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The emerging K2NiF4-type oxyhydrides with unique hydride ions (H−) and O2-

coexisting in the anion sublattice offer superior functionalities for numerous

applications. However, the exploration and innovations of the oxyhydrides are

challenged by their rarity as a limited number of compounds reported in

experiments, owing to the stringent laboratory conditions. Herein, we

employed a suite of computations involving ab initio methods, informatics

and machine learning to investigate the stability relationship of the K2NiF4-type

oxyhydrides. The comprehensive stability map of the oxyhydrides chemical

space was constructed to identify 76 new compounds with good

thermodynamic stabilities using the high-throughput computations. Based

on the established database, we reveal geometric constraints and

electronegativities of cationic elements as significant factors governing the

oxyhydrides stabilities via informatics tools. Besides fixed stoichiometry

compounds, mixed-cation oxyhydrides can provide promising properties

due to the enhancement of compositional tunability. However, the

exploration of the mixed compounds is hindered by their huge quantity and

the rarity of stable oxyhydrides. Therefore, we propose a two-step machine

learning workflow consisting of a simple transfer learning to discover

114 formable oxyhydrides from thousands of unknown mixed compositions.

The predicted high H− conductivities of the representative oxyhydrides indicate

their suitability as energy conversion materials. Our study provides an insight

into the oxyhydrides chemistry which is applicable to other mixed-anion

systems, and demonstrates an efficient computational paradigm for other

materials design applications, which are challenged by the unavailable and

highly unbalanced materials database.
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1 Introduction

Mixed-anion compounds beyond homoanionic materials

impart intriguing properties by the virtual of the anionic

diversity in ionic radius, electronegativities and polarizability

(Kageyama et al., 2018; Kobayashi et al., 2018; Zapp et al., 2021;

Maeda et al., 2022). In particular, oxyhydrides with the

coexistence O2- and H− in the anion sublattice offer a superior

functionality for materials design, as exemplified in electrolytes

(Kobayashi et al., 2016; Takeiri et al., 2019; Matsui et al., 2020;

Nawaz et al., 2020; Takeiri et al., 2022), catalysts (Kobayashi et al.,

2017) and precursors for topochemical reaction (Masuda et al.,

2015; Yajima et al., 2015; Mikita et al., 2016). The lightest mass,

large polarizability and high redox potential (-2.3 V) of hydride

ions enable the oxyhydrides as novel energy storage and

conversion materials (Kobayashi et al., 2016; Liu et al., 2019;

Takeiri et al., 2019; Matsui et al., 2020; Nawaz et al., 2020; Lavén

et al., 2021; Maeda et al., 2022; Takeiri et al., 2022), and the

complex interplay between H− with unique electronic

configurations and O2- qualifies the oxyhydrides as magnetic

devices (Hayward et al., 2002; Bridges et al., 2005; Yajima et al.,

2022). Thanks to the unique characteristics of hydride ions, the

discovery of oxyhydrides standing for the frontier of chemistry

will open an exciting chemical space serving various applications.

In contrast to massive single-anion compounds, the stable

oxyhydrides necessitate robust structural frameworks to

accommodate distinctive H− and O2-, resulting in the scarcity

of the materials (Yamaguchi, 2016; Bai et al., 2018; Kageyama

et al., 2018; Kobayashi et al., 2018). Recently, a series of

oxyhydrides in the K2NiF4-type structure with an A2BH1+xO3-

x (x = 0, 1, 2) formula were synthesized in experiments and drew a

broad interest with promising properties (Figure 1A) (Kobayashi

et al., 2016; Fjellvåg et al., 2019; Takeiri et al., 2019; Matsui et al.,

2020; Nawaz et al., 2020; Takeiri et al., 2022). The K2NiF4-type

structure belongs to a member of Ruddlesden-Popper family

consisting of a rock salt and perovskite layer stacked along the c

direction (Figure 1A) (Kobayashi et al., 2018). A breakthrough

study successfully utilized La2LiHO3 as solid-state electrolytes

with hydride ions as charge carriers, and demonstrated the

exceptionally high H− conductivities in its A-mixed

LaSrLiH2O2 analogs as 0.12 mS/cm at 573 K (Kobayashi et al.,

2016). In addition to ionic conductors, Hayward et al. discovered

La2CoH0.7O3 as magnetic devices arising from its anionic

ordering (Hayward et al., 2002; Bridges et al., 2005). Thus, a

perovskites-related structural framework provides a tunable

sublattice to stabilize the oxyhydrides with excellent

functionalities (Bai et al., 2018).

Despite of the rigid framework and attractive properties, the

innovations and developments of the K2NiF4-type oxyhydrides

are still in their infancy as only tens of materials (<20) reported in
laboratories (Takeiri et al., 2022). The rarity of oxyhydrides is

aggravated by the stringent experimental conditions (Tassel et al.,

2016; Iwasaki et al., 2018; Kageyama et al., 2018). While the

reducing nature of H− demands the strict air/water-free

FIGURE 1
(A) Crystal structure of the A2BH1+xO3-x (x = 0, 1, 2) oxyhydrides in the K2NiF4-type framework. (B) Computational workflow to study the
chemistry of the oxyhydrides.
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environments (Kageyama et al., 2018), the versatility of anion

sublattice to adopt distinctive ions consequently requests the

high temperature and pressure conditions (Tassel et al., 2016;

Iwasaki et al., 2018). The paucity of the oxyhydrides hinders the

progression of applications, and therefore highlights the necessity

of expanding their chemistry with high efficiency. High-

throughput density functional theory (HT-DFT) computations

are demonstrated as efficient tools to explore the uncharted

chemical space (Emery et al., 2016; Sun et al., 2019; He et al.,

2020; Shen et al., 2021; Wang et al., 2021), helping to guide the

laboratory synthesis. In light of the stabilities data generated by

the HT-DFT, the stability trend as a function of compound

chemistry and their physical origin can be uncovered via the

informatics tools (Sun et al., 2019; Ouyang et al., 2021).

Apart from the unmixed crystals (e.g., La2LiHO3), mixed-

cation compounds (e.g., LaSrLiH2O2) constitute a large

portion of compositional space and offer a new

dimensionality for targeted properties (Kobayashi et al.,

2016; Ye et al., 2018; Matsui et al., 2020). The highest

conductivity of a series of the oxyhydrides can be achieved

in the A-mixed compounds LaSrLiH2O2 with 0.21 mS/cm at

590 K (Kobayashi et al., 2016). However, the survey of the

mixed materials is challenged by an enormous quantity of

their configurations, and therefore calls for more robust

search methods such as machine learning (ML) algorithm

(Ye et al., 2018; Chenebuah et al., 2021; Talapatra et al., 2021;

Tao et al., 2021). While using the ML model to survey

materials with promising properties can be extremely

powerful, a key roadblock in our task and many similar

studies (Cubuk et al., 2019; Jha et al., 2019; Hashimoto

et al., 2020; Chen and Ong, 2021; Hanaoka, 2022) to

utilize ML approach often points to the unavailability of

the database due to their huge quantity. Even though the

HT-DFT can be applied to generate the small size database by

randomly selecting compounds, the paucity of stable-labeled

compounds may disable its usability owing to the highly

unbalanced data distribution, which calls for an optimized

method that creates the valid database. Since mixed materials

share similarity with unmixed compounds in many aspects, it

is reasonable to transfer the stability rules learned from the

calculated unmixed compounds to preliminarily screen the

mixed compounds. Then, the shortlist mixed compounds

with high possibility to be stable can be accurately

calculated to generate the valid database with a reasonable

data distribution for the further ML survey.

In this study, we employed a suite of materials design

tools involving HT-DFT, informatics and the ML algorithm

to discover and explain the stability relationship of the

K2NiF4-type oxyhydrides (Figure 1B). First, we

investigated the stability landscape of the unmixed

A2BH1+xO3-x oxyhydrides covering 1856 compounds by

HT-DFT computations, and identified hundreds of new

meta/stable compounds. Then, the genuine materials

database inspired us to reveal geometric constraints and

electronegativities of cationic elements as significant

factors governing the oxyhydrides stabilities via

informatics tools. Finally, the mixed-cation oxyhydrides

were explored by the two-step ML screening, consisting of

a simple transfer learning trained by the unmixed compounds

to generate reasonable database and a sequential voting

classifier survey. Then, the high hydride conductivities of

the selected mixed oxyhydrides indicate their promising

applications as energy conversion materials. Our study

enhances the understanding of the oxyhydrides chemistry

applicable to other mixed-anion systems, and formulates the

simple and effective computational workflow for other

materials design applications, where a large volume of data

is unavailable and the data distribution is highly unbalanced.

2 Methods

2.1 First principles calculations

All density functional theory (DFT) calculations were

performed utilizing the Vienna Ab initio Simulation Package

(VASP) (Kresse and Furthmüller, 1996) with the projector

augmented-wave (PAW) (Blöchl, 1994) approach and the

Perdew–Burke–Ernzerhof (PBE) generalized-gradient

approximation (GGA) functional (Perdew et al., 1996). The

parameters used in spin-polarized calculations were consistent

with the Materials Project (Jain et al., 2011), ensuring the total

energies converged to 1 meV per atom. The reciprocal k-mesh

density was set as 200 per number of atoms to balance the

computational cost and accuracy. The valence states of hydrogen

in materials were investigated by the Bader (Henkelman et al.,

2006; Tang et al., 2009) and Mulliken population analysis

implemented in the LOBSTER program (Maintz et al., 2016;

Nelson et al., 2020). With reference to the Bader charge of H− in

synthesized La2LiHO3 as -0.64 e− (Bai et al., 2018), we relax the

criterion of the hydrogen Bader charge < -0.5 e− to ensure the

valence states of H− in all compounds.

Ab initio molecular dynamics (AIMD) simulations were

performed in the representative A-mixed oxyhydrides to

investigate H− conduction. A Γ-centered 1 × 1 × 1 k-point

mesh and a time step of 2 fs in NVT ensemble using Nose-

Hoover thermostat (Nosé, 1984; Hoover, 1985) were adopted in

nonspin-polarized AIMD simulations. Relaxed structures were

assigned an initial temperature of 100 K in line with the

Boltzmann distribution, and then heated to multiple target

temperatures by velocity scaling during 2 ps. The total time of

AIMD simulations was at least 50 ps until the diffusivity achieved

converged (He et al., 2018). Diffusivities, activation energies and

ionic conductivities of hydride ions in the oxyhydrides were

obtained based on the established methods (Mo et al., 2011; Bai

et al., 2018; He et al., 2018).
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2.2 High-throughput computations for the
oxyhydrides

All calculations for the oxyhydrides were based on supercells

with 3 × 3 × 1unit cells and 18 formula units of A2BH1+xO3-x (x =

0, 1, 2). An orthorhombic unit cell of La2LiHO3 was used as a

prototype structure for A2BHO3, while a tetragonal unit cell of

Sr2LiH3O served for A2BH2O2 and A2BH3O compositions

following experimental characterizations (Kobayashi et al.,

2016). Possible cationic configurations of A2BH1+xO3-x were

prepared by enumerating elements from the periodic table

excluding H, O, S, Se, Te, F, Cl, Br, I, radioactive and noble

gas elements. In terms of the common oxidation states for

constituting elements (Talapatra et al., 2021), 1856 charge-

balanced compounds were selected to be fully optimized via

DFT computations. Considering the site selectivity of anions in

oxyhydrides (Figure S1 in Supplementary Material) (Kobayashi

et al., 2016; Bai et al., 2018), two configurations with the

preference of H− over apical and equatorial sites were

constructed for each compound, respectively. Thermodynamic

stability of the material with the lowest energy was evaluated by

the energy above the hull ΔEhull (Ong et al., 2008) with respect to

competing phases in Materials Project containing

144595 available compounds (Jain et al., 2013). A-mixed

A1A2BH2O2 compounds with cation mixing were calculated

based on the structural model of LaSrLiH2O2 adopting the La/

Sr order with the lowest energies obtained as previous studies

(Bai et al., 2018).

2.3 Machine learning setup

2.3.1 General work flow
The mixed-cation oxyhydrides were explored by the two-step

ML screening. The first ML model was trained and optimized

based on the unmixed oxyhydrides to identify compounds with a

threshold of ΔEhull as 100 meV/atom. Then the trained

classification model was transferred to search the A-mixed

A1A2BH2O2 oxyhydrides, and the mixed compounds

predicted to be meta/stable with the possibility >50% were

selected and calculated by DFT. The new model was trained

and fully optimized based on the newly calculated mixed

materials to screen the unstable-labeled materials identified by

the initial ML model to retrieve formable compounds for the

accurate DFT calculations. The transfer learning in our study

refers to transferring the stability rules learned by the unmixed

compounds to classify and label the similar A-mixed

oxyhydrides, which corresponds to the first round ML

training and screening. Since the first- and second-ML models

were trained based on the different database, their

hyperparameters were fully optimized. All ML computations

were performed on the Intel Xeon Platinum 8124M CPU with

18 × 2 cores.

2.3.2 Features generation
The permutation-based importance of 25 features (Table

S1 in supplementary material) consisting of 20 elemental

properties and five structural/compositional descriptors were

evaluated by the random forest algorithm (Breiman, 2001)

upon classifying oxyhydrides stabilities. Those empirically

considered descriptors are commonly used in other studies to

predict unmixed compounds’ stabilities and to analyze stability

relationship (Balachandran et al., 2018; Bartel et al., 2019;

Chenebuah et al., 2021). The tolerance factor tbv (Matsui

et al., 2020) that measures the degree of geometric mismatch

in the layered-perovskite (K2NiF4-type) structure is defined as:

tbv � dA−X
�

2
√

dB−X

where dA-X or dB-X refers to the bond length between anions X

and cation A or B, respectively. The dA-X and dB-X were estimated

based on the bond valence theory as previous studies (Zhang

et al., 2007; Balachandran et al., 2018). The permutation-based

feature importance (König et al., 2021) used in calculations can

reduce the bias from high cardinality and correlated features,

ensuring the accuracy of our analysis.

Due to the complexity of the mixed-cation oxyhydrides,

we constructed a dataset of 70 descriptors (Table S2) by

applying mathematical operations (e.g., subtract, average,

standard deviation) to the original descriptors to identify

the stable materials. In order to use the ML model trained by

the unmixed compounds to screen the mixed compounds, the

feature dimension of the mixed compounds was kept as the

unmixed ones. The A-site elemental properties (fA) were

estimated by the arithmetic mean of the two mixed ions

(i.e., fA = (fA1 + fA2)/2) following previous studies (Bartel

et al., 2019; Chenebuah et al., 2021; Liu et al., 2022).

2.3.3 Models and features selection
Seven algorithms, i.e., the voting classifier (Kumari et al.,

2021) (Note S1), the extra trees classifier (Geurts et al., 2006), the

random forest classifier (RFC) (Breiman, 2001), the support

vector classifier (SVC) (Shi et al., 2018), the XGBoost (Chen

et al., 2015), the gradient boosting classifier (Friedman, 2001) and

the decision tree classifier were trained based on the unmixed

oxyhydrides to differentiate compounds with a threshold of

ΔEhull as 100 meV/atom. While multiple metrics (e.g.,

accuracy and f1 score defined in Note S2) can evaluate the

performance of models, f1 score from ten-fold cross-validation

was selected as the benchmark for model and features selection,

since the number of stable-labeled samples are much fewer (~5%)

than the unstable-labeled samples (~95%). For each classifier, the

sequential forward floating selection algorithm (Note S3) (Ferri

et al., 1994; Pudil et al., 1994) was employed to generate a subset

of descriptors yielding the highest f1 score from total 70 features

and to reduce the overfitting. The classifier with the best f1 score

on the validation data and fewer descriptors was applied to
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predict the formability of A-mixed oxyhydrides following the

work flow. The selected features and computation time for each

classifier was provided in Table S3-5.

2.3.4 Hyperparameters optimization
The GridSearchCV method implemented in the scikit-learn

(Pedregosa et al., 2011) was used to optimize the important

hyperparameters of each classifier. The ten-fold cross-validated

f1 score were adopted to evaluate the performance of the model

during the search. Initially, hyperparameters of each classifier

were optimized covering all features for the sequential forward

floating selection. After the feature selection, the

hyperparameters optimization for each classifier was

performed based on the selected features to ensure the better

performance. The computation time, parameters search space

and their optimized values for each model were in provided in

Table S4-7.

3 Results

3.1 Stability map in the compositional
space

We first evaluated phase stabilities of the A2BH1+xO3-x

(x = 0, 1, 2) chemical space by calculating the energy above

the hull ΔEhull at 0 K. ΔEhull of a compound refers to an

absolute value of the decomposition energy with reference to

competing phases, and serves as an indicator of evaluating the

experimental synthesizability, which is widely used in

multiple studies (Ong et al., 2008; Sun et al., 2019; Ouyang

et al., 2021; Shen et al., 2021; Talapatra et al., 2021; Wang

et al., 2021). 80% formable compounds reported from the

Inorganic Crystal Structure Database (ICSD) exhibits

ΔEhull ≤ 100 meV/atom, and the materials with large ΔEhull
(e.g., ≥100 meV/atom) suffer from the tendency of

decomposition and are difficult to synthesize (Sun et al.,

2016). Regarding Ba2YHO3 exhibiting the highest ΔEhull as
65 meV/atom in all synthesized oxyhydrides (Table S8)

(Nawaz et al., 2020), we relax this criterion and consider a

oxyhydride with ΔEhull ≤ 100 meV/atom exhibiting a high

likelihood of experimental synthesizability. We observe a

gaussian-like distribution (Figure 2) of the oxyhydrides as

a function of ΔEhull, with a median ΔEhull as 395 meV per

atom and a small portion of compounds at the left and right

extreme. Only 4.5% oxyhydrides exhibit ΔEhull less than

100 meV/atom (Figure 2) awaiting the future experimental

realization. The shape of the oxyhydrides distribution with

ΔEhull is similar to those of oxynitrides and oxyfluorides

reported in other studies (Wang et al., 2021), suggesting a

similar formation trend in mixed anion systems. The paucity

of synthesizable compounds confirmed by our study

highlights the necessity of efficient HT computations for

materials discovery.

The effect of chemical compositions on the oxyhydrides

stability was investigated by constructing stability map

(Figure 3) in terms of elements at A and B sites,

respectively. While 67 considered elements for the

A2BH1+xO3-x composition can yield ~4400 configurations,

many compounds fail to satisfy the charge balance criterion

(gray blocks in Figure 3) due to the high oxidation states of

constituent elements. For example, the elements (e.g., rare

earth, B, Al, Ga, In, N, P, As, Sb, Bi, Y and Sc) with

+3 oxidation state at A sites can hardly form charge-

neutral compositions in the A2BH1+xO3-x formula

(Figure 3) except for +1 cations (e.g., alkali metals and Ag)

at B sites. We excluded those charge-unbalanced compounds

from further computations owing to their inherently

Coulombic instabilities.

As for other 1856 charge-balanced oxyhydrides, 7 and

77 compounds are found to be thermodynamically stable

(ΔEhull = 0 meV/atom) and metastable (0 < ΔEhull ≤ 100 meV/

atom), respectively (Table 1 and S8). The valence states of H−

in those newly predicted compounds are confirmed by the

Bader analysis (Table S8). All synthesized compounds,

i.e., Ln2LiHO3 (Ln = La, Pr, Nd, Sm) (Kobayashi et al.,

2016; Iwasaki et al., 2018), Ba2MHO3 (M = Y and Sc)

(Takeiri et al., 2019; Nawaz et al., 2020) and M2LiH3O

(M = Sr and Ba) (Kobayashi et al., 2016; Takeiri et al.,

2022), were identified as meta/stable materials by our

compositional screening (Figure 3 and Table 1),

confirming the validity of our computations. We note

~60% synthesized oxyhydrides exhibiting metastability

with ΔEhull less than 100 meV/atom (Figure 3; Table 1 and

FIGURE 2
Distribution (left y-axis) and the cumulative fraction (right
y-axis) of the A2BH1+xO3-x (x = 0, 1, 2) oxyhydrides as a function of
ΔEhull. The shaded area indicates the oxyhydrides with ΔEhull ≤
100 meV/atom and a high likelihood of experimental
synthesizability.
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Table S8), demonstrating the accessibility of the metastable

compounds in laboratory and the essentiality of exploring

those materials. Apart from eight synthesized compounds,

76 oxyhydrides are predicted to be meta/stable with a high

likelihood of experimental synthesizability, greatly enlarging

a library of the oxyhydrides.

The preference of elements occupying A and B sites was

visualized by constructing the periodic table in terms of the

element’s occurrence in meta/stable A2BH1+xO3-x (Figure 4).

We observe a high frequency of alkali and alkaline earth

metals on the A site with transition metals and p-block

elements (e.g., Mg, Al and Ga) on the B site (Figures 3, 4

and Table S8), such as Na2AlH3O, K2ScH3O, Sr2MgH2O2 and

Na2NbHO3. Such pattern of the constituting elements in the

oxyhydrides in the K2NiF4 framework is similar to that of

perovskites reported by multiple experimental and

computational studies due to their structural similarity

(Figure 1A) (Emery et al., 2016; Talapatra et al., 2021; Tao

et al., 2021).

We note the preference of Li over B sites with lanthanides at

A sites in meta/stable compounds (Figures 3, 4), which is

consistent with multiple Ln2LiHO3 (Ln = La, Pr, Nd, Sm)

oxyhydrides reported in experiments (Kobayashi et al., 2016;

Takeiri et al., 2022). However, other alkali metals except Li

cannot form meta/stable oxyhydrides with lanthanides. The

physical origin of the distinctive behaviors in alkali metals to

FIGURE 3
Stability map of the A2BH1+xO3-x (x = 0, 1, 2) oxyhydrides with elements occupying A and B sites, respectively. Stable (ΔEhull = 0 meV/atom) and
metastable (0 < ΔEhull ≤ 100 meV/atom) oxyhydrides are shown in green and blue, respectively, while unstable oxyhydrides with ΔEhull larger than
100 meV/atom are plotted in red. Compounds in gray are not calculated mostly due to the lack of charge-balanced compositions. The blocks
marked by black crosses indicate synthesized compounds in experiments. Elements are ordered by the Mendeleev number.
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form the stable oxyhydrides will be illustrated in Section 3.2. In

addition to the explored oxyhydrides, various meta/stable

compounds containing novel cations (e.g., Cr, Al, Ga and

Mn) at B site are recognized by our computations (Figures 3,

4), with most of those unexplored in experiments. The HT-DFT

calculations expand the chemistry of K2NiF4-type oxyhydrides

by providing formable materials with new compositions, and

allow us to obtain a complete stability picture in the uncharted

chemical space.

3.2 Stability trends in the oxyhydrides

Understanding why certain elements can form stable

compounds is a fundamental question that explores the

oxyhydrides. We rationalize crucial factors governing

materials’ formability by quantifying their contribution to the

oxyhydrides stabilities through the random forest (Figure 5) and

decision tree analysis (Figure S2). Twenty-five features, including

20 basic elemental properties (e.g., Shannon ionic radius r,

TABLE 1 Statistics of the known and newly predicted oxyhydrides in terms of ΔEhull and compositions. There are eight experimentally synthesized
compounds, which are Ln2LiHO3 (Ln = La, Pr, Nd, Sm) (Kobayashi et al., 2016; Iwasaki et al., 2018), Ba2MHO3 (M = Sc, Y) (Takeiri et al., 2019; Nawaz
et al., 2020) and M2LiH3O (M = Sr, Ba) (Kobayashi et al., 2016; Takeiri et al., 2022).

Oxyhydrides category Previously known Newly predicted Total number Percentage

Stable (ΔEhull = 0) 3 4a 7 0.4% (7/1856)

Metastable (0<ΔEhull≤100) 5 72a 77 4.1% (77/1856)

Unstable (100<ΔEhull) 0 1763 1763 95% (1763/1856)

Distribution of the oxyhydrides with ΔEhull≤100

A2BHO3 6 37 43 4.6% (43/942)

A2BH2H2 0 21 21 4.2% (21/505)

A2BH3O 2 18 20 4.9% (20/409)

aThermodynamically stable and metastable oxyhydrides are screened based on the Bader charge of H less than -0.5, and nine compounds are filtered out.

FIGURE 4
Periodic table showing the frequency of elements in A2BH1+xO3-x (x = 0, 1, 2) oxyhydrides with ΔEhull ≤ 100 meV/atom occupying A and B sites.
Each block represents an element that is colored based on the occurrences on A (upper left triangle) and B sites (lower right triangle) in the meta/
stable oxyhydrides, respectively. Elements in gray blocks are not considered in the calculations.

Frontiers in Chemistry frontiersin.org07

Bai et al. 10.3389/fchem.2022.964953

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.964953


Pauling electronegativities χ, Mendeleev number M, atomic

number Z, and electrons valence e−: the number of valence

electrons) and five structural/compositional features (e.g.,

tolerance factor tbv, H and O content in composition), are

considered as possible factors that influence structural

stabilities. Those considered descriptors are commonly used in

other studies to predict compounds’ stabilities and to analyze

stability relationship (Balachandran et al., 2018; Bartel et al.,

2019; Chenebuah et al., 2021). We present the contribution of

those variables to oxyhydrides stabilities by ranking their feature

importance in classifying the oxyhydrides with ΔEhull =

100 meV/atom as a threshold (Figure 5, Figure S2).

Geometrical descriptors (i.e., tbv and rB) and electronegativities

of constituting elements are identified as the most important

features differentiating the oxyhydrides. The physical insight

relating those features to the oxyhydrides stabilities will be

explored in the next subsection.

3.2.1 Geometric factors
We examined the influence of geometry on the

oxyhydrides stability by plotting structure map of

A2BH1+xO3-x (x = 0, 1, 2) oxyhydrides with rA vs rB
(Figure 6A). While some stable perovskites still have

smaller ions at A sites (Emery et al., 2016), all meta/stable

oxyhydrides appear in the lower-right region with rA > rB

(Figure 6A), and demonstrate a tendency of clustering within

the rectangular box (0.55 Å < rB < 1.05 Å, 1.20 Å < rA <
1.95 Å), implicating the strictly geometric requirement to

form the stable K2NiF4 structures. The preference of ionic

radius results from the difference between the coordination

number of A and B sites and the corresponding space to

accommodate the cations, where A-site cations are

coordinated by nine anions in comparison with six anions

surrounding B sites (Figure 1A). We also utilize the decision

tree algorithm to analyze the influence of rA and rB on the

oxyhydrides stabilities (Figure S3). Most stable oxyhydrides

(74 out of 93) belong to the node with rB < 1.005 Å and rA >
1.314 Å (Figure S3). The decision tree analysis indicates

stable oxyhydrides tend to have rA > rB, which is

consistent with our analysis based on the structure map

(Figure 6A).

In addition to ionic radius, tolerance factors tbv of the

oxyhydrides were investigated, in reference to tbv of an ideal

K2NiF4 structure as 1. Most oxyhydrides tend to be meta/stable

within the range of 0.8 ≤ tbv ≤ 1.2 (Figure 6B), which is consistent

with the experimental observation (Matsui et al., 2020). The

decision tree analysis also demonstrates most stable oxyhydrides

(85 out of 93) are within the range of 0.838 ≤ tbv ≤ 1.109 (Figure

S4), which is consistent with our analysis based on the tbv
distribution plot (Figure 6B). This can explain the absence of

FIGURE 5
Feature importance to classify oxyhydrides stability based on the permutation method using the random forest model, where 25 features,
including 20 basic elemental properties (e.g., Shannon ionic radius r, Pauling electronegativities χ, Mendeleev numberM, atomic number Z, electrons
valence e−: the number of valence electrons and I1: the first ionization energy) and five structural/compositional features (e.g., tolerance factor tbv, H
and O content in composition) are considered. Subscripts of symbols denote corresponding properties of elements at A and B sites,
respectively. Errors bars indicate the standard deviation upon shuffling features.

Frontiers in Chemistry frontiersin.org08

Bai et al. 10.3389/fchem.2022.964953

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.964953


the stable oxyhydrides with larger alkali metal cations (except Li)

occupying B sites and smaller lanthanides at A sites mentioned in

Section 3.1 (Figures 3, 4), since their tbv are out of range. While

there is a high degree of clustering of meta/stable compounds

with respect to ionic radius and tbv, many compounds satisfying

those criterions are still unstable (Figure 6), indicating the

insufficiency of geometric factors to describe the oxyhydrides

stabilities.

3.2.2 Electronegativities
Apart from geometric constraints, the electronic origin of

the oxyhydrides stability can be rationalized by analyzing the

charge transfer between cations and hydride ions. To ensure

the negative charge of hydride ions, electron density should be

donated by cations to hydrogen, as schematically illustrated in

Figure 7A. The opposite direction of charge transfer causes the

oxidation of hydrogen, and destabilizes the compounds

(Figure 7A). Since electronegativities of elements are crucial

factors influencing the charge distribution in chemical

bonding, we plotted the structure map of the oxyhydrides

(Figure 7B) as a function of electronegativity of an element at

A site (χA) vs that at B site (χB). In all meta/stable oxyhydrides

(ΔEhull ≤ 100 meV/atom), electronegativities of cationic

elements at A/B sites are smaller than the electronegativity

of H as 2.20 (Figure 7B). Smaller electronegativities of

A/B-site elements can prevent the charge transferring from

hydrogen to cations and the consequent hydrogen oxidation,

contributing to stabilizing the oxyhydrides.

In addition to the inhibition of hydrogen oxidation as a

requisite to stabilize the materials, there should be extremely

electropositive cations contributing electrons to hydrogen. A

large electronegativity between the cationic element and H

can facilitate the charge transfer. We find 98% meta/stable

oxyhydrides possess at least one extremely electropositive

element with χ < 1.25 (Figure 7C) to mainly supply electron

density. To better visualize the stability trend as a function of

electronegativities, compounds are classified into four

categories with respective to χA/χB − 1.25, and 82 out of

84 meta/stable oxyhydrides fall into the category I and II

(Figure 7C). Meta/stable compounds belonging to category I

with χA < 1.25 and χB > 1.25 have A-site cations mainly acting

as electron donors to ensure the valence states of hydride ions

and to stabilize materials. Those materials (e.g., Ba2ScHO3

and Sr2GaHO3) correspond to the high frequency of alkali

and alkaline earth metals on the A site with transition metals

and p-block elements on the B site as observed in the periodic

table (Figure 4). Compounds in category II benefit from two

potential electron donors with small χ < 1.25, which

correspond to multiple Ln2LiHO3 (Ln = La, Pr, Nd and

Sm) oxyhydrides already explored in experiments (Figure 3

and La2LiHO3 in Table 2). Although the materials in category

III possess B-site cations with χ < 1.25, the lack of formable

oxyhydrides in this group originates from the geometric

perspective. tbv of compounds in this category exhibit the

obvious deviation from the optimal range as 0.8–1.2

(Figure 7D), because the electropositive B-site cations

always have large ionic radius to distort the layer-

perovskite structures. Few meta/stable oxyhydrides are

found in category IV due to the absence of electropositive

cations. The exception of Tl2PHO3 and Hg2PH3O as

FIGURE 6
(A) Structure map of A2BH1+xO3-x (x = 0, 1, 2) oxyhydrides with the Shannon ionic radius of ion at A site (rA) vs that at B site (rB). Up-pointing
triangles indicate meta/stable oxyhydrides (ΔEhull ≤ 100 meV/atom), which are colored as a function of ΔEhull. Those meta/stable compounds are
clustered within the rectangular box (0.55 Å < rB < 1.05 Å, 1.20 Å < rA < 1.95 Å). Down-pointing triangles indicate unstable oxyhydrides (ΔEhull >
100 meV/atom). The upper and right curves represent the distribution of meta/stable oxyhydrides as a function of rA and rB, respectively. (B)
Distribution of the oxyhydrides as a function of the tolerance factor tbv, where the left and right y-axis refer to the number of unstable and meta/
stable oxyhydrides, respectively.
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FIGURE 7
(A) Schematic of the charge transfer in hydride bonding to stabilize the oxyhydrides, with bond length of A-H longer than that of B-H. (B)
Structuremap of the oxyhydrides exhibiting the electronegativity of an element at A site (χA) vs that at B site (χB). The upper and right curves represent
the distribution of meta/stable oxyhydrides as a function of χA and χB, respectively. (C) Structure map of the oxyhydrides with χA-1.25 vs χB-1.25. The
structure map is categorized into four parts (I, II, III and IV) with respect to the threshold of χ = 1.25. Five representative oxyhydrides are
highlighted, i.e., (A) Ba2ScHO3 (ΔEhull = 0 meV/atom), A1: Hg2ScHO3 (ΔEhull = 366 meV/atom), (B) Sr2GaHO3 (ΔEhull = 22 meV/atom), B1: Tl2GaH3O
(ΔEhull = 199 meV/atom) and (C) La2LiHO3 (ΔEhull = 20 meV/atom). Up-pointing triangles indicate stable and metastable oxyhydrides (ΔEhull ≤
100 meV/atom), which are colored as a function of ΔEhull. Down-pointing triangles indicate unstable oxyhydrides (ΔEhull > 100 meV/atom). (D)
Distribution of tbv for the oxyhydrides belonging to category I and III in Figure 7C, respectively.

TABLE 2 χA, χB, tbv, ΔEhull, Bader and Mulliken charge of hydrogen in Ba2ScHO3 (A), Hg2ScHO3 (A1), Sr2GaHO3 (B), Tl2GaH3O (B1) and La2LiHO3 (C).

Symbol Composition χA χB tbv ΔEhull (meV/atom) Bader charge of H
(e−)

Mulliken charge of H
(e−)

A Ba2ScHO3 0.89 1.36 0.97 0 −0.71 −0.75

A1 Hg2ScHO3 2.00 1.36 0.84 366 −0.15 −0.39

B Sr2GaHO3 0.95 1.81 0.96 22 −0.54 −0.46

B1 Tl2GaH3O 1.62 1.81 1.05 199 −0.41 −0.23

C La2LiHO3 1.10 0.98 0.87 20 −0.64 −0.73
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metastable compounds in this category might result from the

lack of competing phases in the materials database, which

underestimates their decomposition energies.

Two groups of representative materials (i.e., A: Ba2ScHO3,

A1: Hg2ScHO3 and B: Sr2GaHO3, B1: Tl2GaH3O) are highlighted

to illustrate the strong correlation among electronegativity,

charge transfer and phase stability (Figure 7C and Table 2). In

contrast to Ba2ScHO3 (A) and Sr2GaHO3 (B), the absence of

extreme electropositive cations in Hg2ScHO3 (A1) and

Tl2GaH3O (B1) impedes the charge transfer to anions, which

can be manifested by the decreased negative charge of hydrogen

from the Bader charge and Mulliken population analysis

(Table 2). The failure of the electronic stabilization leads to

the increase of ΔEhull for those materials (Table 2). Such trend

can also be confirmed by the decision tree analysis (Figure S5),

where stable oxyhydrides (81 out of 93) belongs to the node with

χB < 1.82 and χA < 1.225. Thus, the electronic stabilization of the

oxyhydrides demands the constituting elements with χ < χH and

at least one extremely electropositive cation.

By applying the aforementioned geometric and

electronegativity constraints, 228 compounds were selected

from 1856 hypothetical compositions, with 74 of those

candidates predicted to be meta/stable. The high ratio (32%)

of formable oxyhydrides in shortlisted compounds in

comparison with 5% by the random guess demonstrates the

geometric constraints and elemental electronegativity as

significant factors affecting the oxyhydrides stabilities.

3.3 Extension to A-mixed oxyhydrides

Besides fixed stoichiometry compounds, mixed-cation

oxyhydrides are promising materials, as they provide an

enhancement of compositional tunability for targeted

FIGURE 8
(A) Ten-fold cross-validated f1 score as a function of feature quantity in the voting classification model to categorize the unmixed oxyhydrides.
The shaded region represents the standard deviation of f1 score upon cross validation. (B) Precision-recall, (C) confusion matrix and (D) receiver
operating characteristic (ROC) curves of the voting classification model to categorize the unmixed oxyhydrides upon the ten-fold cross validation.
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properties. For example, A-mixed LaSrLiH2O2 demonstrated the

highest H− conductivity as 0.21 mS/cm at 590 K in experiments

(Kobayashi et al., 2016; Matsui et al., 2020). However, an

enormous number of possible configurations cause mixed

oxyhydrides relatively untapped, placing computational

materials discovery as an efficient tool. Taking the

A1A2BH2O2 oxyhydrides as an example, the quantity of

17618 charge-neutral compounds disables the enumerated

DFT calculations due to great expanse, calling for a more

robust survey tool. An obvious tendency of the materials

stability with respect to elemental and structural features

(Section 3.2) reminds us of employing the ML algorithm to

differentiate stable mixed-cation compounds.

Since LaSrLiH2O2 of the A1A2BH2O2 composition

exhibits the best conduction properties, we choose the

A1A2BH2O2 oxyhydrides as a model to illustrate our

workflow handling the enormous compositional

possibilities. Initially, seven candidate classifiers were

trained based on the unmixed oxyhydrides dataset and

70 descriptors (Table S2) to differentiate meta/stable

compounds (ΔEhull ≤ 100 meV/atom). While their

classification performance can be evaluated by multiple

metrics (e.g., accuracy, f1 score and precision), the highly

imbalanced database containing fewer meta/stable

oxyhydrides imposes f1 score as a major index for model

assessment (Note S2). Among all classifiers, the voting

classifier demonstrates the highest cross-validated f1 score

as 0.88 with fewer descriptors utilized (Figure 8A; Figure S6;

Table 3 and Table S3). Its excellent performance is also

proved by the high precision (0.93) and recall rate (0.84)

in the precision-recall curve (Figure 8B), with good accuracy

(0.99) and separability indicated by the confusion matrix

(Figure 8C) and the ROC curve (Figure 8D). Outstanding

metrics of the voting model to identify meta/stable

compounds indicate its capability of capturing overarching

factors impacting oxyhydrides stabilities.

We then transfer the trained classification model to search

A-mixed A1A2BH2O2 oxyhydrides with good formability

(Figure 9A). Among all 17618 electrically neutral

configurations, the voting classifier predicts 527 compounds to

be meta/stable with a probability larger than 50%. We further

performed DFT calculations on those 527 shortlisted materials to

determine their thermodynamic stabilities, yielding 110 formable

compounds with ΔEhull ≤ 100 meV/atom. The simple transfer

learning not only accelerates the discovery of stable mixed

oxyhydrides, but provides the valid database of the A-mixed

oxyhydrides with a reasonable number of stable-labeled

compounds for the further ML. Then, a new voting classifier

was trained based on those calculated mixed ones to learn the

stability rules of the A-mixed oxyhydrides. The retrained model

FIGURE 9
(A)Workflow of the sequential machine leaning approach to search formable A-mixed oxyhydrides. (B) Cross-validated precision-recall curve
of the voting classifier trained from the calculated mixed compounds.

TABLE 3 Best f1 scores and the corresponding number of selected
features using distinct classifiers models based on the cross-
validated data.

Classifier Best f1 score Feature quantity

Voting 0.88 (±0.08) 13

Extra trees 0.85 (±0.08) 45

Random forest 0.84 (±0.07) 36

SVC 0.86 (±0.09) 12

XGBoost 0.85 (±0.05) 41

Gradient boosting 0.87 (±0.08) 31

Decision tree 0.77 (±0.08) 69
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demonstrates the ten-fold cross-validated accuracy and f1 score

to identify stable mixed materials as 0.91 ± 0.04 and 0.80 ± 0.09,

respectively, demonstrating its excellent ability to identify stable

A-mixed crystals (Figure 9B). The new model was used to screen

the unstable-labeled materials identified by the initial ML model

to retrieve possibly formable compounds for further DFT

calculations.

After the two-round ML and DFT screening, 114 A-mixed

oxyhydrides are finally found to have ΔEhull ≤ 100 meV/atom

with a high likelihood of synthesizability (Figure 9A and Table

S9). All experimentally synthesized materials (i.e., LnSrLiH2O2,

Ln = La, Nd, Pr, Sm, Gd) (Kobayashi et al., 2016; Matsui et al.,

2020) were recognized as formable materials, validating our

computation scheme. In addition, the occurrence of new

cations (e.g., Zr4+, Ce4+ at A sites) in the A-mixed oxyhydrides

highlights the compositional tunability in mixed compounds

(Table S9).

Since ionic conductivity is a key parameter for energy storage

materials, we performed AIMD simulations in five randomly

selected A-mixed compounds to study their H− diffusivities

(Table 4 and Figure S7). Four out of five compounds were

predicted to exhibit the facile H− diffusion with σΗ− larger

than 0.1 mS/cm at 573 K, except for the σΗ− of KCeMgH2O2

merely smaller as 0.07 mS/cm. High H− conductivities in those

materials demonstrate the potential of the K2NiF4-type

oxyhydrides for a wide range of energy conversion

applications, e.g., hydride conductors and fuel cells. Since a

library of promising oxyhydrides explored by our data-driven

tools constitutes a valuable resource for further discovery, we

look forward to a comprehensive investigation on properties of

the oxyhydrides to explore their multifunctionality.

4 Discussion

Despite of the emerging functionality, the stringent

experimental condition causes the oxyhydrides relatively

undiscovered, with up to 20 compounds realized in

laboratory. Using HT-DFT computations and ML algorithms,

we constructed a large stability map of A2BH1+xO3-x

oxyhydrides. Besides all synthesized compounds identified by

our calculations, 185 new compositions with good intrinsic

thermodynamic stabilities were discovered to expand the

chemical space of the oxyhydrides by ten times. Our

prediction of novel oxyhydrides provides a guidance for

experimental synthesis, which serves as a first step awaiting

future researches that detail their properties.

Based on the established database, underlying features

dominating the oxyhydrides stabilities and their physical

origin were revealed via informatic tools. Since the meta/stable

K2NiF4-type oxyhydrides exhibit a similar range of tbv as

0.8–1.2 with that in perovskite oxides (Li et al., 2013; Emery

et al., 2016), we speculate the similar constraint of tbv in other

stable mixed-anion systems sharing perovskite-related

frameworks, such as oxynitrides and oxyfluorides (e.g.,

ABNxO3-x and A2BF1+xO3-x) (Li et al., 2013). The criterion of

tolerance factor from our analysis can serve as a screening

threshold to promote the discovery of other mixed-anion

materials from geometric aspect.

In addition to the structural distortion, the bonding between

cations and anions plays a crucial role in stabilizing mixed-anion

materials. While the upper limit of electronegativities for cationic

elements is determined by the anion with a smaller

electronegativity in the mixed-anion compounds, the

extremely reducing nature of H− further demands a highly

electropositive cation to contribute electron density, such as

alkali and alkaline earth metals. The trend of cationic

electronegativity to stabilize materials may remain valid in

other mixed-anion systems due to the similar bonding

environment. Taking oxynitrides and oxyfluorides as an

example, their requirements of cations in electropositive

aspect is more tolerant than that of the oxyhydrides due to

their electronegative anions (i.e., N3- and F−). Such trend is

proved by many compounds (e.g., PbReNO2, AgCuF2O,

TlBiF2O) (Wang et al., 2021) containing less electropositive

ions realized in experiments. Thus, the rarity of the

A2BH1+xO3-x oxyhydrides can be attributed to the stringent

constraint of cations with far small electronegativity ascribed

to the reducing nature of hydride ions.

In order to evaluate the necessity of using the complex voting

classifier, we also utilized the widely-used random forest method to

search the stable A-mixed oxyhydrides following the two-step ML

workflow (Table 5, Table S10 and Figure S8). While the training

time of random forest is shorter than of the voting classifier, the

hitting rate of the random forest (109/917) is smaller than that of the

voting classifier (114/620), leading to calculating additional

TABLE 4 Hydride conduction properties of the newly predicted A1A2BH2O2 oxyhydrides.

Composition ΔEhull (meV/atom) Ea (eV) σΗ− at 573 K (mS/cm)

CaYLiH2O2 22 0.24 72

NaLaZnH2O2 75 0.22 195

NaPrZnH2O2 78 0.32 76

CaPrLiH2O2 0 0.56 0.82

KCeMgH2O2 46 0.67 0.07
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300 compounds. The higher precision of the voting classifier may

originate from its better performance (e.g., higher f1 score) to

identify stable compounds than that of the random forest

(Table 3, 5 and Figure S9). Given the computation time of a

A-mixed compound by DFT as ~ 5 hours, calculating 300 more

compounds would consume thousands of hours, which is far longer

than the difference between the twomodels’ training time. Thus, it is

reasonable to use the voting classifier with the best performance in

all classifiers for screeningwith an acceptable cost. In order to use the

ML model trained by the unmixed compounds to screen the mixed

compounds, we keep the feature dimension of the mixed

compounds as same as the unmixed ones by designating the

A-site properties as the arithmetic averages of the mixed ions.

Such approximation of the properties for the mixed components

is widely used inmultiple ML studies (Bartel et al., 2019; Chenebuah

et al., 2021; Liu et al., 2022).While theML algorithm is challenged to

learn the complicated effect of the cation mixing on materials’

stabilities (e.g., site miscibility) by averaging site properties (Ouyang

et al., 2021) and including those effects by further feature

engineering may improve its performance (Talapatra et al.,

2021), the ML model still shortlists candidate compounds

containing all known materials from thousands of possible

configurations, and increases the success rate of finding the

formable A-mixed oxyhydrides from ~0.5% (114/17618) of the

random guess to ~20% (114/620). Thus, estimating the site-

related properties of the mixed component by their average is

viable in our study.

In addition to the oxyhydrides chemistry explored by the

informatics, we propose a simple and effective computational

workflow targeting the discovery of mixed compounds with huge

quantity. Unlike many applications of ML to identify stable

materials such as single or double perovskites, a roadblock of

our task to identify mixed oxyhydrides mainly lie on two aspects,

i.e., the lack of detected database and the rarity of stable

oxyhydrides. Even though the HT-DFT methods used to deal

with unmixed compounds can generate the small size dataset of

the mixed materials by randomly selecting materials, the paucity

of stable ones (<5%) can lead to the highly unbalanced data

distribution and disable the validity of the database. To handle

the issue of insufficient labeled data and unbalanced data

distribution, we demonstrate a simple two-step ML and HT-

DFT paradigm to identify stable mixed oxyhydrides. The first-

round selection based on the ML model transferred from the

unmixed ones can provide the valid database of the A-mixed

oxyhydrides with a reasonable number of stable labeled

compounds. Then, the validated model (f1 score as 0.80)

retrained from the mixed materials database can minimize the

misclassification of the previous screening. Our workflow

demonstrates its efficiency by successfully identifying

hundreds of stable mixed oxyhydrides with reasonable cost,

which includes all experimentally synthesized materials. In

addition to the specific scenario demonstrated in our research,

our method consisting of a simple transfer leaning can be applied

to many materials design applications, where a large volumes

data is unavailable and the data distribution is highly unbalanced.

5 Conclusion

We employed comprehensive computations to investigate the

stability relationship of the K2NiF4-type oxyhydrides amid their

paucity. The large stability map of the A2BH1+xO3-x (x = 0, 1, 2)

oxyhydrides was constructed by the HT-DFT calculations covering

1856 charge-neutral compositions, with only 5% of the total

compounds exhibiting ΔEhull ≤ 100 meV/atom. In addition to all

laboratory synthesized compounds, our works identified new

76 compositions with good intrinsic thermodynamic stabilities to

guide the experimental synthesis. Geometric factors standing for

structural distortion and electronegativities accounting for the charge

transfer in hydride bonding were unveiled to dominate the

oxyhydrides stabilities, and to explain the scarcity of the materials.

In addition to the unmixed compounds, we demonstrated an efficient

two-step ML workflow consisting of a simple transfer learning to

survey the cation-mixed compounds. 114 meta/stable A-mixed

oxyhydrides were identified out of total 17618 possible

configurations. Facile H− diffusion in the selected compounds

indicates the suitability of the oxyhydrides as energy storage and

conversion materials. Our study facilitates the discovery of the

oxyhydrides, and formulates the computational paradigm for the

exploration of other uninvestigated compositional spaces.

TABLE 5 Comparison between the voting and random forest classifiers in model training time, the number of calculated and meta/stable A-mixed
oxyhydrides.

Classifiers F1 scorea Training timeb

(hours)
The number
of calculated
structures

Meta/stable
compounds

Common meta/stable
compounds identified
by two
methods

Random forest 0.84/0.75 6 917 109 102

Voting 0.88/0.80 50 620 114

aThe left or right value refers to the f1 score of classifying the unmixed or mixed compounds, respectively.
bThe model training time includes the time of the hyperparameters optimization and feature selection of the two-step ML workflow.
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