3 cascaded networks: the
connectome encoder, omics networks, and an attention layer.

Fusion of multi-modal imaging data and multi-omics data is
performed within the graph convolution layer of the connectome
encoder and omics network, respectively. Thus, the inputs to the
JOIN-GCLA architecture can be arbitrarily defined, depending
on what is desired to be studied. In this work, we use features
from the connectomes derived from each imaging modality as
inputs to JOIN-GCLA. Let us assume we receive a multi-modal
imaging dataset X = {Xm}Mm=1 with connectivity feature matrix
Xm ∈ R

P×Jm where Jm is the number of connectivity features
derived from each imaging modalitym, obtained from P imaging
scans. For the omics networks, the information from N omics
data types are encoded in the graphs of N graph convolution
layers. Let O = {On}Nn=1 denote the features of omics data where
N denotes the number of omics data types and On ∈ R

P×Kn

denotes the features from the n-th omics data type. Kn is the
number of omics features from each omics data type n. Finally,
let the set of weights, biases, output and size of the l-th layer be
denoted byW(l), b(l), H(l) and L(l), respectively.

2.1.1. Population Graphs
Both the connectome encoder and the omics networks make use
of graph convolution layers that decode the information encoded
in population graphs where each node in a population graph
represents a data sample. The connectome encoder condenses
the structural and functional connectivity matrices into a small
and compact vector representation. The omics networks receive
the representation realized from imaging data and combine them
with omics data for disease classification.

The graph of the connectome encoder is built from multiple
connectome datasets derived from neuroimaging data. Formally,
we define the imaging-based population graph as a population
scan graph (PSG) where imaging scans are represented as nodes
and the similarity between each pair of scans is calculated as the
edge weight, making it a fully connected weighted graph.

Let us denote xmv as the connectivity features for imaging
modality m from an individual v and let Am = {amuv} ∈ R

P×P

denote the adjacency matrix of a PSG where u and v denote
two data samples. Each weight auv represents the similarity sim
between two samples:

amuv = sim(xmu , x
m
v ) (1)

Similarly, wemake population omics graphs (POG) from features
of each omics data type. Let onv represent the omics features for
omics data type n from an individual v and let Bn = {bnuv} ∈

R
P×P represent the adjacency matrix of a POG. Each weight buv

represents the similarity sim between two samples:

bnuv = sim(onu, o
n
v ) (2)

The similarity measure sim is chosen as the Pearson’s correlation
coefficient.

2.1.2. Connectome Encoder
The connectome encoder is made up of a linear layer and a
graph convolution layer. The input to the connectome encoder is
themodality-wise concatenation of connectivity featurematrices,
represented by Xc ∈ R

P×J , where J =
∑M

m=1 Jm. A linear layer is
first used to reduce data dimensionality. This is needed because
the connectivity matrices were built by computing correlations
between time-series from brain regions-of-interests (ROI), which
produces a large number of features. In this work, since both
fMRI and DTI data were involved, we used the AAL atlas which
defines 116 ROIs and produces 6,670 features for each imaging
modality, warranting the need for the linear layer:

H(1) = ReLU(XcW(1) + b(1)) (3)

where ReLU denotes the ReLU activation function.
The output of the linear layer is then passed to the graph

convolution layer. Additionally, the graph convolution layer
takes in a PSG as the graph A. The PSG was created by setting
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FIGURE 1 | Illustration of the JOIN-GCLA architecture. It is made up of 3 parts: a connectome encoder, omics networks and an attention layer. The connectome

encoder receives connectome features from neuroimaging modalities, omics networks embed omics data in their graphs, and the attention layer consolidates all the

outputs of the omics networks to make a single final prediction.

the edge weights between each pair of subjects as the Pearson’s
correlation of their vectorised connectivity matrices. Min-max
normalization is then performed on the PSG and each element
in the PSG is incremented by 1 to ensure that the minimum value
is 1. When there are multiple modalities involved, let the PSG of
modalitym be denoted by Am. Am is multiplied with the existing
PSG A, which is initialized as a matrix of ones. A is then used as
the graph of the graph convolution layer.

Since the PSG is fully connected, the graph convolution layer
should incorporate edge weights from the graph when improving
the feature vector. One such layer was proposed in Kipf and
Welling (2016):

H(2) = ReLU(D̂
−1/2
A ÂD̂

−1/2
A H(1)W(2)) (4)

where Â = A + I represents the PSG (of dimensions P × P)

with self-loops added, and D̂A = {d̂vv} represents the diagonal

degree matrix of A with d̂vv =
∑

u∈V d̂vu where V is the vertex

set of scans. The output of the connectome encoder, H(2), is
subsequently used as input to each omics network.

2.1.3. Omics Networks
Each omics network is made up of a graph convolution layer
and a softmax layer. Despite receiving the same output from
the connectome encoder, each omics network produces different
outputs because the POG used in each omics network is different.
Creating the POG O involves a different procedure from Parisot
et al. (2018) due to the nature of omics datasets. For example,
the population graph of DNA Methylation and miRNA data
have values very close to each other (as seen in Figure 3), which
requires further scaling. This is done via the WGCNA algorithm
(Zhang and Horvath, 2005) which re-scales the values to follow a
power law distribution. Furthermore, while one subject has only

one set of multi-omics data, a single subject can have multiple
imaging scans. Thus, a duplication step has to be introduced to
replicate the omics features when a subject has multiple imaging
scans.

In short, POGs are generated by producing an adjacency
matrix via computing the correlation between each scan’s omics
vector, followed by addition of self-loops, WGCNA scaling and
scan duplication for subjects with more than 1 imaging scan,
producing an P × P matrix. Since POGs are also always fully
connected, the model proposed in Kipf and Welling (2016) can
be used.

H(3) = D̂
−1/2
B B̂D̂

−1/2
B H(2)W(3) (5)

where B̂ = B+ I represents the POGwith self-loops added, D̂B =

{d̂vv} represents the diagonal degree matrix of B. Subsequently,
the output of the graph convolution layer is passed to a linear
layer with L(4) hidden nodes, where L(4) represents the number
of classes for the classification task.

H(4) = ReLU(ReLU(H(3))W(4) + b(4)) (6)

The above equations detail the process of generating the outputs
of a single omics network. In the case where only a single omics
data is available,H(4) can be passed to a softmax layer to produce
the final prediction. Given N different sets of omics data, we will
repeat these steps for each omics dataset, each producing their
own omics network. Then, bothH(3) andH(4) will be used by the
attention layer shown in the next section.

2.1.4. Attention Layer
When multiple omics datasets are used, not all of them will be
useful for the classification task. Thus, we introduce an attention
layer that learns which omics network to pay more attention
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to when making the final prediction. For each data sample, the
attention layer will learn an attention matrix of dimensions N ×

L(4), showing which omics network is being focused on for the
classification task. It will also produce a single prediction for the
disease classification task.

The attention mechanism, following the terminology in
Vaswani et al. (2017), involves two components: (i) the attention
weights produced from a pair of query and key matrices, and (ii)
the value matrix, i.e. the term to be weighted. The latter refers
to H(4), the logits from each omics network. Thus, let H(4c) ∈

R
P×N×L(4) be the concatenated logits from all omics networks.

For the former, since it is desirable to arrive at an attentionmatrix
of dimensionN×L(4) for better model interpretability, the query

matrix is defined as H(4m) ∈ R
P×L(4)×1, the mean of logits from

all omics networks, averaged across dimension N and transposed
so that the shape of the attentionmatrix is correct. The keymatrix

is defined as H(3c) ∈ R
P×N×L(3) , which represents the combined

outputs concatenated from the graph convolution layer in each
omics network. Since the last dimension ofH(4m),H(3c) andH(4c)

are different, H(3c) is projected via a projection matrix W(3c) ∈

R
L(3)×1. Similarly, H(4c) is projected byW(4c) ∈ R

L(4)×1.
Finally, the query matrix H(4m) and the key matrix H(3c) are

combined to compute the attention score used to weigh the value
matrix H(4c). In sum, this operation finds the best set of weights
to weigh the output of each H(4) from the omics networks,

producing H(5) ∈ R
P×L(4)×1.

H(5) = softmax
(

H(4m) (H(3c)W(3c))T) (H(4c)W(4c))
)

(7)

2.1.5. Output Layer
H(5) is then passed into a softmax layer to produce the predicted
class label y.

p(yi = yk|H
(5)) = softmax

(

H(5)
)

(8)

2.1.6. Training
Training of the JOIN-GCLA architecture is done by minimizing
the error between predicted class label y and the target class label
yd via a weighted cross-entropy cost function J to account for

data imbalance. Let wyd = 1 −
Pyd
P be the weight of the class yd,

where Pyd refers to the data subset that belongs to the class yd.

J = Ex{−wydyd log(y)− (1− wyd )(1− yd) log(1− y)} (9)

The cost function J is minimized using an Adam optimiser.
Also, during model training, dropouts are added after the graph
convolution layer in both the connectome encoder and the omics
networks.

3. RESULTS

3.1. Dataset and Pre-processing
Data used in this study were obtained from the Parkinson’s
Progressive Markers Initiative (PPMI) (Marek et al., 2018). PPMI
is a clinical study that seeks to build data driven approaches

TABLE 1 | Basic statistics of subjects with DTI scans in PPMI dataset.

Healthy control (HC) Parkinson’s disease (PD)

Number of subjects (scans) 66 (178) 154 (705)

Male/Female 43/23 98/56

Age 60.9 ± 10.6 60.8 ± 9.3

for early diagnosis of PD by discovering novel biomarkers.
For this study, we have utilized both imaging and genetic
data downloaded from the website. Tables 1, 2 summarizes key
demographic information and statistics of the PPMI dataset for
imaging data, while Table 3 shows the sample and feature sizes
of the omics datasets. PD subjects included in this study are
those who either have a pathogenic genetic variant or are newly
diagnosed and have yet to commence medication for PD.

Details about the pre-processing steps are shown in the
Supplementary Materials. In brief, after pre-processing the
raw diffusion weighted imaging data to correct for motion,
eddy currents and echo planar imaging distortions via the
dwi-preprocessing-using-t1 pipeline in Clinica
(Routier et al., 2021), structural connectivity matrices were
obtained by performing probabilistic tractography using the
BedpostX GPU (Hernández et al., 2013) and ProbtrackX
GPU (Hernandez-Fernandez et al., 2019) tool from FSL
(Jenkinson et al., 2012). Since the raw connectivity matrix is not
symmetric, the average of the upper and lower triangular was
computed and was further log-transformed and standardized
to ensure that the values follow a standard normal distribution
(which will aid downstream modeling tasks). The fMRI dataset
was processed using fMRIPrep (Esteban et al., 2019) and the
AAL atlas was used to generate 116 regions of interests (ROI)
from both the cortex and subcortex. The activation of a ROI
is computed by taking the mean time series of all voxels less
than 2.5 mm away from the ROI. Pearson correlation was
used to obtain a symmetric matrix containing the functional
connectivities between pairs of ROIs for each scan.

Most of the DTI and fMRI scans in the PPMI datasets are
taken on different sessions (i.e. different days). Just relying on
scans which are taken on the same day will result in a small and
unusable dataset. Instead, for every DTI scan, we pair it up with
fMRI scans which are taken not more than 1 year away from the
date the DTI scan was performed. This produces 351 PD and 25
HC scans with paired DTI and fMRI data.

For multi-omics datasets, PPMI provides pre-processed data,
with steps such as quality control and normalization performed.
RNA-Seq data are given in format of Transcripts Per Million, and
sncRNA and miRNA data are given in Reads Per Million (RPM)
and RPM Mapped to miRNA formats. DNA Methylation (Met)
and Single Nucleotide Polymorphism (SNP) data have been
distilled with p-value detection. Based on the above processing,
we further perform noise removal and Wilcoxon Signed Rank
test to eliminate irrelevant features on the sample set required for
downstream experiments. More details about the pre-processing
steps can be found in the Supplementary Materials.
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TABLE 2 | Basic statistics of subjects with fMRI scans in PPMI dataset.

Healthy control (HC) Parkinson’s disease (PD)

Number of subjects (scans) 18 (19) 94 (194)

Male/Female 14/4 64/30

Age 61.0 ± 10.8 59.7 ± 10.2

TABLE 3 | Dataset and feature sizes of multi-omics data before and after

pre-processing.

Omics data type Dataset size Original Processed

feature size feature size

RNAseq 226 34,569 19,728

Met 152 864,067 677,506

SNP 206 267,607 239,731

sncRNA 184 29,585 4,366

miRNA 184 2,656 748

3.2. Data Augmentation
Most multi-modal imaging and multi-omics datasets are small
because not all the subjects with one imaging modality come
along with other modalities. For instance, not all subjects with
DTI scans will have a corresponding fMRI scans (and vice
versa). This is also true for the PPMI dataset. Another major
issue in the PPMI dataset is the huge class imbalance, with the
number of PD subjects about 10 times larger than the number of
healthy controls, as seen in Tables 1, 2. To address these issues,
we use CycleGAN, a type of Generative Adversarial Network
(GAN) proposed by Zhu et al. (2017), to generate functional
connectomes from structural connectomes of healthy subjects.
GANs are generative models that can generate additional data
samples with distributions similar to that of the distribution of
the training dataset. CycleGAN is made up of conditional GANs,
which are able to use images of one modality as latent variable
so as to generate images of another modality. CycleGAN goes
further to introduce a cycle consistency loss that ensures that the
source and target images are consistent with each other as the
network is able to both generate the target image from the source
image and reconstruct the source image from the generated target
image.

To train the CycleGAN architecture, functional and structural
connectivity matrices, generated from preprocessed fMRI and
DTI data from the Human Connectome Project (HCP) S1200
release (Glasser et al., 2013), was used as the training data and
the CycleGAN model was tuned and tested using data from the
Amsterdam OpenMRI Collection (AOMIC) (Snoek et al., 2021).
PIOP1 was used as validation set, while PIOP2 was the test set.
Both HCP and AOMIC datasets are made up of brain imaging
scans from healthy young adults. These were chosen, despite the
age differences from PPMI, due to the large dataset sizes available
(1062 for HCP, 189 for PIOP1 and 183 for PIOP2). To the best of
our knowledge, no publicly available datasets with such dataset
sizes exist for elderly populations. Pre-processing steps for the
HCP and AOMIC datasets are similar to Section 3.1 and more

details about the dataset and pre-processing steps are provided in
the Supplementary Materials. With a trained CycleGAN model,
structural connectivity matrices are passed into it to generate
additional fMRI scans of healthy subjects. These are used to
augment the original dataset. This results in 208 PD and 186
HC scans, a more balanced dataset (52.3% as compared to 91.6%
previously). For the paired DTI-fMRI dataset, this results in 351
PD and 364 HC scans, also resulting in a more balanced dataset
(53.3% as compared to 93.4%).

3.3. Hyperparameter Tuning
The huge number of possible omics and imaging data
combinations makes it unfeasible to tune the model for each of
them. Rather, hyperparameter tuning was performed once on
the largest dataset available for the baseline model (i.e. a graph
convolutional layer, without the omics networks, trained only
on DTI data). We first split the dataset into non-test and test
sets at a 2:1 ratio, before performing 5 fold cross-validation on
the non-test split. Once the optimal parameters are found, the
experiments are repeated over 10 seeds and the mean accuracies
(along with standard deviation) are reported in the next sections.
Importantly, synthetic data are only added to the training set–the
validation and test set always uses real data only.

Parameters tuned include dropout {0.1, 0.3, 0.5}, number of
hidden neurons in the graph convolution layers {2, 4, 8, 16, 32}
and learning rate {0.001, 0.0005, 0.0001}. Early stopping with a
patience of 20 epochs was applied during the tuning process and
the largest number of epochs taken to reach the best Matthew
Correlation Coefficient (MCC) score was used as the number
of epochs to train the model for before applying the model
on the test set. The optimal parameters are dropout of 0.1, 16
hidden neurons and learning rate of 0.001. Adam optimiser was
used to train the model. This set of parameters is consistently
used throughout all combinations of data modalities, with no
further model tuning done for the other imaging and omics
combinations. All experiments were repeated over 10 seeds.

3.4. Data Augmentation Improves Disease
Classification
The PPMI dataset is heavily imbalanced. Even when the cost
function is weighted by the classes, Table 4 showed that the
trained JOIN-GCLA model cannot classify well without data
augmentation. While the accuracy achieved is high, that is an
indication that the model is stuck at predicting the majority
class (PD) and cannot predict the minority class (HC) well.
Supplementary Table S1 shows the percentage of the dataset
represented by the majority class. It is evident that model
performance on the original dataset is often around or even
below this percentage. Additional confirmation is provided by
the MCC scores, which are very low without data augmentation.
With data augmentation, MCC increased significantly on most
omics combinations. Thus, data augmentation helps to reduce
the imbalance and it is necessary for good model performance.
Analyses in subsequent sections will use this augmented dataset.
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TABLE 4 | Comparison of model performance on DTI-fMRI data, with and without training set augmentation.

No augmentation With augmentation

Omics Accuracy MCC Accuracy MCC

None 93.09 ± 0.03 0.00 ± 0.00 93.09 ± 0.03 0.00 ± 0.00

Met 89.59 ± 0.04 0.02 ± 0.05 90.21 ± 0.04 0.13 ± 0.25

SNP 93.18 ± 0.03 0.03 ± 0.09 93.89 ± 0.03 0.08 ± 0.25

miRNA 96.16 ± 0.00 0.00 ± 0.00 96.16 ± 0.00 0.00 ± 0.00

sncRNA 96.16 ± 0.00 0.01 ± 0.01 96.16 ± 0.00 0.00 ± 0.00

RNAseq 92.82 ± 0.03 0.00 ± 0.00 92.82 ± 0.03 0.01 ± 0.04

RNAseq-Met 81.21 ± 0.20 0.17 ± 0.33 92.52 ± 0.10 0.79 ± 0.23

RNAseq-SNP 88.96 ± 0.11 0.28 ± 0.19 84.92 ± 0.13 0.38 ± 0.29

RNAseq-miRNA 87.48 ± 0.26 0.03 ± 0.05 95.65 ± 0.02 0.02 ± 0.03

RNAseq-sncRNA 92.11 ± 0.11 0.02 ± 0.05 96.10 ± 0.01 0.08 ± 0.18

Met-SNP 85.59 ± 0.14 0.39 ± 0.34 83.99 ± 0.13 0.43 ± 0.35

Met-miRNA 90.62 ± 0.20 0.03 ± 0.05 95.72 ± 0.11 0.61 ± 0.51

Met-sncRNA 85.99 ± 0.24 0.02 ± 0.05 98.16 ± 0.02 0.43 ± 0.49

SNP-miRNA 96.84 ± 0.03 0.04 ± 0.10 100.0 ± 0.00 1.00 ± 0.00

SNP-sncRNA 85.91 ± 0.29 0.02 ± 0.06 99.78 ± 0.01 0.90 ± 0.32

miRNA-sncRNA 94.87 ± 0.04 0.06 ± 0.15 96.25 ± 0.01 0.06 ± 0.18

RNAseq-Met-SNP 89.45 ± 0.04 0.37 ± 0.25 86.46 ± 0.16 0.56 ± 0.38

RNAseq-Met-miRNA 97.13 ± 0.01 0.01 ± 0.01 97.93 ± 0.01 0.29 ± 0.45

RNAseq-Met-sncRNA 97.28 ± 0.01 0.11 ± 0.25 97.80 ± 0.02 0.32 ± 0.47

RNAseq-SNP-miRNA 88.64 ± 0.30 0.01 ± 0.02 99.63 ± 0.01 0.81 ± 0.40

RNAseq-SNP-sncRNA 97.99 ± 0.00 0.02 ± 0.03 99.77 ± 0.01 0.90 ± 0.30

RNAseq-miRNA-sncRNA 90.18 ± 0.19 0.04 ± 0.06 95.60 ± 0.02 0.01 ± 0.03

Met-SNP-miRNA 96.62 ± 0.01 0.06 ± 0.20 99.68 ± 0.01 0.91 ± 0.30

Met-SNP-sncRNA 96.94 ± 0.01 0.16 ± 0.33 100.0 ± 0.00 1.00 ± 0.00

Met-miRNA-sncRNA 90.23 ± 0.22 0.00 ± 0.02 98.70 ± 0.01 0.52 ± 0.50

SNP-miRNA-sncRNA 90.77 ± 0.23 0.01 ± 0.01 99.80 ± 0.01 0.90 ± 0.32

RNAseq-Met-SNP-miRNA 87.20 ± 0.29 0.12 ± 0.31 99.72 ± 0.01 0.90 ± 0.32

RNAseq-Met-SNP-sncRNA 85.23 ± 0.29 0.05 ± 0.10 99.42 ± 0.01 0.80 ± 0.42

RNAseq-Met-miRNA-sncRNA 96.70 ± 0.01 0.03 ± 0.06 97.08 ± 0.03 0.31 ± 0.48

RNAseq-SNP-miRNA-sncRNA 98.16 ± 0.01 0.11 ± 0.31 99.36 ± 0.01 0.70 ± 0.48

Met-SNP-miRNA-sncRNA 87.39 ± 0.29 0.08 ± 0.17 93.21 ± 0.21 0.91 ± 0.29

RNAseq-Met-SNP-miRNA-sncRNA 96.78 ± 0.01 0.19 ± 0.31 89.67 ± 0.30 0.73 ± 0.44

3.5. Effects of Incorporating Different
Omics Datasets
JOIN-GCLA takes in two or more omics networks. When less
than two omics datasets are available, the attention layer can
be removed. Thus, in the case where one omics dataset is used,
the resulting architecture has 2 graph convolution layers (1 for
imaging, 1 for omics). When no omics datasets are used, the
resulting architecture has 1 graph convolution layer for themulti-
modal imaging data only. From Table 4, it is evident that almost
all the models trained without omics data or only with a single
omics data modality fared poorly, with MCC ranging from 0.00
to 0.13 as compared to the multi-omics models (bolded rows)
with MCC ranging from 0.73 to 1.00. Furthermore, it is observed
that data augmentation has greatest efficacy when multi-omics
data is involved. The increase of MCC score ranged from 0.00 to
0.11 when no or one omics data was used, while the increment
for multi-omics combinations ranged from 0.54 to 0.84.

3.6. Selection of the Optimal Omics
Combination
In Table 4, results for the power set of omics combinations were
shown for completeness. A principled way to arrive at the optimal
combination of omics data is to perform backward elimination at
the level of omics data type, based on MCC score. From the full
set of omics data (RNAseq-Met-SNP-miRNA-sncRNA), m − 1
separate models are trained independently, each with a different
subset ofm−1 omics data types obtained by removing a different
omics dataset for eachmodel. If any of the newmodels produces a
higher MCC score than the existing best model (initialized as the
original set), it is set as the best model and the process continues
recursively until it gets terminated when either no omics data is
left or the current iteration of models do not perform better than
the existing best model from the previous iteration. Following
this procedure, Met-SNP-sncRNA was determined to be the
optimal omics combination. For clearer presentation of results,
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TABLE 5 | Comparison of model performance between DTI-fMRI data and fMRI

data.

DTI-fMRI fMRI

Omics Accuracy MCC Accuracy MCC

Model 3 100.0 ± 0.00 1.00 ± 0.00 97.15 ± 0.03 0.80 ± 0.27

Model 4 93.21 ± 0.21 0.91 ± 0.29 96.16 ± 0.04 0.71 ± 0.34

Model 5 89.67 ± 0.30 0.73 ± 0.44 97.43 ± 0.04 0.77 ± 0.41

subsequent analyses will focus on the rows in bold in Table 4,
which represent the best models for each number of omics
combinations considered in the process of backward elimination.
We adopt the following notation in the tables below: Model 3 =
Met-SNP-sncRNA,Model 4 =Met-SNP-miRNA-sncRNA,Model
5= RNAseq-Met-SNP-miRNA-sncRNA.

3.7. Effect of Using Multi-Modal Imaging
Data
Table 5 shows that models using multi-modal imaging data
generally results in better MCC score than models trained with
uni-modal imaging data1. In particular, Met-SNP-sncRNA is able
to achieve a MCC score of 1 across all 10 seeds, but when
DTI data was dropped, the MCC score reduced to 0.80 (p-
value of 0.04 when performing a t-test to check for identical
population means). Higher MCC score was also observed for
Met-SNP-miRNA-sncRNA when multi-modal imaging data was
involved. While the accuracies obtained when only fMRI used
seems generally higher, their lower MCC suggest that the model
still tends to predict the majority class. This issue is alleviated
when multi-modal imaging data are used.

3.8. JOIN-GCLA Outperforms Existing
Approaches for Disease Classification
To the best of our knowledge, there has been no existing work
proposed to process both multi-modal imaging and multi-omics
data in a single architecture. Early methods such as Long et al.
(2012) extracted features from structural and functional brain
images and used a support vector machine (SVM) to perform
disease classification. However, such approaches do not combine
omics features. Nevertheless, a comparison will be made between
JOIN-GCLA and machine learning models such as SVM and
logistic regression (LR) to ascertain whether JOIN-GCLA give
any advantage over these models.

Tuning of the machine learning models was performed with
Optuna (Akiba et al., 2019) and the models were implemented
in Python using Scikit-learn. For SVM, a linear SVM was used
and the regularization parameter C is randomly sampled from a
log uniform distribution ranging between 1× 10−5 and 1× 105.
For LR, besides the regularization parameter C (sampled from
1× 10−3 to 1× 102), the parameter l1_ratio is sampled from

1Data augmentation was done by using the trained CycleGAN model to generate

functional connectivity matrices only as the PPMI dataset has too few fMRI scans

to generate structural connectivity matrices from. Instead, the DTI dataset is used

to demonstrate effects of undersampling, as shown in Supplementary Table S7.

TABLE 6 | Comparison between alternative fusion approaches and JOIN-GCLA.

Model Modality Accuracy MCC

Logistic Regression DTI 45.07 ± 5.26 –0.10 ± 0.11

Logistic Regression fMRI 56.84 ± 3.74 0.20 ± 0.07

Logistic Regression DTI + fMRI 58.53 ± 4.96 0.22 ± 0.10

Support Vector Machine DTI 46.47 ± 4.96 –0.06 ± 0.12

Support Vector Machine fMRI 45.87 ± 4.73 0.16 ± 0.11

Support Vector Machine DTI + fMRI 37.05 ± 8.56 0.14 ± 0.10

JOIN-GCLA, Model 3 DTI + fMRI 100.0 ± 0.00 1.00 ± 0.00

JOIN-GCLA, Model 4 DTI + fMRI 93.21 ± 0.21 0.91 ± 0.29

JOIN-GCLA, Model 5 DTI + fMRI 89.67 ± 0.30 0.73 ± 0.44

TABLE 7 | Comparison between JOIN-GCLA with alternative fusion methods.

JOIN-GCLA Kazi et al. (2019a)

Omics Accuracy MCC Accuracy MCC

Model 3 100.0 ± 0.00 1.00 ± 0.00 73.71 ± 0.22 0.32 ± 0.32

Model 4 93.21 ± 0.21 0.91 ± 0.29 82.14 ± 0.17 0.18 ± 0.18

Model 5 89.67 ± 0.30 0.73 ± 0.44 77.11 ± 0.19 0.35 ± 0.27

a uniform distribution ranging between 0 and 1. The best set
of model parameters across 10 trials are used to train the final
model. Model performance over 10 seeds is reported in Table 6.

While it is evident that the JOIN-GCLA results with multi-
omics data outperforms machine learning models, comparing
the results in Table 6 with the rows in Table 4 where no omics
datasets were used, deep learning models do not seem to perform
better than SVM nor logistic regression models. This is true for
both cases where fMRI or DTI-fMRI datasets are used. This
suggest that the good model performances seen in Table 4 are
likely contributed by the addition of omics dataset and the omics
networks, rather than just the use of deep learning models in the
connectome encoder. While the number of test samples involved
in these 3 examples (∼55) are indeed smaller than the number
of test samples used when no omics data are involved (∼115),
the difference in performance is unlikely to be attributed to
the difference in sample sizes between the experiments. This is
supported by the result from omics combination RNAseq-SNP-
miRNA-sncRNA, which still has an MCC score of 0.70 with∼ 95
test samples, much higher than what was obtained frommachine
learning models despite having a similar number of test samples.

More recent works related to JOIN-GCLA include
architectures that combine both imaging data and demographic
information in the form of population graphs (Parisot et al., 2018;
Kazi et al., 2019a). However, they do not use omics datasets. The
closest architecture to JOIN-GCLA is the multi-layered parallel
graph convolutional network presented in Kazi et al. (2019a). In
their model, separate population graphs were built based on each
demographic feature used (e.g. age, gender). Each population
graph was used as the graph for a different graph convolutional
network (GCN). Features from MRI, fMRI and cognitive tests
were used as the node vector of the GCNs. The representations
learnt by the GCNs were then fused via a weighted sum, with the
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TABLE 8 | Ablation study of the connectome encoder on DTI-fMRI dataset.

JOIN-GCLA Fully-connected layer Convolution layers

Omics Accuracy MCC Accuracy MCC Accuracy MCC

Model 3 100.0 ± 0.00 1.00 ± 0.00 85.82 ± 0.11 0.42 ± 0.27 95.59 ± 0.09 0.57 ± 0.46

Model 4 93.21 ± 0.21 0.91 ± 0.29 83.69 ± 0.20 0.47 ± 0.39 88.62 ± 0.23 0.26 ± 0.34

Model 5 89.67 ± 0.30 0.73 ± 0.44 89.97 ± 0.11 0.54 ± 0.36 72.86 ± 0.32 0.23 ± 0.30

weight assigned to each GCN being a parameter learnt during
model training. JOIN-GCLA is different in two key aspects: (i)
our connectome encoder can incorporate multiple modalities of
connectome data and (ii) our proposed attention layer is used
for fusing multiple views of information. In our implementation
of Kazi et al. (2019a), instead of using demographic information,
POGs were used as the graph for the graph convolution layers
and the connectome encoder is replaced by a fully-connected
layer. Table 7 shows that JOIN-GCLA significantly outperforms
their approach of modality fusion.

3.9. Effects of Graph Convolution Layer in
the Connectome Encoder
The connectome encoder in JOIN-GCLA can also be compared
with other deep learning approaches by replacing the graph
convolution layer with alternatives such as layers in the
connectome convolutional neural network proposed by
Meszlényi et al. (2017), which uses customized horizontal and
vertical filters of dimensions 1×|ROI| and |ROI|×1, respectively.
Such a model can accept multi-modal imaging data by treating
each modality as an additional channel. Alternatively, the graph
convolution layer could be simply replaced with a linear layer.
Such a model will take in multi-modal imaging data by flattening
the original matrices into vectors and concatenating them into
one large feature vector.

From Table 8, it can be seen that both models with the fully-
connected layer and convolution layers perform rather poorly.
The connectome convolution layers does not seem to aid model
performance relative to the fully connected layers. Both model
performances are also inferior to the results obtained by JOIN-
GCLA, as shown in Figure 1. A limitation of the comparison
made inTable 8 is the significantly smaller number of parameters
involved in the model with the convolution layers (∼ 30, 000)
as compared to the model with the fully-connected layer and
JOIN-GCLA (∼ 200, 000). In view of this, another experiment
was performed where the number of parameters in the model
with convolution layers was increased by increasing the number
of filters (for the convolution layer in connectome encoder)
and hidden nodes (for the graph convolution layer in omics
networks) such that the total number of parameters is similar to
the other two models. Results shown in Supplementary Table S5

demonstrates that the larger model using convolution layers is
still outperformed by JOIN-GCLA. Thus, it is evident that the
proposed method to fuse multi-modal imaging data via PSG
helps to improve model performance.

TABLE 9 | Ablation study of the attention layer on DTI-fMRI dataset.

JOIN-GCLA Self-attention

Omics Accuracy MCC Accuracy MCC

Model 3 100.0 ± 0.00 1.00 ± 0.00 99.31 ± 0.01 0.80 ± 0.42

Model 4 93.21 ± 0.21 0.91 ± 0.29 98.94 ± 0.02 0.70 ± 0.48

Model 5 89.67 ± 0.30 0.73 ± 0.44 98.46 ± 0.02 0.62 ± 0.49

3.10. Effects of Different Attention Layers
for Fusing Multi-View Data
Section 3.5 demonstrated the importance of using multi-omics
datasets and showed how the attention mechanism improves the
final disease prediction. In this section, this will be compared with
alternative approaches to fuse the representations learnt from
each omics network. One baseline for comparison is to use self-
attention, instead of the customized formulation of the attention
mechanism proposed in Section 2.1.4. Table 9 shows that our
proposed attention layer performs better than self-attention.

3.11. Model Interpretability
The performance of models with graph convolution layers is
highly dependent on the graph used (Parisot et al., 2018; Cosmo
et al., 2020). This warrants the need to analyse the PSG used in
the connectome encoder and POGs used in the omics networks.
Additionally, our proposed method to construct the attention
scores allows for greater interpretability into the models decision
from the weights assigned to the intermediate representations
produced from the omics networks when predicting HC or PD.

3.11.1. Imaging Population Scan Network

Distributions
The number of scans considered in the PSG vary according to the
omics combinations used in the JOIN-GCLA model. As seen in
Figure 2, the PSGs have similar distributions, with most values
being around 2.0 with a smaller peak around 3.0. Thus, they are
not likely to explain the difference in model performances when
the same imaging modalities are used, as shown in Table 4.

3.11.2. Omics Population Graph Distributions
Figure 3 shows the distributions of POGs. These are generated by
taking the lower triangular of the POG (which is symmetric) and
producing kernel density plots for each omics dataset. miRNA
andMet have very high values, indicating thatmost subjects share
very similar data. While sncRNA and RNAseq has a longer left
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FIGURE 2 | Distributions of various PSGs for DTI-fMRI data, used in the connectome encoder.

tail, SNP has a different distribution: most of the data range from
0.2 to 0.4, indicating very little similarity between subjects. When
WGCNA is applied, Met and SNP clearly have very different
distributions from the rest, with a majority of values being very
low (below 0.3). On the other hand, miRNA and sncRNA still
have most of the values above 0.6. RNAseq has many values close
to 0, but also a significant amount of values spread across the
range of 0 and 1.

3.11.3. Attention Weights
JOIN-GCLA provides model interpretability in the form of
attention matrices with shapeN× L(4). In this regard, an existing
method (Kazi et al., 2019a) provides a scalar value for each view.
JOIN-GCLA goes further to show which view is being focused
on when predicting a certain class. Figure 4A shows the attention
matrix for the omics combination SNP-miRNA, which was one of
the omics combinations with high MCC score. SNP has a slightly
higher weight in both the cases when the model predicts HC
or PD. Thus, it could be inferred that the high performance of
SNP-miRNAwas due to the attentionmechanism’s focus on SNP.
Similarly, Figure 4B shows the attentionmatrix for SNP-miRNA-
sncRNA (i.e. sncRNA is added), which had anMCC of 0.9. While
the attention scores when predicting PD (the majority class) are
now equally spread, the attention scores when predicting HC was
heavily weighted toward SNP.

Another set of examples is presented in Figures 4C,D—with
both cases having an MCC of 0.9. Met has the highest weight
when predicting HC, but when miRNA was added, the attention
weights are slightly more distributed between Met and SNP.
Also, SNP has the highest attention score when predicting PD.
It could be inferred from these attention matrices that while SNP
is evidently themost important omics modality when performing

disease prediction, Met contributes to the high performance too
especially when predicting HC.

Overall, it can be seen that when predicting PD (majority
class), the attention scores tend to focus on SNP, but it could still
be equally distributed. However, when predicting HC (minority),
focusing on Met (or SNP, when Met is not present) helps to
improve model performance. These insights, which are more
detailed than (Kazi et al., 2019a), are only possible with the use
of JOIN-GCLA and our proposed attention layer.

4. DISCUSSION

Overall, our results demonstrated that the combination of
connectome encoder, omics networks and the customized
attention layer is essential for JOIN-GCLA to work well
and provide better model interpretability. From the above
experiments, it is evident that our proposed architecture,
JOIN-GCLA, was the best performing model. Past works
have demonstrated that is it not possible to perform disease
classification successfully by solely using DTI data (Prasuhn et al.,
2020). Our results in Table 6 support this finding and we went
further to demonstrate that disease classification can be done well
if imaging and omics datasets are used simultaneously. However,
datasets with both multi-modal imaging and multi-omics data
are typically small. Thus, deep neural network models have to be
small. JOIN-GCLA is made as lean as possible with only 1 graph
convolution layer in the connectome encoder and each omics
network. The number of hidden nodes is kept small as well. In
the case of JOIN-GCLA, the number of parameters, as seen in
Supplementary Table S4, is large in this example as the flattened
correlationmatrix from imaging data is used as the feature vector.
However, feature vectors can be any arbitrary data of interest and
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FIGURE 3 | Distributions of POGs used in omics networks (A) before WGCNA (B) after WGCNA.

thus the number of parameters could be reduced significantly,
especially when dealing with smaller datasets.

It was shown in Table 8 that PSG was essential for
better model performance. While JOIN-GCLA gave the best
performance, there are also other important considerations such
as the scalability of the model. For instance, using convolution
layers instead allows for multiple connectivity matrices to
be combined without a huge increase in the number of
parameters as additional modalities simply increases the number
of input channels. However, this comes with the limitation that
connectivity matrices of the same size have to be used (i.e. same
brain atlas). JOIN-GCLA is also able tomergemultiplemodalities
via PSG, but if the imaging data has to be used as feature
vectors (in the form of vectorised connectivity matrices), the the
number of parameters increases significantly as more modalities
are included, as seen in Supplementary Table S2. Thus, the
model with convolution layer in the connectome encoder is most
suitable for small datasets where overfitting is a concern, while
JOIN-GCLA is the best choice if low-dimensional feature vectors
are used.

We demonstrated the feasibility of incorporating multi-omics
datasets into the model via the use of omics networks. As seen
in Table 3, omics datasets often have a huge number of features,
even more than imaging data. Thus, it is not feasible to use the
entire set of omics features as feature vectors. Instead, the use
of POGs allowed information from multi-omics datasets to be
included into the modeling process. A population graph built
from an omics dataset is used as the input graph for the graph
convolution layer and fusion between the omics data and the
representations of the imaging data learnt by the connectome
encoder (in the form of feature vectors) happens in this graph
convolution layer. Such an approach scales up well with minimal
increase of parameters, as seen in Supplementary Tables S3, S4.
Notably, the best model performances were obtained when 3

multi-omics datasets were used: DNA Methylation, SNP and
sncRNA.

The attention layer performs a key role in combining the
interim predictions from each omics network and producing a
final decision. Besides performing better than baseline attention
methods such as self-attention as seen in Table 9, our proposed
approach ensures that an attention matrix of shape N × L(4) is
generated, providing greater model interpretability as seen from
Figure 4. This has highlighted the relative importance of SNP and
DNA Methylation in distinguishing PD patients from healthy
controls.

These results were only achieved after data augmentation was
introduced, as shown in Table 4. This is largely attributed
to the data imbalance that exists in the PPMI dataset,
with PD scans forming the majority of the data as seen
in Supplementary Table S1. By comparing Table 4 with
Supplementary Table S6, it is possible to observe the effects of
gradually introducing more data augmentation to the DTI-fMRI
dataset. When only 100 samples was added (majority class taking
up 74% of the dataset), model performance did not change
much as compared to the original baseline (with no augmented
data, majority class takes up 93% of the dataset). But when the
imbalance was further reduced by adding 200 samples (reducing
the imbalance to 61%), model performance started to improve,
but still significantly poorer than the performance obtained
when all 339 samples were added to the dataset (resolving
the imbalance, 53.3%). Since the best model performance was
obtained when the data imbalance is resolved, it is evident that
data augmentation is another key aspect needed to perform
disease classification on the PPMI dataset successfully.

We have used the CycleGAN architecture for producing
additional scans to be augmented to the original dataset.
The main motivation of using CycleGAN is to overcome
the limitations of the existing approaches for tackling data
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FIGURE 4 | Attention matrices from JOIN-GCLA for the omics combination of (A) SNP-miRNA, (B) SNP-miRNA-sncRNA, (C) Met-SNP-sncRNA (D)

Met-SNP-miRNA-sncRNA.

imbalance. As seen in Table 4 (without augmentation), class
weighting applied to the loss function did not improve model
performance at all, likely due to the extreme imbalance in
the dataset. Undersampling is not a viable approach when
dealing with small dataset, as demonstrated on an experiment
in Supplementary Table S7 where the DTI dataset was
undersampled—while the imbalance was well addressed (as
seen in Supplementary Table S1), model performance did not
improve significantly. On the other hand, oversampling
on the DTI-fMRI dataset did help to improve model
performance to a level similar to what was obtained from
the CycleGAN-augmented dataset (comparing Table 4 with
Supplementary Table S8).

While both oversampling and CycleGAN generates data
that can be attributed to a specific subject (hence making
it possible to link it to a genetic dataset, unlike synthetic
data generation algorithms such as SMOTE and ADASYN),
oversampling merely duplicates the existing dataset. CycleGAN-
generated data are not just another repeated data sample in
the existing dataset. However, when compared to the results
obtained from oversampling, the marginal benefit introduced by
the use of CycleGAN might not always justify the additional
complexity added. Below, we present details on the data

produced by CycleGAN to propose possible reasons for
these observations.

Examples of the data generated by the CycleGAN architecture
are shown in Supplementary Figure S1. Although generated
scans have low mean squared errors (MSE) (approximately
0.03 when compared to actual functional connectivity matrices
from the same pair ; approximately 0.5 for DTI), they do
not have the same variability. On examining all the other
generated matrices, it is evident that the synthetic connectomes
have very slight differences and seem to capture patterns that
exist across most scans, while missing out on more subtle
variations that exist in functional connectivity matrices. These
variations are visually stark (for fMRI), but it might not have
been captured by the GAN as the overall numerical significance
is not great (since the MSE achieved is rather low already).
This issue is likely to be alleviated with the introduction of
more data (Karras et al., 2020). Additionally, several architecture
changes to the original CycleGAN were attempted to improve
the variability of data generated, including adding Edge-to-edge
(E2E) layers from Kawahara et al. (2017) as the first layer of
the generator and discriminator and reducing the number of
residual blocks (from 9 to 3) and number of filters (from 256
to 32) in the CycleGAN architecture. However, from the results

Frontiers in Neuroscience | www.frontiersin.org 12 May 2022 | Volume 16 | Article 866666

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chan et al. Combining Imaging-Genetics Datasets With GNN

in Supplementary Table S9, the best model was still the original
CycleGAN architecture.

In this study, data augmentation was limited to healthy
controls as the goal was to resolve the data imbalance in the PPMI
dataset. Having demonstrated the feasibility of this approach,
further studies could explore the use of CycleGAN to generate
connectomes for various neurodegenerative disorders. Using
GANs to generate connectome datasets is at a nascent stage:
a recent work used GAN to generate functional connectivity
matrices for schizophrenia and major depressive disorder
patients (Zhao et al., 2020). Our work has extended the
application of GANs on connectome datasets to multi-modal
settings and the results demonstrated that using relatively large
connectome datasets (∼1,000 samples) to train CycleGAN is
still not yet sufficient to significantly outperform oversampling
as rather similar matrices are produced by the GAN. However,
since CycleGAN is capable of learning from unpaired data, this
is not an unsurmontable problem and future studies should
consider using more data when training CycleGAN architectures
to augment multi-modal connectome datasets. If obtaining more
data is not feasible, oversampling presents a limited but effective
approach for data augmentation.

5. CONCLUSION

We have proposed a new architecture, JOIN-GCLA, which
is able to model multi-modal imaging data and multi-omics
datasets simultaneously. Through the experiments, it has been
demonstrated that the best performing data combination utilizes
both multi-modal imaging data (DTI, fMRI) and multi-omics
datasets (SNP, DNA Methylation and sncRNA). While several
combinations of imaging and omics data led to very high model
performance, this must be seen in the light of the small test
dataset size available in the PPMI dataset. Our experiments
on the PPMI dataset showed that JOIN-GCLA can work
well, but this should be further tested on larger datasets that
have both multi-modal imaging data and multi-omics datasets.
Examples of such sources of data would be the Alzheimer’s
Disease Neuroimaging Initiative, UK Biobank and also future
versions of PPMI, which has recently expanded its data collection
with a few thousand more data samples to be expected by
year 2023.

One possible area of future work is to perform decoding.
Given a trained neural network model, it has been demonstrated
that saliency scores can be computed to identify important
features that contributed most to the model’s decision (Gupta
et al., 2021). While such an approach cannot be simply applied
to JOIN-GCLA due to the attention layer, novel methods could
be developed to weigh the saliency scores by the attention scores
for each view. This could be explored as a follow-up work after
this paper.

Another direction for further research on combining
neuroimaging and omics datasets is the use of transformers.
While originally proposed for natural language processing
(Vaswani et al., 2017), it has been demonstrated to work on
images too (Dosovitskiy et al., 2020), motivating recent works on
using transformer-based architectures for multi-modal settings
(Hu and Singh, 2021; Kim et al., 2021). One limitation of such

models is their reliance on pre-training from large datasets
(Dosovitskiy et al., 2020). Modifying transformers to work on
small datasets is still an open area of research (Lee et al., 2021).
This could explain the paucity of works on using transformers
for neuroimaging datasets (especially on connectivity matrices).
Recent works on the use of transformers utilizes raw fMRI signals
(Nguyen et al., 2020; Malkiel et al., 2021). Notably, one of the key
findings in Malkiel et al. (2021) is the need for pre-training for
best model performance. Addressing this issue for connectome
datasets could be possible with the use of larger datasets such as
UK Biobank.

While this paper focuses on PD classification using multi-
modal imaging data (DTI, fMRI) and multi-omics data (miRNA,
DNA methylation, RNAseq, sncRNA, SNP), JOIN-GCLA can be
easily extended to other diseases, omics modalities and imaging
modalities too. For instance, diseases such as ADHD could
benefit from the use of multi-modal imaging and multi-omics
data (Klein et al., 2017) and the problem of limited multi-modal
data could be addressed by using CycleGAN to generate more
data. However, our results suggest that such approaches will need
large amounts of data (more than 1,000 data points) to train the
CycleGAN architecture.

In sum, the JOIN-GCLA architecture makes it possible
to analyse multi-modal imaging data along with multi-
omics datasets. Our proposed architecture alleviates the
issue of high dimensionality of imaging and omics data
by incorporating them in graph convolution layers in the
form of PSG and POG, respectively. This enables multi-scale
analysis, incorporating both macro-scale imaging data with
micro-scale genomics analysis, to be conducted. The greater
interpretability provided by JOIN-GCLA’s attention matrices
gives greater insight into the relative importance of the omics
datasets taken into consideration, potentially revealing more
novel insights for complex neurodegenerative diseases in
future studies.
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