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ABSTRACT: Lipase catalytic activity is greatly influenced by immobilization on nanoparticles. In this study, lipase from Aspergillus
niger was immobilized on TiO2 nanoparticles with different morphologies: microspheres, nanotubes, and nanosheets. All TiO2
samples were prepared by a hydrothermal method. Lipase/TiO2 nanocomposites were prepared by a physical adsorption method
through hydrophobic interactions. The prepared composites were characterized by Fourier transform infrared spectroscopy (FTIR),
X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM).
The catalytic activity of free and immobilized lipases was tested using sunflower oil in the presence of methanol to produce biodiesel
at 40 °C for 90 min. The lipase immobilized on TiO2 microspheres showed the highest activity compared to the lipase immobilized
on TiO2 nanotubes and nanosheets. To optimize the lipase-to-microsphere ratio, lipase was immobilized on TiO2 microspheres in
different microspheres/lipase, w/w, (S/L) ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25. It was noticed that the hydrolytic activity follows
the order 1:0.25 > 1:0.5 > 1:75 > 1:1. The immobilization yield activities were found to be 113, 123, 125, and 130% for the
microspheres/lipase (S/L) ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25, respectively.

1. INTRODUCTION

Enzymatic catalysts are employed in different industrial
applications, including ester synthesis reactions.1 Enzymatic
catalysts are preferred over chemical catalysts because chemical
catalysts have many drawbacks, such as high energy con-
sumption, low product purity, and generation of wastewater.2

Enzymes play an effective role in industrial biotechnology and
microbiology. Lipase is one of the most important enzymatic
catalysts because it has applications in several areas, such as in
the food industry, wastewater treatment, textiles, leather,
cosmetics, biofuels, emulsifiers, flavors, fragrances, pharmaceut-
icals, and enzymology, as well as in the synthesis of many organic
and lipophilic antioxidants.3,4

Lipase is part of the hydrolases family, which can be defined as
a triacylglycerol acyl hydrolase that acts on carboxylic ester
bonds.5 Lipase can be obtained from plants, animals, and
microorganisms such as Aspergillus niger. Microbial lipase is
more economical, faster, and easily obtained compared to those
obtained from plant and animal cells.6 Microbial lipases are

largely applied in biocatalysis due to their versatility, catalytic
properties, and high stability in the reaction media.4 Lipase
catalyzes various reactions such as hydrolysis, esterification, and
transesterification.7

Transesterification is the reaction between triglycerides and
alcohols to produce fatty acid alkyl esters and glycerol. Short-
chain alcohols like methanol and ethanol produce esters called
biodiesel. Biodiesel is defined as a mixture of fatty acid alkyl
esters.8 Biodiesel is considered an alternative fuel to petroleum
diesel because of its environmental advantages. It decreases
environmental pollution and is renewable and biodegradable;
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moreover, it is a promising alternative due to the increasing
petroleum diesel price, increasing need for energy, and high
biodiesel yield.9 Transesterification is considered as the best
technique for biodiesel yield compared with other techniques,
especially in the presence of catalysts, because they accelerate
the reaction rate and improve the solubility of alcohols in oil as
alcohols are sparingly soluble in oil.10,11 Many catalysts such as
acidic and basic catalysts and enzymes are being employed in
biodiesel production. The enzymatic catalysis by lipase is used in
biodiesel production since it produces biodiesel at low
temperatures in the presence of free fatty acids and water; in
addition, it increases product purity via an eco-friendly
technique.8 Despite all of these advantages of free lipase in
biodiesel production, it could not accomplish the requirements
in industrial biocatalysis, such as long-term storage stability,
preserved activity, and efficient reusability.12 Lipase immobiliza-
tion can overcome these problems and improve stability in
reaction media.13

Immobilization is the process where the enzyme attaches to
the surface of solid supports, leading to the loss of enzyme
mobility and retention of enzymatic activity.7,14−16 Immobiliza-
tion is an important technique to create a stable biocatalyst with
certain features, including high catalytic activity, high enzyme
loading, and easy recovery.14 Moreover, immobilized lipase is
preferred over free lipase because immobilized lipase is more
stable to environmental changes and can be recycled while the
process operates continuously, thereby reducing the production
cost. Also, immobilization enhances the efficiency of lipase by
increasing its purity, activity, specificity, selectivity, and
resistance to inhibitors.7,15

Lipase can be immobilized by different methods, such as
cross-linking, covalent attachment, encapsulation, or physical
adsorption on an inert support.16 The different types of physical
adsorption include ion exchange, hydrophobic adsorption,
immobilized metal affinity chromatography (IMAC) adsorp-
tion, van derWaals, and hydrogen bonding.4,17,18 The successful
immobilization of an enzyme by adsorption on a solid support
can be achieved by the presence of specific functional groups on
the surface of both the support and enzyme, which makes the
interactions sufficiently strong for the support−enzyme binding
(adsorption) to occur.18

The choice of immobilization technique and support is an
important step. The most common and preferred technique in
lipase immobilization is physical adsorption on various supports
via interfacial activation (hydrophobic interaction) because of
the low cost and the ease and simplicity of the technique without
a need to activate the support.1,3 The support should be
chemically, mechanically, and thermally stable; insoluble in the
solution involved in the technique; cheap; and compatible with
the enzyme to be immobilized.8

Recently, great achievements have been noticed at the
synergistic action of biotechnology with nanotechnology by
applying modern nanoparticles as a support in the immobiliza-
tion process. Lipase can be immobilized on different supports
such as graphene oxide (GO), iron oxide (Fe3O4) nanoparticles,
and graphene oxide/iron oxide (GO/Fe3O4) nanocomposites,
silica aerogel, different types of chitosan, hybrid zinc oxide−iron
oxide (ZnOFe) magnetic nanoparticles, polydopamine-coated
iron oxide (Fe3O4_PDA_lipase), flexible nanoporous materials,
Cu3(PO4)2-based inorganic hybrid nanoflower, polyurethane
nanosupports, silica magnetic nanoparticles, and titanate and
TiO2 nanoparticles.

12,19−26 Nanoparticles are considered as an
ideal support in immobilization since they supply better

selectivity along with thermal stability, higher enzymatic activity,
easy recovery and purification, very small size, large surface area-
to-volume ratio, high adsorption ability, and adaptability toward
a wider pH range.10,27 Using nanoparticles reduces the diffusion
hindrance, leading to the availability of high concentrations of
the immobilized biocatalysts compared to the enzymes
immobilized onto larger materials.
Unfortunately, there are some drawbacks of using nano-

particles in enzyme immobilization, including the high cost of
the immobilization process, the limitations of applicability on a
large scale, and the need for separation of reaction media.17,28

TiO2 nanoparticles and also titanate with various morphologies,
especially microspheres, are used in many applications since
they are inexpensive, easy to prepare, nontoxic, and
commercially available.29

The aim of this work is to study the effect of TiO2 with
different morphologies on the catalytic activity of lipase toward
biodiesel production, where no papers are found in the literature
concerning this issue.

2. MATERIALS AND METHODS
2.1. Materials. Sunflower oil and olive oil were purchased

from the local market. Lipases from the fungus A. niger and TiO2
powder were purchased from Loba Chemie, India. Sodium
hydroxide, methanol, ethanol, phenolphthalein, hydrochloric
acid, and phosphoric acid were purchased from EL Nasr
Company, Egypt.

2.2. Synthesis and Characterization of TiO2 Nano-
structures. 2.2.1. Preparation of Nanotubes. The desired
TiO2 and/or titanate nanotubes or nanosheets were prepared by
the conventional eco-friendly hydrothermal method. In the
typical synthesis, 5 g of the as-purchased TiO2 powder was
added to 500 mL of 10 M sodium hydroxide. The mixture was
subjected to vigorous stirring for about 0.5 h. The milky
suspension formed was then transferred to a 1 L Teflon-lined
autoclave and heated in an oven at 160 °C for 4 and 16 h to form
nanosheets and nanotubes, respectively. The obtained powder
was collected and washed several times with distilled water to
obtain pure sodium titanate nanotubes and nanosheets (Na-
TNTs and Na-TNSs, respectively). The obtained sodium
titanates were washed with 0.1 M HCl to form the
corresponding H-titanate nanotubes and nanosheets (H-
TNTs and H-TNSs, respectively). Finally, the powder was
annealed at 500 °C for 4 h.30

2.2.2. Synthesis of Mesoporous TiO2 Microspheres. H-
titanate nanotubes were used as a starting material to prepare
TiO2 microspheres. In brief, 4 g of H-TNTs was added to 650
mL of distilled water; this mixture was mixed for about 0.5 h
using a magnetic stirrer. Then, 10 mL of HF was added to this
suspension, followed by the addition of 19.5 g of Urea. After 1 h
of stirring, this mixture was transferred to a Teflon-lined stainless
steel autoclave of 0.5 L capacity and subsequently placed in an
oven for 12 h at 180 °C. The formed powder was washed with
distilled water and then dried at 80 °C for 2 h.31

2.3. Immobilization of Lipase. First, different nano-
composites were prepared using a 1:1 ratio (w/w) of TiO2
nanostructures (nanotubes, nanosheets, and microspheres) to
immobilize lipase. Nanotubes with lipase (T-LIP), nanosheets
with lipase (Sh-LIP), and microspheres with lipase (S-LIP) were
prepared by physical adsorption at a 1:1 ratio (w/w). Second,
nanocomposites of different microspheres/lipase with different
ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25 (w/w) were prepared. In a
typical synthesis, 0.5 mL of pure lipase suspension (0.005 g of
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lipase in 5 mL of water) was added to a 0.5 mL (T, Sh, and S)
suspension (0.005 g of NPs in 5 mL of water). The pH of the
mixture was adjusted to 7−8 using phosphate buffer.32−35 The
suspension was subjected to sonication for 30 min at 30 °C. The
mixture was then filtered using filter paper, washed several times
with distilled water, and finally left to dry at 40 °C for 48 h. All
steps are presented in Figure 1.
2.4. Hydrolytic Activity Assay and Immobilization

Yield (IY%). Various lipase suspension samples (free lipase and
different S-LIPs) (1 mL) were incubated separately with a
reaction mixture formed from 1 mL of 0.1 M Tris-HCl buffer
(pH 8.0), 2.5 mL of deionized water, and 3 mL of olive oil at 30
°C. After 30 min, 3 mL of 95% ethanol was added to stop the
reaction, and each sample solution was transferred to a 50 mL
Erlenmeyer flask. The liberated fatty acids were titrated against
0.1MNaOH using phenolphthalein as an indicator, which turns
pink at the endpoint. Both test and blank were employed. The
same technique was applied separately for each concentration of
immobilized lipases (S-LIPs). Enzyme activity was expressed as
units per mL enzyme.20

The immobilization yield activity was calculated using the
following equation36,37

immobilization yield activity (IY , %)

(activity of immobilized lipase/activity of free lipase)

100

=

×

2.5. Transesterification Reaction. Transesterification
reactions were carried out in 100 mL flasks on a shaking plate
at 120 rpm at 40 °C. Five milligrams of each sample (free lipase,

T, Sh, S, and different nanocomposites) was added separately to
the reaction mixture including 3 mL of sunflower oil, 1.5 mL of
distilled water, and 250 μL of methanol. After half-time of the
reaction, another 250 μL of methanol was added; alcohol was
added in this way to avoid loss of lipase activity by excess alcohol.
By the end of the second addition, the molar ratio of methanol/
oil reached. The formed biodiesel samples were collected after
90 min and were analyzed by GC/MS.38 All reaction steps are
illustrated in Figure 2.

2.6. Characterization. 2.6.1. FAME Analysis. The obtained
biodiesel was analyzed by gas chromatography using Agilent GC
(7890A), equipped with a mass spectrometer 5975C. The initial
oven temperature at the start was 50 °C and was maintained at
this temperature for 0 min. The second temperature was 210 °C,
where the temperature was increased from 50 to 210 °C at a rate
of 10 °C/min. The temperature was maintained at 210 °C for 13
min and then increased to 230 °C at 5 °C/min and held for 15
min. GC−MS was set to electron ionization mode and was
adjusted to operate with 70 eV.39,40

2.6.2. Characterization of Materials. HRTEM micrographs
were obtained from a JEOL-JEM 2100 (Japan) at an
acceleration voltage of 200 kV. XRD patterns were recorded
on a PANalytical (Empyrean) X-ray diffractometer at a scan
range of 5−80° and scan step of 0.02°. Fourier transform
infrared spectroscopy (FTIR, Bruker Vertex 70) was used to
examine the chemical bond vibrations of samples. Field-
emission scanning electron microscopy (FESEM), elemental
mapping, and energy-dispersive X-ray spectroscopy (EDXS)
were performed (Carl Zeiss, Germany).

Figure 1. Preparation steps of immobilized lipase.

Figure 2. Transesterification steps of sunflower to biodiesel.
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3. RESULTS AND DISCUSSION
3.1. Characterization of Free and Immobilized Lipase.

Figure 3 displays the FTIR spectra of the prepared titania, free

lipase, and prepared nanocomposites. The spectra of the
prepared nanoparticles exhibit peaks at ∼3400 and 1620 cm−1

indicating the presence of a OH group. This may be due to the
presence of large amount of water and hydroxyl groups in
samples. The peaks located at 1620 cm−1 indicate the presence
of physically adsorbed water molecules H−O−H, while the
broad peaks positioned at 3400 cm−1 indicate O−H stretching
vibrations.41 Free lipase displayed certain distinguishing peaks at
1660 and 1541 cm−1, representing the amide bands I and II,
respectively.42 Additionally, lipase displayed main peaks at
3420−3150 cm−1 (−OH stretching vibrations and −NH
stretching vibrations), 2924 cm−1 (C−H stretching vibrations),
1652 cm−1 (N−H bending vibrations), and 1080 cm−1 (C−O
bond stretching vibrations). The occurrence of the band at 1056
cm−1 may be due to C−N and/or C−O stretching. Almost all
peaks of lipase were found in the corresponding composites; this
confirms the successful loading of lipase over different
morphologies of titania.
Figure 4a−f shows the HRTEM images of lipase composites

with TiO2 nanotubes, nanosheets, and microspheres. The
obtained images confirm the successful preparation of the
desired composites. As can be seen in Figure 4a,b, the nanotubes
are randomly distributed over the lipase layers, while Figure 4c,d
shows that the TiO2 nanosheets are stacked to the lipase surface.
On the other hand, the images of lipase-microspheres are
illustrated in Figures 4e,f and 5. The results revealed that the
microspheres are composed of small TiO2 nanoparticles, which
aggregate to form the desired microspheres. After mixing with
lipase of different ratios, the small nanoparticles tend to
aggregate on the lipase layers. Figure 6 shows the FESEM
micrographs of lipase/microsphere composite, in addition to the
images of elemental mapping of this composite. The images
confirm the successful preparation of the desired composite,
where the lipase layers can be seen on the surfaces of
microspheres brighter than the microsphere surface. The inset
in Figure 6 is grouped images with changed brightness degree to
differentiate between the microspheres and lipase layers, where
the dark is titania and the light parts are lipase layers. This was
also confirmed by the elemental mapping results, where the C

atoms (represents lipase) are uniformly distributed over TiO2
microspheres.

3.2. Immobilization Mechanism and Interfacial Acti-
vation. Lipase was immobilized over TiO2 by an adsorption
method. The adsorption method is subclassified into different
types: ion exchange, hydrophobic adsorption, immobilized
metal affinity chromatography (IMAC) adsorption, van der
Waals, and hydrogen bonding.4,17 Since TiO2 is hydrophobic in
nature, the expected mechanism of immobilization is hydro-
phobic interaction. It is worth mentioning that adsorption
methods have many advantages compared to other methods:
there is no significant change in the lipase structural
configuration, in addition to its simplicity and low cost.4 Lipases
are complex and special enzymes and have two different
conformations: a closed form, in which the active center is
hidden from the medium by a polypeptide chain called a lid, and
an open form, in which the lid moves and exposes the active
center of lipase to the medium.17,43,44 This open form shows a
very large hydrophobic pocket exposed to the medium, which is
the active form; it is formed from the hydrophobic groups in the
lid internal face and the hydrophobic residues in the active
center of lipase; hence, it was found that exposure of this
hydrophobic pocket to the hydrophobic medium is highly
favorable.45,46 Consequently, lipase shows a peculiar mechanism
of action called interfacial activation when attached to a
hydrophobic support where the active center of lipase is
exposed outside the lid to link to the substrate (oil drops), which
enhances the catalytic activity of lipase.43,44,47 As discussed in
the activity assay part, the immobilization of lipase in different
ratios over TiO2 microspheres greatly enhanced the catalytic
activity relative to the free enzyme activity, where the samples
showed activities of 130, 125, 123, and 113% for ratios of 1:0.25,
1:0.5, 1:0.75, and 1:1, respectively. The results revealed that as
the enzyme concentration increases, the catalytic activity
decreases; this may be attributed to the enzyme molecule−
enzyme molecule interaction at higher concentrations,36,48−50

since high lipase concentration results in lipase−lipase dimer
formation through certain interactions between the open forms
of the two lipasemolecules, and these aggregates differ in activity
and stability compared to the monomeric enzymes, as shown in
Figure 7.

3.3. Hydrolytic Activity Assay and Immobilization
Yield (IY, %). In this study, the hydrolytic activity of S-LIP at a
ratio of 1:0.25 (w/w) is higher than those at ratios of 1:0.5,
1:0.75, and 1:1 (w/w) because high enzyme concentrations lead
to enzyme−enzyme interactions between the open forms of
enzyme molecules, which affects the enzyme activity. Therefore,
as the enzyme concentration increases, the enzyme activity
decreases. Immobilization yield activity of S-LIP were 113, 123,
125, and 130% for ratios of 1:1, 1:0.75, 1:0.5, and 1:0.25,
respectively. In certain conditions, IY% can be higher than,
which explains the enzyme hyperactivation phenomenon as it
occurs in lipase, especially when lipase comes in contact with
hydrophobic supports via interfacial activation.37

3.4. Biodiesel Yield and Transesterification Kinetics.
The effects of TiO2 morphology and immobilization w/w ratio
on the biodiesel yield were evaluated using sunflower oil as a
substrate at a reaction temperature of 40 °C for 90 min using a
methanol-to-oil molar ratio of 6:1 because it was noticed that a
high methanol-to-oil molar ratio improves the reaction between
methanol and triglyceride, which shifts the reaction forward to
completion and avoids a reversible reaction; hence, it produces a

Figure 3. FTIR of lipase, TiO2, and their nanocomposites (L-T, L-Sh,
L-S).
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higher biodiesel yield in a shorter time.51 The yield was
calculated using the following equation52−54

biodiesel yield (%)

(mass of biodiesel obtained/mass of oil used) 100= ×

The results revealed that when comparing the biodiesel yield of
lipase immobilized over different morphologies of TiO2, the
highest yield was achieved using lipase immobilized over

microspheres. Therefore, the sample S-LIP achieved a biodiesel
yield of 65%, and the samples T-LIP and Sh-LIP achieved 46 and
60% yields, respectively (Figure 8). Additionally, S-LIP of
different ratios of 1:0.75, 1:0.5, and 1:0.25 exhibited biodiesel
yields of 79, 76, and 80%, respectively (Figure 9). The results
revealed that the sample with a microsphere-to-lipase ratio of
1:0.25 achieved the highest biodiesel yield among all materials;
this means that only 25% of lipase can be used to achieve a
higher percentage than pure lipase. Using these microspheres as

Figure 4. HRTEM images of (a, b) T-LIP, (c, d) Sh-LIP, and (e, f) S-LIP nanocomposites.
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a support for lipase suggests a perfect feature for controlling the

key factors that regulate the biocatalyst efficacy. Examples of the

controlled key factors are surface area, enzyme effectiveness, and

mass transfer resistance.55,56

Lipases are employed as catalysts in the transesterification
reaction to produce biodiesel. Lipase-mediated transesterifica-
tion of oils in the presence of alcohols results in the formation of
long-chain fatty acid methyl esters (FAMEs) called biodiesel.
The transesterification of oil to produce FAMEs is a kinetically

Figure 5. HRTEM images of (a, b) 1S:0.75lip, (c, d) 1S:0.5lip, and (e, f) 1S:0.25lip nanocomposites.
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controlled reaction where the transient yields of FAMEs depend
on the catalyst (lipase).57 Lipase specificity depends on the
different types and lengths of fatty acids of triacylglycerol
molecules (acyl donor) and the length of alcohol (acyl

acceptor).58 Lipases should be nonstereospecific to convert all
tri-, di-, and monoacylglycerols to the corresponding monoalkyl
esters (biodiesel).59 In kinetically controlled transesterification,
the triacylglycerol substrate (acyl donor) reacts with the serine

Figure 6. FESEM images and elemental mapping of lipase/microsphere composite.
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residue of the lipase catalytic triad to form an acyl−enzyme
intermediate, which then reacts with the other substrate (acyl
acceptor) to form the desired acylated product.58,60,61 It was
noticed that using triacylglycerol as an acyl donor has a positive
effect, which accelerates the transesterification rate. Several
approaches were attempted to improve the transesterification of
vegetable oils,62 wherever the transesterification reaction took
place in two steps. In the first step, triglycerides are hydrolyzed

to free fatty acids, and in the second step, the produced free fatty
acids are esterified to fatty acid methyl esters. In this study, the
enzymatic kinetic models of oil hydrolysis and FFA esterification
are combined together. These results are in agreement with
other previously published studies.63,64 Lipases also catalyze the
formation of esters from glycerol and long-chain fatty acids.65

They include several bioconversion reactions such as interester-
ification, esterification, hydrolysis, alcoholysis, aminolysis, and
acidolysis.66

Glycerol is the main byproduct in transesterification reaction,
which constrains lipase catalytic effect. It adsorbs onto lipase
immobilization supports, which leads to a decrease in lipase
activity and process efficiency.67

Glycerol forms a hydrophilic layer on the surface of the
biocatalyst, which prevents the accessibility of immobilized
lipase to hydrophobic substrates (such as residual triglyceride,
diglycerides, andmonoglycerides). Moreover, unreacted alcohol
leaves the reaction mixtures and accumulates on the glycerol
layer and further covers the immobilized lipase surface, leading
to lipase deactivation because of the local alcohol concen-
tration.67,68

Various methods have been applied to solve these problems,
such as elimination of glycerol by dialysis or extraction using a
polar solvent or adding organic solvents (e.g., n-hexane or tert-
butanol) to decrease the viscosity of the reaction mixture and
make it more homogeneous, or alternatively using a highly
hydrophobic support that prevents glycerol adsorption.69,70 It
was found that the hydrophobicity of the support avoids
clogging of the biocatalyst by glycerol formation. In this study,
the support (TiO2) is hydrophobic, which hinders glycerol
adsorption on lipase and enhances the reversible immobilization
of lipase by interfacial activation (hydrophobic interactions).68

4. CONCLUSIONS
Lipase was immobilized on different morphologies of TiO2
nanoparticles by a physical adsorption method. The free lipase
and their titanate nanocomposites accomplish high biodiesel
yield. It was noticed that the lipase/titanate microsphere
nanocomposite produces the highest biodiesel yield, and a low
concentration of immobilized lipase on titanate microsphere
(0.25:1) approximately produced the same biodiesel yield using
free lipase. Consequently, a low concentration of immobilized
lipase is used instead of free lipase leading to cost-effective
results.
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