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Novel robust time series analysis 
for long‑term and short‑term 
prediction
Hiroshi Okamura1*, Yutaka Osada1, Shota Nishijima1 & Shinto Eguchi2

Nonlinear phenomena are universal in ecology. However, their inference and prediction are generally 
difficult because of autocorrelation and outliers. A traditional least squares method for parameter 
estimation is capable of improving short-term prediction by estimating autocorrelation, whereas 
it has weakness to outliers and consequently worse long-term prediction. In contrast, a traditional 
robust regression approach, such as the least absolute deviations method, alleviates the influence 
of outliers and has potentially better long-term prediction, whereas it makes accurately estimating 
autocorrelation difficult and possibly leads to worse short-term prediction. We propose a new robust 
regression approach that estimates autocorrelation accurately and reduces the influence of outliers. 
We then compare the new method with the conventional least squares and least absolute deviations 
methods by using simulated data and real ecological data. Simulations and analysis of real data 
demonstrate that the new method generally has better long-term and short-term prediction ability 
for nonlinear estimation problems using spawner–recruitment data. The new method provides nearly 
unbiased autocorrelation even for highly contaminated simulated data with extreme outliers, whereas 
other methods fail to estimate autocorrelation accurately.

Nonlinear modeling is widely applied to ecological data analysis. The spawner-recruitment (SR) relationship, 
which is also called the stock-recruitment relationship, is fundamental to population dynamics modeling, risk 
assessments in conservation biology, and sustainable use of wildlife1–3. A nonlinear curve is frequently used to 
model SR relationships. However, it is notoriously difficult to estimate SR relationships accurately, especially 
for many fish stocks4,5, given that SR data often have large deviations around the SR curve, including extreme 
outliers, and residuals left over after SR curve fitting are likely to show strong autocorrelation. These outliers and 
autocorrelations make statistical inference difficult and rarely permit accurate estimation of existing SR relation-
ships hidden in the data of a single population.

Meta-analysis of information from multiple independent studies6 is an influential method for overcoming the 
difficulty of finding evidence of density dependence from individual population data. In contrast with individual 
analysis, meta-analysis of SR data elicits firm conclusions and facilitates evidence-based decision making by 
integrating the parameters and/or results obtained by fitting a nonlinear model to time series data on abundance 
and SR relationships7,8. For instance, Brook & Bradshaw (2006) fitted nonlinear models to the abundance time 
series data of 1198 species and integrated the results to detect evidence for density dependence9. Although they 
found that density dependence is a pervasive feature of population dynamics in various species, support for the 
density dependence of fish was generally weaker than those of other taxa (the average relative support for density 
dependence was 74.7%, whereas that of fish was 60.1%, which was the least among all taxa). This lack of power to 
detect density dependence could be caused by excessive noise (i.e., large observation and process errors), outli-
ers, and the complex correlation structure involved in individual SR relationships in fish. The improvement in 
quality of the result from an individual dataset using a robust estimation method against noisy data is therefore 
of crucial importance even in meta-analysis.

Predictive ability based on SR relationships is closely related to sustainable fisheries management. Setting 
proper long-term management objectives is necessary for sustainable use of fish, whereas fishers and fish proces-
sors are usually concerned with short-term prediction of catches for logistics and planning for the next season. 
Balancing the trade-offs between long-term and short-term management objectives will therefore enhance com-
pliance with fisheries regulations, thereby avoiding overfishing and consequently realizing sustainability goals. 
The credibility and benefits of long-term management objectives depend on the accuracy and precision of the 
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parameter estimates of SR relationships, which provide biological reference points based on maximum sustain-
able yield. In contrast, short-term predictive ability is strongly influenced by the magnitude and autocorrelation 
of residuals as well as parameter estimates of the SR relationship. Achieving accurate and precise long-term 
and short-term prediction from noisy SR data contributes substantially to the sustainable use of fish. A robust 
method previously developed for estimating fish recruitment10 cannot handle autocorrelated residuals, and 
subsequent research demonstrated that the method was highly sensitive to small perturbations in the SR data11. 
A regression model that is insensitive to perturbations that deviate from the mean relationship and is sensitive 
to the autocorrelation of residuals must mitigate the trade-offs between long-term and short-term objectives 
for sustainable development.

In this work, we propose a new robust regression approach by extending a least squares (LS) method to 
realize a weighted maximum likelihood method with changeable variance and autocorrelation dependent on 
deviance residuals. The new approach accurately estimates parameters and precisely predicts autocorrelated error 
structures, even for contaminated SR relationship data containing many outliers. The approach is tested using 
simulated SR data having some outliers and autocorrelated error structures. The results are compared with those 
from traditional regression models that use an LS method and a least absolute deviations (LAD) method. Further, 
we apply our robust regression approach to compiled fish spawner-recruitment data from Japan12.

Methods
The data needed for estimating the SR relationship consist of spawning biomass (S) and recruitment (R) observed 
over time. A lognormal distribution is frequently used as the distribution of errors for SR relationships13. We 
therefore assume that the residuals from a regression model having r = log(R) as a response variable and the 
logarithm of the latent SR relationship as the mean will have a normal distribution. In addition, we assume that 
the latent SR relationship is likely to be contaminated by some outliers given that fish populations often suffer 
from nonnegligible contamination, such as sporadic strong cohorts5.

A robust regression approach.  Suppose that the logarithm of recruitment ( rt = log(Rt), (t = 1, . . . ,T) ) 
has the following autocorrelated normal distribution,

where εt is a scaled autoregressive error of order one, that is, 
√
�t(εt − ρ

√

�t−1εt−1) = et with a gaussian noise 
et of mean zero and variance σ 2 , St is the spawning biomass, f (St |θ) is the logarithm of a density-dependent 
population growth model (spawner-recruitment (SR) curve), θ is the parameter (vector) of the SR curve, ρ is the 
autocorrelation, and σ 2 is the base variance of the normal distribution. �t (∈ (0, 1]) is the weight for a datum in 
year t. Rearranging the equation for εt , we have εt ∼ N(ρ

√
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2/�t) (Appendix A). We define �t to be 

related to the magnitude of the residual εt,

where φ (> 0) is the parameter that adjusts the influence of outliers. Given that the base variance σ 2 is divided 
by �t , the variance is inflated when the difference between the datum and the SR curve is large. The model is 
equivalent to the AR(1) model when �t ≡ 1 (i.e., φ = 0 ) for any t. 

√
�t  is interpreted as the probability of the 

datum being generated from an uncontaminated normal distribution. When changing the φ parameter with 
ρ = 0 , the shapes of the probability density function and its derivative are similar to the Tukey’s biweight (also 
called bisquare) function14, which is close to the gaussian function near zero but decays swiftly as the datum 
becomes farther from zero (Fig. 1).

By solving the equation at equilibrium, the mean deviance residual at t = 1 is zero and the variance at t = 1 
is given by var(ε1)=σ 2/
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extreme outlier on autocorrelation and contributes to the restoration of the original autocorrelation.

We need to estimate the parameters σ , ρ , and φ in addition to the SR relationship parameters θ . The parameter 
φ determines the mixing proportion of contamination and governs the predictive ability of the model. We use 
time series cross-validation15, which is also called retrospective forecasting16 (RF), to stably determine the value 
of φ . First we delete the last datum. Then we use the SR relationship estimated from the data excluding the last 
datum to forecast recruitment and calculate its error assuming that the deleted recruitment for the last year is 
true. Next, we delete the two last data, forecast the second-to-last recruitment, and calculate the error assuming 
that the deleted second-to-last year’s recruitment is true. After the procedure is repeated on a rolling basis, the 
φ parameter having the smallest average error is finally selected. The optimum φ is determined by minimizing 
the following RF error:
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This is the geometric mean of predicted errors, which stabilizes the performance of retrospective forecasting. 
rT−(t−1) is the logarithm of observed recruitment in year T − (t − 1) and r̂1:(T−t)

T−(t−1) is the predicted value estimated 
using the data from years 1 to T − t , which is given by

where t = 1, . . . ,P . We adopt P = 10 for stable estimation in this paper, though we commonly take 5 as the 
minimum P17.

All subsequent analyses are performed using R18 and its package TMB19 (Template Model Builder).

Simulation.  We generate the simulated data ( {(Rt , St); t = 1, . . . ,T} ) with some outliers and autocorrelated 
errors and test the performance of our robust SR (RSR) method in comparison with the LS and LAD methods. 
LAD was chosen because it is a typical robust method and is generally superior to the least median squares 
method used in Chen & Paloheimo (1995)11. The average recruitment data are generated from the Hockey–
Stick (HS) SR function12, f (St |θ) = log (amin(St , b)) , where θ = (a, b) = (1.2, 500) . Stochastic normal errors 
are added to the log recruitment data with or without autocorrelation. When there is an autocorrelation in the 
residuals of log recruitment, the autocorrelation is set to ρ = 0.8 . To examine the effect of outliers, we add the 
outliers that occur at the expected frequency of twice per 10 years ( p = 0.2 ) to the residuals of log recruitment. 
The patterns of outlier occurrence are threefold: evenly occurring positive and negative outliers ( q = 0.5 ), all 
positive outliers ( q = 1.0 ), and all negative outliers ( q = 0.0 ) (see Appendix C for the definition of q). We then 
have eight types of simulated data (no outliers, positive and negative outliers, all positive outliers, and all nega-
tive outliers for autocorrelation in the normal residual ρ = 0 and ρ = 0.8 , respectively). The simulations are rep-
licated 1,000 times for each of the eight types. The length of each SR data time series (T) is set to 30 years which 
is typical for SR time series data9,12. The performance of the methods is evaluated by two indicators that represent 
long-term and short-term predictive abilities (R̂0 − R0)/R0 and (R̂T+1 − RT+1)/RT+1 , respectively, where the 
former is the asymptotic maximum recruitment ( R0 = ab for the HS SR function) and the latter is recruitment 
in the ensuing year T + 1 , which is given by RT+1 = exp(f (ST+1|θ)+ ρωT + ηT+1) , where ωT and ηT+1 are 
independent gaussian noises (Appendix C). Note that the true recruitment at T + 1 does not include any outliers. 
The mathematical details of the simulation are given in Appendix C. Autocorrelation is always estimated such 
that ρ is set to zero when an estimate of ρ is equal to or less than zero because a negative autocorrelation is usually 
impractical20. The parameter log(φ) in RSR is chosen from the grid values from −3.0 to 3.0 in increments of 0.5. 
The best φ is a minimizer of the RF error RFR (Eq. 3).

For sensitivity tests, we conduct the following additional simulations: (S1) same as the above base case sce-
nario (S0) except that a = 1.8 ; (S2) same as S0 except that p = 0.1 (the expected frequency of outliers is once 
every 10 years) in place of p = 0.2 ; (S3) same as S0 except that p = 0.3 (the expected frequency of outliers is 
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Figure 1.   The probability density function and its derivatives for various φ parameters.
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three times every 10 years) in place of p = 0.2 ; (S4) same as S0 except that f (St |θ) is the logarithm of the Bev-
erton–Holt function; (S5) same as S0 except that f (St |θ) is the logarithm of the Ricker function; S6) same as S0 
except for the spawner-abundance dependent p, in which the expected frequency of outliers is higher for lower 
spawner abundances than for higher spawner abundances.

Finally, we calculate biological reference points related to maximum sustainable yield (MSY), i.e., fishing 
rate at MSY ( Fmsy ) and spawning biomass at MSY ( Smsy ), for each scenario and evaluate their relative biases. To 
calculate Fmsy and Smsy , we require additional information on survival and growth as well as an assumption about 
population dynamics. For simplicity, we use the delay-difference model as the population dynamics model5. The 
mathematical details are given in Appendix D.

Real data analysis.  Ichinokawa, Okamura & Kurota (2017) fitted the SR curves to fish population data 
from Japan which comprise 26 SR datasets (Appendix E), demonstrating that some populations showed strong 
density dependence but others had weak or low density dependence. We fit the HS SR curves to the same 26 SR 
datasets used in Ichinokawa, Okamura & Kurota (2017). Because Ichinokawa, Okamura & Kurota (2017) used 
LS as the fitting method, we use LS and RSR to compare the density-independent parameter log(â) , standardized 
density-dependent parameter (b̂−min(S))/(max(S)−min(S)) , autocorrelation in the residuals ρ̂ , and predict-
ability R̂FR in the HS SR curves.

Results
Simulation.  When the simulated data are generated without autocorrelation and outliers in the residuals, 
LS performs best because the true and estimation models are then entirely in agreement, and LAD and RSR 
also produce nearly unbiased results with only slightly worse precision (Fig. 2). When there are positive and 
negative outliers in the residuals but no autocorrelation, LAD, LS, and RSR still give nearly unbiased estimates 
for R0 and RT+1 , but the precision of LS worsens in comparison with LAD and RSR. When the outliers are one-
sided (positive alone or negative alone), LS shows biased results for both R0 and RT+1 , whereas LAD and RSR 
still produce nearly unbiased estimates. As a whole, LAD and RSR show very similar results for simulated data 
without autocorrelation.

When the simulated data are generated with autocorrelated residuals and no outliers/two-sided outliers, LS, 
LAD, and RSR produce nearly unbiased estimates with similar accuracy and precision (Fig. 2). LAD provides 
biased results for the scenario with positive outliers alone. LS shows the best performance for scenarios with 
no outliers and balanced outliers but provides biased results for the scenarios with positive or negative outliers 
alone, similar to the results without autocorrelation. RSR provides nearly unbiased results for all scenarios and 
shows the best overall performance, although the precision of R0 estimates for the scenario with negative outliers 
alone shows a small amount of deterioration.

When there is high autocorrelation ( ρ = 0.8 ) in the residuals, the density-dependent parameter b is esti-
mated with almost no bias for all estimation methods and all scenarios, even though the precision of the LAD 
method is inferior to other methods (Fig. 3). All estimation methods provide nearly unbiased estimates about 
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Figure 2.   Relative bias of R0 (the quantity related to the long-term conservation objective) and RT+1 (the 
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density-independent parameter a for the scenarios with no outliers and balanced outliers. However, the LS 
method shows biased estimates for the a parameter in the scenarios with positive or negative outliers alone and 
the LAD and RSR methods provide nearly unbiased a estimates, except that the LAD method produces slightly 
biased and less precise estimates for the scenario with positive outliers alone, whereas the RSR method produces 
slightly biased and less precise estimates for the scenario with negative outliers alone. The estimated ρ param-
eters show a striking contrast among the three estimation methods. Although the LAD and LS methods provide 
autocorrelation estimates close to the true value for the scenario without outliers, they produce substantial 
underestimation of autocorrelation for the scenarios with outliers. In contrast, the RSR method produces nearly 
unbiased autocorrelation estimates for all scenarios, indicating that it results in good performance of the RT+1 
estimation (Fig. 2). When the outliers are two-sided, the autocorrelation tends to be underestimated even when 
using RSR, which is likely because the distribution of outliers is symmetrical, making it difficult to differentiate 
between normal errors and outliers. When there is no autocorrelation ( ρ = 0.0 ) or even moderate autocorrela-
tion ( ρ = 0.4 ), the general tendency of the results is invariant such that LS is sensitive to outliers and only the 
RSR can estimate autocorrelation accurately (Appendix F).

Sensitivity analyses show qualitatively consistent results similar to the base case scenario (Appendix G). 
LAD shows good performance on unbiased estimation of the long-term prediction but generally has worse 
performance on the short-term prediction and less precision for both R0 and RT+1 , particularly when there 
is autocorrelation. LS provides good performance on long-term and short-term prediction when there are no 
one-sided outliers but produces biased estimates when there are one-sided outliers. RSR shows nearly unbiased 
estimates for both long-term and short-term predictions and is generally the best performer. When there are 
both autocorrelation and outliers in the dataset simultaneously, only the RSR is able to estimate the autocorrela-
tion accurately. When the density-independent parameter a is increased, the results hardly change. When the 
expected frequency is once every 10 years ( p = 0.1 ), the precision ameliorates for all methods, but the general 
trends are invariant except for the performance of LAD, which greatly improves even when there is autocor-
relation. When the expected frequency is three times every 10 years ( p = 0.3 ), the precision deteriorates for all 
methods but the general trends are invariant except for the performance of LAD, which slightly worsens when 
there is autocorrelation. In contrast, RSR is insensitive to the change of p. When the SR function is Beverton-Holt 
or Ricker, the general results are similar to those of the base case except that the precision worsens when the SR 
function is Beverton-Holt and there is autocorrelation. When the expected frequency of outliers is higher for 
lower spawner abundances than for higher spawner abundances4, the general trends are still similar, although 
the accuracy and the precision become slightly worse. Again, RSR is insensitive to this change.

Because biological reference points such as Fmsy and Smsy are closely related to the SR parameters a and b 
(Appendix D), LAD and LS having biased SR parameter estimates (Fig. 3) overestimate Fmsy and underestimate 
Smsy when there are positive outliers, and vice versa when there are negative outliers (Appendix H). RSR generally 
produces nearly unbiased Fmsy and Smsy estimates. Although the degree of bias is generally smaller compared 
with SR curve parameters (Fig. 3) probably due to the effects of other parameters, the bias of LS in particular is 
large for scenarios with large uncertainties (S3 and S6).
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Real data analysis.  The average values of the density-independent parameters log(a) for 26 populations are 
1.566 (SD: 2.510) for LS and 1.539 (SD: 2.444) for RSR. The average values of the density-dependent parameters 
(b−min(S))/(max(S)−min(S)) are 0.330 (SD: 0.335) for LS and 0.392 (SD: 0.328) for RSR. The average values 
of the autocorrelation ρ are 0.482 (SD: 0.316) for LS and 0.433 (SD: 0.411) for RSR. The average values of retro-
spective forecasting bias RFR are 0.246 (SD: 0.189) for LS and 0.189 (SD: 0.136) for RSR. Thus, RSR decreased the 
frequency of extreme density-dependent parameter estimates relative to LS (Fig. 4) and improved the predict-
ability in terms of retrospective forecasting. Although the overall change is not so large, the impact of using RSR 
on individual populations can be great. For example, whereas the LS-based SR curve for walleye pollock (Gadus 
chalcogrammus) in the Sea of Japan shows a linear relationship (no density-dependence), the RSR-based SR 
curve shows a break point within the observed spawner abundances (Fig. 4). In contrast, although the LS-based 
SR curve for round herring (Etrumeus teres) in the Tsushima warm current shows a flat relationship (extremely 
strong density-dependence), the RSR-based SR curve also shows a break point within the observed spawner 
abundances (Fig. 4).

The parameters a and b are closely related to Fmsy and Smsy (Appendix D). The estimated a and b 
for walleye pollock are â = 2.38 and (b̂−min(S))/(max(S)−min(S)) = 1.00 for LS and â = 1.93 and 
(b̂−min(S))/(max(S)−min(S)) = 0.88 for RSR, whereas those for round herring are â = 122.2 and 
(b̂−min(S))/(max(S)−min(S)) = 0.003 for LS and â = 50.2 and (b̂−min(S))/(max(S)−min(S)) = 0.364 
for RSR. This suggests that Fmsy would be lower for both species and Smsy would be lower for walleye pollock 
and higher for round herring if RSR is used for SR curve fitting, indicating a substantial change in management 
objectives.

Discussion
The RSR produces nearly unbiased estimates with the SR and autocorrelation parameters and shows the best 
performance in terms of long-term and short-term predictions for the simulated data with autocorrelation 
and outliers in comparison with the LS and LAD methods. Because the SR data are usually autocorrelated and 
generally have many outliers5, an RSR that is robust to outliers and can accurately estimate autocorrelation in 
the residuals would be a welcome development in ecology. This robustness and unbiasedness are caused by the 
new residual error structure for overdispersion and the new handling of autocorrelation (Eq. 2). The expected 
performance of an RSR for the long-term prediction on R0 and the short-term prediction on RT+1 permits us to 
overcome the trade-offs between long-term and short-term ecological objectives. Although LAD generally shows 
good performance for base SR parameter estimation, particularly when the occurrence frequency of outliers 
is 10% (Appendix F), using the RSR instead of LAD even for such cases is advantageous because the RSR can 
predict the probability of outlier occurrence through the � parameter and would be useful in future predictions 
for strategic fish management and conservation planning.

Both LAD and LS overestimate Fmsy and underestimate Smsy when there are positive outliers, while RSR 
provides unbiased Fmsy and Smsy estimates (Appendix H). This means that LAD and LS would tend to overfish 

0

2

4

6

8

00.157.005.052.000.0
Standardized density−dependent parameter (b)

Fr
eq

ue
nc

y Method

LS

RSR

0

500

1000

1500

0 100 200 300
Spawner Biomass

R
ec

ru
itm

en
t

0.25

0.50

0.75

λ

Walleye Pollock in the Sea of Japan

0

1000

2000

3000

4000

5000

0 50 100 150
Spawner Biomass

R
ec

ru
itm

en
t

0.25

0.50

0.75

λ

Round Herring in the Tsushima Warm Current

Figure 4.   Application of the robust SR model to fish population data from Japan. (Top) Estimates of 
(b−min(S))/(max(S)−min(S)) using the LS and RSR methods. (Bottom) Examples of fitted SR curves using 
the LS (black line) and RSR (red line) methods (left, walleye pollock in the Sea of Japan; right, round herring in 
the Tsushima warm current).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11938  | https://doi.org/10.1038/s41598-021-91327-8

www.nature.com/scientificreports/

the stock beyond MSY if Fmsy and/or Smsy are used as management targets. However, when there are negative 
outliers, LS and LAD produce the opposite biases, and would thus produce more conservative management 
targets, which could benefit population sustainability while sacrificing annual available harvest. Additionally, 
RSR appears to produce more variable estimates than the other methods under some scenarios (Appendix H), 
and thus sometimes produces biased estimates for individual simulations, even though the median estimate 
is unbiased. This indicates that RSR may produce biased estimates of long-term management targets in some 
situations, even if it performs better on average and produces better short-term management targets. Thus, it is 
desirable to develop a method to further stabilize the estimates of RSR in the future.

The approach used in this paper is applicable to various robust regression problems, not to mention a linear 
regression with outliers. Although we dealt with just a one-year time lag or autoregressive process of order 1 
in this paper, the RSR method is easily extended to an autoregressive process with higher orders AR(p) using 
∑p

i=1 ρi
√

�t−iεt−i in Eqs. 1 and 2. Loss functions other than least squares and a normal distribution are fre-
quently used for robust regression methods14,21,22. Although we used a normal distribution in this case, we can 
use other probabilistic distributions in our modeling framework. The time series cross-validation or retrospec-
tive forecasting for selecting the optimal φ parameter worked well for our simulation trials and analyses of real 
data. The efficient factor used for selecting the threshold parameter of robust regression in Wang et al. (2018) 
might also be used in our method. Comparisons between our RSR method and traditional robust M regression 
methods such as those of Tukey and Huber14 will be topics of future research.

A state-space model (SSM) is frequently used to model nonlinear population dynamics23–27. Although SSMs 
are very attractive and useful even for robust regressions23, differentiating observation and process errors using 
only a single time series is notoriously difficult, particularly for nonlinear modeling5. Because the length of a time 
series for estimating an SR curve is usually short and is 100 years at most, RSR is advantageous for single species 
analyses. Application of RSR to real data led to a change in estimated density-dependent parameters (Fig. 4) and, 
as a result, the management targets for sustainable use and conservation will also change when the biological 
reference points are used. Given that meta-analysis is a synthesis of multiple independent studies, using a robust 
regression method such as RSR for individual studies contributes to better inference and prediction for meta-
analysis using a global database. However, integrating information from multiple data sources by hierarchical 
modeling can lead to different perspectives compared with the aggregation of independent outputs27. Because 
RSR can be incorporated into the SSM framework, integration of RSR and SSM would therefore be a promising 
approach to realize more stable and accurate analyses.

Robust nonlinear regression analysis is potentially applicable to extensive ecological time series data, includ-
ing not only SR data as in the present work, but also radioisotope contamination data28. Ecological data are often 
simultaneously contaminated by inevitable but obstructive outliers and influenced by autocorrelative phenomena. 
The outliers make long-term and short-term prediction difficult, whereas autocorrelation affects the long-term 
and short-term prediction and may even distort the estimation results of the latent nonlinear structure. Tradi-
tional robust regression approaches alleviate the influence of outliers but make estimation of autocorrelation diffi-
cult. Our RSR reduces the influence of outliers and accurately estimates the innate autocorrelation, thereby greatly 
improving long-term and short-term prediction ability compared with traditional robust regression approaches. 
Accordingly, RSR holds promise for extensive applications and may prove useful for various ecological problems.
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