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ABSTRACT. Caveolae are flask-shaped invaginations of the plasma membrane. The BAR domain
proteins form crescent-shaped dimers, and their oligomeric filaments are considered to form spirals at
the necks of invaginations, such as clathrin-coated pits and caveolae. PACSIN2/Syndapin II is one of
the BAR domain-containing proteins, and is localized at the necks of caveolae. PACSIN2 is thought
to function in the scission and stabilization of caveolae, through binding to dynamin-2 and EHD2,
respectively. These two functions are considered to be switched by PACSIN2 phosphorylation by
protein kinase C (PKC) upon hypotonic stress and sheer stress. The phosphorylation decreases the
membrane binding affinity of PACSIN2, leading to its removal from caveolae. The removal of
the putative oligomeric spiral of PACSIN2 from caveolar membrane invaginations could lead to the
deformation of caveolae. Indeed, PACSIN2 removal from caveolae is accompanied by the
recruitment of dynamin-2, suggesting that the removal provides space for the function of dynamin-2.
Otherwise, the removal of PACSIN2 decreases the stability of caveolae, which could result in the
flattening of caveolae. In contrast, an increase in the amount of EHD2 restored caveolar stability.
Therefore, PACSIN2 at caveolae stabilizes caveolae, but its removal by phosphorylation could
induce both caveolar endocytosis and flattening.
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INTRODUCTION

Caveolae are flask-shaped invaginations of
the plasma membrane, with diameters from 50

to 100 nm. Caveolae are present in various cell
types and have been implicated in many cellu-
lar processes, such as endocytosis and signal
transduction.1 Initially, caveolae were thought
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to function as endocytic organelles that inter-
nalize extracellular materials or membrane.
However, caveolae are immobile signaling
platforms anchored to the actin cytoskeleton.1-3

Caveolin, the major structural protein in caveo-
lae, is an evolutionarily conserved integral
membrane protein.4 Caveolae contain many
cellular components, such as sphingolipids,
GM1 gangliosides, cholesterol, caveolin-1–
3,1,4 cavin1–4,1,5,6 protein kinase C (PKC) a,7

EHD2,8,9 the F-actin cross-linking protein fila-
min,10 the promoter of actin-filament elonga-
tion mDia1,11 the Bin/Amphiphysin/Rvs
(BAR) domain-containing proteins (BAR pro-
teins, described below) 12,13 and others. Oligo-
merization of caveolin with cavins promotes
the formation and maintenance of caveolae, by
the generation of caveolar coats.14,15 Caveolar
endocytosis is activated by PKCa,7,16 while
scission from the plasma membrane is thought
to be mediated by the ubiquitously expressed
protein dynamin-2, a mechanochemical
GTPase that oligomerizes at the necks of
caveolae.17

In the resting state, caveolin-1 exhibits slow
turnover in the plasma membrane, suggesting a
tightly packed caveolar structure.18 However,
under hypotonic conditions and during the activa-
tion of kinases such as PKC or the disruption of
the actin cytoskeleton, caveolin-1 becomes rela-
tively more mobile,2,19,20 indicating the dynamic
regulation of caveolar molecules under such con-
ditions. Therefore, it was suggested that caveolae
function as mechanosensors by responding to
membrane tension under regulation of protein
kinases.

When cells are exposed to shear stress, cav-
eolae formation is observed.21,22 Furthermore,
caveolae act as membrane reservoirs in
response to membrane tension under hypotonic
conditions; i.e., they function as a buffer that
unfolds upon membrane tension.19 The unfold-
ing of the concave membrane of caveolae
results in their flattening, which can increase
the cellular surface area. During this process,
the caveolar components, such as caveolin-1
and glycosphingolipids, are redistributed.19

These results indicate that caveolae play an
important role in mechanotransduction,1,23

which might be related to the onset and

progression of vascular proliferative disease.24

Furthermore, caveolae have been proposed to
play crucial physiological roles in tumorigene-
sis, muscular disorders, cardiomyopathy, and
other diseases,25,26 which might be dependent
on the mechanical stress applied to cells.
Hence, it is important to understand the mecha-
nisms underlying the regulation of caveolae.

The BAR proteins involved in caveolae

The BAR domains are evolutionarily con-
served protein domains. The BAR domains
form crescent-shaped homo-dimers, which
sense and/or generate membrane curvature
through binding to the membrane.27-29 BAR
domains have positively charged surfaces,
which are considered to function as templates
for membrane curvature. The BAR domains
polymerize into helical coats or oligomeric spi-
rals, through lateral and tip-to-tip interactions,
to deform the membrane into tubules, and these
properties are thought to be important for the
determination of membrane shape (Fig. 1).27,28

The BAR domain superfamily consists of 3
subfamilies: the BAR domain,30 the F-BAR/
EFC domain,31 and the I-BAR/IMD domain.32

The BAR and F-BAR domain proteins primar-
ily function in membrane invagination, such as
endocytosis, whereas the IMD/I-BAR domain
proteins are involved in the formation of mem-
brane protrusions, such as filopodia.

Caveolin is associated with the F-BAR
domain proteins PACSIN2/Syndapin II and
Nostrin.13,33 The F-BAR domain protein PAC-
SIN2 regulates the morphogenesis and endocy-
tosis of caveolae,12,13,34 through the positively
charged concave surface that binds to mem-
branes.35 The role of Nostrin in caveolar bio-
genesis has not been clarified yet.36

The PACSIN2 binding proteins connect to
actin filaments

Caveolin-1 is tethered to the cortical actin
cytoskeleton via filamin.10,37 However, PAC-
SIN2 and the binding proteins also provide the
connection to actin filaments. The BAR
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domain-containing proteins typically have SH3
domains.38 PACSIN2 has the F-BAR domain
and the SH3 domain (Fig. 1). The C-terminal
SH3 domain of PACSIN2 associates with the
proline-rich domain (PRD) of dynamin-2 and
N-WASP,39 that promotes membrane scission
and activates the Arp2/3 complex-mediated
actin polymerization, respectively.27 Nostrin
binds to N-WASP through its SH3 domain.33

Although PACSIN and Nostrin bind to N-
WASP, the roles of N-WASP and the Arp2/3
complex in caveolar functions remain unclear.
Instead, mDia1 is reported to regulate actin
polymerization in caveolae.11 However, the
binding of mDia1 to PACSIN2 has not been
examined.

Besides the SH3 domain, the Asn-Pro-Phe
(NPF) sequence, in the linker between the F-
BAR and SH3-domains of PACSIN2, binds
to the Eps15 homology domain of the dyna-
min-like EHD2 ATPase.9,12 EHD2 binds to
cavin1 and is localized to the necks of caveo-
lae, where it stabilizes and constrains

caveolae at the plasma membrane.8,9,40

Nucleotide hydrolysis by EHD2 is slower
than that by dynamin 41; thus, EHD2 may
control the slow dynamics of caveolae, which
are considered to be important for the stabili-
zation of caveolae.9 EHD2 exists at stationary
caveolae and dissociates from caveolae after
caveolar endocytosis.40 EHD2 constrains the
lateral movement of caveolae, by linking the
caveolae to actin filaments.40 Consistently,
the depletion of EHD2 results in the mobili-
zation of caveolae.9,40 Therefore, PACSIN2
and the PACSIN2-EHD2 complex play key
roles in stabilizing caveolae, by associating
with actin filaments.

There are several other binding proteins of
PACSIN2, which include endosomal protein
MICAL-L1,42 cation channel TRPV4,43 phos-
phoinositide phosphatase Synaptojanin-1,44 the
Ras/Rac guanine nucleotide exchange factor
Sos,45 and small GTPase Rac1.46 However, the
roles of these proteins in caveolae have been
not well understood.

FIGURE 1. Domain structure of PACSIN2/Syndapin II and its binding proteins. (A) The domains of
PACSIN2 and their binding proteins are illustrated. (B) The putative oligomeric spiral of PACSIN2
F-BAR domain around the membrane tubules. The F-BAR domain is supposed to form filamentous
spiral, which assembles on the surface of membrane tubules such as those observed in the plasma
membrane invaginations such as caveolae.
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Interestingly, the F-BAR domain of PAC-
SIN2 was shown to directly bind to actin fila-
ments on its concave surface, by stabilizing
actin filaments in vitro.47 However, the concave
surface also binds to the membrane for the cav-
eolar localization of PACSIN2. Therefore, the
role of the actin filament binding of PACSIN2
for caveolar dynamics is an issue that remains
to be solved.

Phosphorylation of F-BAR domain
protein PACSIN2 and caveolar dynamics

We identified PKC as the kinase that phos-
phorylates specific sites of PACSIN2.20 Sur-
prisingly, the phosphorylation of PACSIN2 by
PKC is induced by changes in hypotonic stress
and shear stress, which accompany increases in
the membrane tension, as well as by chemicals
that directly activate PKC. The phosphorylation
of PACSIN2 decreased its membrane-binding
and tubulation abilities, which could be attrib-
uted to the repulsion between the negatively
charged, phosphorylated serine 313 by PKCa
and the relatively abundant negatively charged
lipids, such as phosphatidylserine PI(4,5)P2.
PACSIN2 phosphorylation did not affect its
dimerization, auto-inhibition, or dynamin-2
interaction.20

PACSIN2 phosphorylation at serine 313
decreased the lifetime of caveolae,20 which
resulted in decreases in the number and the sta-
bility of caveolae and an increase in the mobil-
ity of the caveolae at the plasma membrane.
These phenomena could be explained by the
removal of PACSIN2 from caveolae, due to its
decreased membrane binding.20 The removal
of PACSIN2 could lead to 2 scenarios, endocy-
tosis and flattening of caveolae, as discussed
below (Fig. 2). However, we currently cannot
distinguish between these 2 events by TIRFM,
because these 2 scenarios are both observed by
the disappearance of caveolae.

If caveolae are flattened, then the disappear-
ance of caveolae observed by TIRFM could be
explained by the dilution of caveolin-1 from
caveolae to the plasma membrane. PACSIN2
regulates the morphology of the necks of cav-
eolae,13 and thus the dissociation of PACSIN2

by phosphorylation could make the caveolae
deformable into flat membrane.

If caveolae are internalized by endocytosis,
then the disappearance of caveolin-1 can be
explained by its uptake into the interior of the
cell, beyond the illumination of TIRFM. The
disappearance of PACSIN2 was followed by
the recruitment of dynamin-2,20 suggesting that
the removal of PACSIN2 provides some spaces
for the association of dynamin for membrane
scission upon endocytosis.20 Independently, the
removal of PACSIN2 alone could be predicted
to be a trigger for the scission from theoretical
approach,48 which have shown that BAR pro-
teins have a scaffolding function, involved in
stabilizing the neck of the invagination and pre-
venting membrane scission.48 Thus, the
removal of BAR domain protein from the neck
of the invagination could induce membrane
destabilization and scission.48

Concluding remarks

Other caveolar proteins, such as cavin1–4,
might be co-regulated with PACSIN2 phos-
phorylation, as cavins bind to and/or recruit
PKCa.49,50 Cavin-1 dissociated from caveolin-
1 upon caveolae flattening.19 Therefore, the
mechanical stress-induced removal of PAC-
SIN2 by PKC-mediated phosphorylation would
cooperatively function with these caveolar
components to promote caveolar endocytosis
and flattening. Biomechanical and theoretical
analyses of the mechanics of caveolar deforma-
tion will facilitate the clarification of the behav-
iors of caveolae upon various stimuli.
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