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Immunization is key to protecting term and preterm infants from a heightened risk of 
infection. However, preterm immunity is distinct from that of the term, limiting its ability to 
effectively respond to vaccines routinely given at birth, such as hepatitis B vaccine (HBV). 
As part of the Expanded Program on Immunization, HBV is often given together with 
the live-attenuated vaccine Bacille Calmette–Guérin (BCG), known to activate multiple 
pattern-recognition receptors. Of note, some clinical studies suggest BCG can enhance 
efficacy of other vaccines in term newborns. However, little is known about whether BCG 
can shape Th-polarizing cytokine responses to HBV nor the age-dependency of such 
effects, including whether they may extend to the preterm. To characterize the effects 
of BCG on HBV immunogenicity, we studied individual and combined administration 
of these vaccines to cord newborn and adult human whole blood and mononuclear 
cells in vitro and to neonatal and adult mice in vivo. Compared to either BCG or HBV 
alone, (BCG + HBV) synergistically enhanced in vitro whole blood production of IL-1β, 
while (BCG + HBV) also promoted production of several cytokines/chemokines in all 
age groups, age-specific enhancement included IL-12p70 in the preterm and GM-CSF 
in the preterm and term. In human mononuclear cells, (BCG + HBV) enhanced mRNA 
expression of several genes including CSF2, which contributed to clustering of genes 
by vaccine treatment via principle component analysis. To assess the impact of BCG on 
HBV immunization, mice of three different age groups were immunized subcutaneously 
with, BCG, HBV, (BCG + HBV) into the same site; or BCG and HBV injected into separate 
sites. Whether injected into a separate site or at the same site, co-administration of BCG 
with HBV significantly enhanced anti-HBV IgG titers in mice immunized on day of life-0 
or -7, respectively, but not in adult mice. In summary, our data demonstrate that innate 
and adaptive vaccine responses of preterm and term newborns are immunologically 
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distinct. Furthermore, BCG or “BCG-like” adjuvants should be further studied as a prom-
ising adjuvantation approach to enhance immunogenicity of vaccines to protect these 
vulnerable populations.

Keywords: Bacille calmette–guérin, hepatitis B vaccine, preterm, newborn, innate cytokine profiles, hBV-specific 
antibodies

inTrODUcTiOn

Infectious diseases are a leading cause of childhood death with 
neonatal infection accounting for ~40% of mortality in those 
<5 years of age, ~7 million cases, and 700,000 deaths per year 
(1). Within the neonatal population, prematurity, defined as birth 
at <37 weeks of gestational age (GA), is the single most important 
cause of death in the first month of life and the second largest 
cause of death after pneumonia in children <5 years of age (1). 
Most preterm births (84%, 12.5 million) occur at >32 weeks of 
gestation (2). At this GA, many preterm newborns can survive 
with cost-effective supportive care. The mortality from neonatal 
infection in preterm infants has increased over the last 20 years 
(1). Moreover, preterm newborns remain at elevated risk of infec-
tion through 18 years of age (3). Accordingly, global progress in 
child survival and health to 2015 and beyond will depend on 
optimizing preventative care for preterm and term infants with 
vaccines one of the most effective biomedical approaches for 
disease prevention.

Vaccine-mediated prevention of infections is limited by 
reduced or distinct immune responses in early life (4). The 
current necessity for repeated vaccine booster doses to obtain 
full protection leaves a window of susceptibility in both the 
preterm and term infant during the first 6 months of life (5). 
Alongside efforts at maternal immunization, enhancement of 
responses to early-life vaccines via use of novel adjuvantation 
systems that demonstrate age-specific immune-enhancing 
activity is an attractive approach to address this problem. To 
date, development of pediatric vaccines has largely relied on 
ad  hoc studies of adult vaccines, and has not taken the age-
dependent development of the immune system into account 
(6). This holds true for vaccination of the preterm as well: 
the Advisory Committee on Immunization Practices (ACIP) 
of US Centers for Disease Control and Prevention as of 2011 
has recommended that, with respect to most vaccines, preterm 
infants be immunized with the full-recommended dose accord-
ing to the same schedule as full-term infants. However, even 
thought vaccine immunogenicity in preterm infants is often 
distinct compared with term responses (7–10), there remains 
a research knowledge gap. Specifically, hepatitis B vaccine 
(HBV) immunization is delayed in the preterm due to empiric 
evidence of reduced immunogenicity. In preterm newborns 
<1,500–1,800  g birth weight or <34–35  weeks gestation, a 
three-dose vaccine series of HBV induces protective antibody 
(Ab) titers in only ~45–85% of patients as opposed to 90–100% 
in more mature infants (11).

Consideration of vaccine adjuvantation in early life 
must take into account that newborn innate and adaptive 
immune cells exhibit distinct activation profiles in response 
to pattern-recognition receptor (PRR) agonists. However, 

activation of some PRRs in newborns, such as toll-like recep-
tors (TLRs) 7/8, can induce an adult-like response (12, 13). 
For example, the germinal center reaction that drives the 
magnitude and persistence of the Ab response is impaired 
early in life but can be enhanced with certain TLR agonists 
(14, 15). Of note, preterm innate and adaptive immunity is 
distinct from that of both term newborns and adults. For 
example, preterm monocytes exhibit attenuated PRR-mediated  
Th1 and Th17-cytokine responses (16). Herein, we assessed 
whether a live-attenuated vaccine Bacille Calmette–Guérin 
(BCG), known to activate multiple PRRs (17, 18), might exert 
adjuvant activity in the context of neonatal HBV immunization.

BCG is the most commonly administered vaccine worldwide 
and when administered at birth is safe and effective in reducing 
the rates of infantile tuberculous (TB), meningitis, and dissemi-
nated miliary disease (19). It is the only routinely administered 
neonatal vaccine that induces a Th1-polarized immune response 
(20). BCG administration may also, in an age-dependent man-
ner, induce beneficial heterologous (“non-specific” or “trained”) 
immunity against unrelated pathogens and stimuli (21–25), 
impact responses to other vaccines (20, 26–28), and immune-
modulate in the context of allergic diseases as well (29).

Some limited clinical studies have suggested that BCG may 
enhance responses to other, vaccines such as Oral Polio Vaccine 
and HBV (20). We posited that co-administration of BCG with 
HBV could induce greater innate and adaptive immune responses, 
including acute cytokine induction and HBV-specific Ab produc-
tion. Employing in  vitro human blood and mononuclear cell 
assays we demonstrated that (BCG  +  HBV) enhanced cytokine 
and chemokine production on both the protein and mRNA 
level. Strikingly, in  vivo immunization of neonatal [day of life 
(DOL)-0 and -7] and adult mice demonstrated that combined 
(BCG + HBV) vaccination induced anti-HBV-specific Ab titers 
in all three age groups at 21 days post-immunization relative to 
immunization with HBV alone. Overall, our studies provide fresh 
insight into a vaccine–vaccine interaction that may be the basis 
of enhanced immunization strategies for vulnerable preterm and 
term newborn populations.

MaTerials anD MeThODs

cord Blood collection
Moderate to late preterm (28 2/7–34 6/7 weeks GA) and term 
cord blood was collected at The Brigham and Women’s Hospital 
and the Beth Israel Deaconess Medical Center, both tertiary 
care centers for delivery and postnatal care of the preterm and 
term newborns. The details of our preterm study cohort are 
outlined in Table  1. The de-identified newborn cord blood 
(~15–60 ml) was collected immediately after caesarian section 
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TaBle 1 | Characteristics of human preterm, term, and adult study participants.

Preterm Term adult

Total number of  
individuals

10 15 14

Site of delivery BWH (7), BI (3) BWH (9), BI (6) N/A
Delivery mode 7 CS, 3 VD 15 CS N/A
Sex 6 F, 4 M 8 F, 8 M 6 F, 8 M
(Gestational) age 28/2–34/ 

6 weeks GA
37/0–41 
weeks GA

23–35 years old

Twins 1 set (Mono-Di) 1 set (pooled) N/A
Chorioamnionitis 6 no/4 unknown No N/A
HIV positive status No No No
Antibiotics 4 no/3 yes/3 unknown No N/A
Celestone 1 no/5 yes/4 unknown N/A N/A
Last celestone dose  
≥48 h before delivery

2 no/3 yes/5 unknown N/A N/A

BWH, Brigham and Women’s Hospital; BI, Beth Israel Deaconess Hospital; CS, 
Caesarian section; HIV, human immunodeficiency virus; VD, vaginal delivery; F, female; 
M, male; GA, gestational age; Mono-Di, monochorionic-diamniotic.
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or vaginal delivery of the placenta from a larger placental or 
umbilical vein under sterile conditions, as previously described 
(30). No cord blood samples from newborns born to human-
immunodeficiency virus-positive mothers were included. 
Samples were collected from both male and female newborns. 
Blood and blood-derived products were handled per applicable 
biohazard policies. As the type of anti-coagulant and length of 
storage prior to assay can affect cytokine production (31), we 
have established a routine standard of procedure in which 
blood was anti-coagulated with 15–20  U/ml pyrogen-free 
heparin sodium (Sagent Pharmaceuticals, Inc.; Schaumberg, 
IL, USA), and then kept at room temperature (RT) and pro-
cessed within 4 hours (h) of collection (typically 1–2 h). Each 
preterm placenta was histologically examined for signs of 
chorioamnionitis, and information on the timing of prenatal 
steroid administration, as well antibiotic administration was 
collected. Peripheral blood was collected from healthy adult 
male and female volunteers employed at BCH.

animals
C57BL/6 mice were obtained from Charles River Laboratories 
and housed in specific pathogen-free conditions in the animal 
research facilities at BCH. To obtain newborn mice, pregnant 
dams were purchased on pre-determined days of pregnancy and 
cages checked twice daily (~every 12 h) to assess for the presence 
of pups. Both male and female pups were used for experiments.

Vaccines and Whole Blood assay
~8  ml of fresh blood was processed for the whole blood assay 
as previously described (32). Briefly, neonatal cord (preterm 
and/or term) or adult whole blood was mixed 1:1 with sterile 
pre-warmed (37°C) RPMI 1640 medium (Invitrogen) and 180 µl 
of the 1:1 suspension added to each well of a 96-well U-bottom 
plate (Becton Dickinson) containing 20 µl freshly prepared HBV, 
BCG, (BCG + HBV) at 10× final concentration, testing stimuli 
at a 5-point concentration–response curve based on published 
data (12, 33). As sources of BCG and HBV, we used the Danish 
Strain 1331 (Statens Serum Institut, Copenhagen, Denmark) and 

Recombivax® HB (Merck and Co, Inc.), respectively. Suspensions 
containing 200 μl/well were gently mixed by pipetting and incu-
bated at 37°C in a humidified incubator at 5% CO2 for 6 h.

elisa and Multiplex cytokine analysis
After treatment of the preterm, term, and adult blood with the 
described vaccines for 6 h, the plates were centrifuged (10 min, 
RT, 500 g), and supernatants collected and stored in three aliquots 
at −80°C for subsequent TNF (BD Biosciences Human TNF 
ELISA) and IL-1β ELISA (eBioscience Human IL-1β ELISA) 
and for subsequent multiplexing assays for Th1 (TNF, IL-1β, 
IL-12p70, IFNα, and IFNγ) and Th2 (IL-6, IL-10, and IL-12p40), 
and Th17 (IL-6, IL-1β) polarizing cytokines (Milliplex Human 
Magnetic Bead Panel; Millipore; Chicago, IL, USA). Data were 
analyzed on the Luminex® 100/200™ System using xPOTENT® 
software (Luminex; Austin, TX, USA).

isolation of cord Blood Mononuclear  
cells (cBMcs) and Peripheral Blood 
Mononuclear cells (PBMcs) and  
In Vitro stimulation
From each whole blood sample collected, matched PBMCs and 
CBMCs were isolated using Ficoll density gradient method-
ologies and cryopreserved for further downstream stimulation 
experiments (12, 33). MCs were stored at 50 million cells per vial 
in 1 ml RPMI containing 20% autologous plasma and 10% DMSO  
at −80°C until use. After a standardized thawing procedure, 
PBMCs and CBMCs isolated from human donors were resus-
pended at a concentration of 2 × 106 cells/1000 µl of RPMI sup-
plemented with 10% of autologous platelet-poor plasma. Cells 
were stimulated for 4 h with either HBV, BCG, or (BCG + HBV) 
(each at 1:1,000, 1:100, 1:10  vol/vol) and cells washed with ice 
cold PBS prior to addition of RLT buffer (RNeasy Lysis Buffer, 
Qiagen, MD, USA) and storage at −80°C for subsequent RNA 
isolation.

gene expression analysis by Quantitative 
real-time Pcr array
Total RNA was extracted from lysates of vaccine-stimulated 
PBMCs and CBMCs using the Qiagen RNeasy Minikit and 
DNAse treatment performed using the Qiagen RNAase Free 
DNAase set all per the manufacturer’s instructions. RNA concen-
trations were determined using the Nanodrop 1000 and cDNA 
generated using the Qiagen RT2 First Strand Kit. 96-well PCR 
array analysis was performed using the Qiagen standardized 
Innate and Adaptive Immune Reponses PCR Array (PAHS-0522A) 
and RT2 qPCR roxSYBR green kit. Web-based PCR array analyses 
(RT2 Profiler PCR Array Data Analysis version 3.5) was used 
and normalized to five reference genes (B2M, HPRT1, RPL13A, 
GAPDH, and ACTB). Relative quantification of gene expression 
was calculated by the ΔCt (relative expression × 104). Multivariate 
biplots of principal component analyses were performed in R 
3.4.2 using ggplot2, ggord, and vegan packages using log-fold 
transcript abundance of gene arrays in each group. Genes were 
sorted using unsupervised hierarchical heatmap clustering of 
log-fold changes using the heatmap2 package.
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immunization and anti-recombinant  
hBV surface antigen (rhBsag)-specific 
ab Quantification, subtype classification, 
and avidity Determination
For immunization experiments, mice of three age groups were 
used: the first group of mice were given their first immunization 
(prime immunization) on DOL0; the second group of mice on 
DOL7, and in the third group at 6–8 weeks of life. Each of the 
three age groups were divided into five immunization groups: 
saline; BCG (Organon Teknika/Merck, Durham, NC, USA) 
alone; HBV vaccine alone; (BCG + HBV) as a combined admixed 
injection; and BCG with HBV vaccine administered separately. 
All immunizations were injected subcutaneously (s.c.). If one 
injection was performed per animal, it was performed into the 
right posterior thigh, if two separate injections were performed 
they were performed either into the right and left posterior thighs 
(DOL7 mice; adult mice) or in DOL0 mice into the right posterior 
thigh (HBV) and the scruff (BCG). The injection volumes were 
50 µl of vaccine (or vaccine combination)/injection in the adult 
animals and 25 µl of vaccine (or vaccine combination)/injection 
in the newborn animals (DOL0 and DOL7). The injection dose 
of Recombivax® was 0.25  µg of rHBsAg for the adult animals 
and 0.125 µg in the newborn pups (DOL0 and DOL7) diluted in 
0.9% NaCl Inj (USP). We chose to administer half HBV doses in 
the newborn as this is an established approach in human clinical 
vaccinology (ACIP recommendations for hepatitis B immuniza-
tion). The injection dose for BCG was 0.4  ×  106  CFU for the 
adult animals and 0.2 × 106 CFU for the pups (DOL0 and DOL7) 
diluted in 0.9% NaCL Inj (USP). We selected the BCG dose based 
on published literature in neonatal mice (12, 26). The selected 
dose of HBV was slightly lower than that routinely used in other 
murine studies (34) and reflected the volume limitations inher-
ent to administration of two vaccines. We conducted preliminary 
experiments to confirm that we could obtain measurable Ab titers 
with the chosen concentration of HBV in all age groups. Mice 
were immunized with a prime-boost schedule; a primary immu-
nization; and a secondary (booster) immunization, 2 weeks apart. 
Serum samples were obtained from blood collected via tail vein 
or artery nick as indicated for Ab detection. rHBsAg-specific IgG 
were quantified by ELISA. High binding flat bottom 96-well plates 
(Corning Life Sciences) were coated with Recombivax® diluted 
to 1  µg/ml in carbonate buffer pH 9.6, incubated overnight at 
4°C, and blocked with PBS + BSA 1% (Sigma-Aldrich) for 1 h at 
RT. Then, sera from immunized mice were added with an initial 
dilution of 1:100 and 1:3 serial dilutions in PBS + BSA 1% and 
incubated for 2 h at RT. Plates were then washed and incubated 
for 1 h at RT with HRP-conjugated anti-mouse IgG, IgG1, IgG2c 
(Southern Biotech). At the end of the incubation, plates were 
washed again and developed with tetramethylbenzidine (BD 
Biosciences) for 5 min, then stopped with 2N H2SO4. The optical 
density was read at 450 nm on a Versamax microplate reader with 
SoftMax Pro Version 5 (both from Molecular Devices), and end-
point titers were calculated using as cutoff two times the optical 
density of the background (35). For assessing Ab avidity, plates 
were incubated 15 min with ammonium thiocyanate 0.5 M before 
the addition of HRP-conjugated Abs. Avidity was expressed as 

the LogEC50 ratio of corresponding plates treated with or without 
ammonium thiocyanate (36).

statistical analyses and graphics
Data were analyzed and graphed using Prism for MacIntosh v. 7.0  
(GraphPad Software). Tests used for statistical comparisons 
are indicated in figure legends. p value  <  0.05 was considered 
significant. An adaptation of the Loewe method of additivity (37) 
was used to assess whether cytokine production after stimulation 
with (BCG  +  HBV) was synergistic, additive, or antagonistic. 
Concentration–response curves were subjected to regression 
analysis to determine the slope and y-intercept of each curve in 
the exponential phase. The formula D = [Ac]/[Ae] + [Bc]/[Be] 
was used, where [Ac] = the concentration of (HBV) used in the 
combination of (HBV + BCG) that results in half the maximal 
TNF production measured with the combination of both vac-
cines; [Ae] = the concentration of HBV used alone that results in 
half the maximal TNF production measured with the combina-
tion of (HBV + BCG); [Bc] = the concentration of BCG used in 
the combination of (HBV + BCG) that results in half the maximal 
TNF production measured with the combination of vaccines; and 
[Be] = the concentration of BCG used alone that results in half 
the maximal TNF production measured with the combination of 
(BCG + HBV). If D = 1: (HBV + BCG) act additively, if D > 1: 
(HBV + BCG) act antagonistically, and if D < 1: (HBV + BCG) 
act synergistically. Our laboratory has employed this interaction 
analysis method in other recently published studies (13, 38, 39).

resUlTs

(Bcg + hBV) synergistically enhances 
il-1β Production in Preterm, Term, and 
adult Whole Blood
The in vitro whole blood assay is a useful tool to characterize the 
effects of vaccines on cytokine production as it enables testing of 
moderate number of different vaccine formulations, at multiple con-
centrations in a sample from a single individual (13, 38, 40). To assess 
whether (BCG + HBV) may enhance NF-κB and inflammasome- 
mediated cytokine induction compared to HBV alone, we com-
pared (BCG + HBV) with identical concentrations of BCG and 
HBV in its ability to stimulate TNF and IL-1β production in pre-
term (Figure 1A,D) or term cord (Figure 1B,E) or adult periph-
eral blood (Figure 1C,F). In all three age groups, (BCG + HBV) 
significantly increased TNF and IL-1β secretion relative to RPMI 
controls and also secretion of IL-1β relative to HBV alone. Using 
the Berenbaum equation to assess drug–drug interactions, the 
interaction between HBV and BCG with regard to TNF was addi-
tive or antagonistic (Table 2). However, with respect to IL-1β, the 
combined vaccine effect was synergistic, defined as a D-value < 1, 
especially so in the term followed by the preterm, and least pro-
nounced in the adult (Table 2). Of note, IL-1β is important to 
immunogencity of ALUM-adjuvanted vaccines (41), has a role in 
neutrophil recruitment and in Ab production, and has been used 
as an adjuvant (42–45). Figure  1 also demonstrates that BCG 
alone is a potent inducer of both TNF and IL-1β in whole blood of 
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TaBle 2 | Quantification of (Bacille Calmette–Guérin + hepatitis B vaccine) 
synergism.

age groups D-value interpretation

TnF
Preterm 13.1064 Inhibitory
Term 1.3557 Additive
Adult 1.0777 Additive

il-1β
Preterm 0.6398 Synergy
Term 0.3506 Synergy
Adult 0.7233 Synergy

FigUre 1 | Concurrent stimulation with [Bacille Calmette–Guérin (BCG) + hepatitis B vaccine (HBV)] synergistically enhances IL-1β production in human preterm, 
term, and adult whole blood. Preterm (a, D), term (B, e), and adult (c, F) whole blood was stimulated with HBV alone, BCG alone, or (BCG + HBV) at 1:10 v/v. 
After 6 h, supernatants were analyzed for TNF (a–c) and IL-1β (D–F) cytokine production by ELISA. Statistical significance was determined by Kruskal–Wallis with 
Dunn post hoc test. *p < 0.05, **p < 0.01. N = 7–8 preterm, N = 10–11 term newborns, and N = 10–11 adults.
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all age groups and in this context is likely the driving component 
behind this vaccine interaction.

The combination of Bcg and hBV Vaccine 
stimulates secretion of numerous 
cytokines and chemokines in Preterm, 
Term, and adult Whole Blood
Having established that (BCG  +  HBV) enhance TNF and 
IL-1β production by preterm and term whole blood, we next 
characterized the cytokine profiles induced by these vaccine 
treatments in more detail employing multiplex cytokine analysis 
on the isolated supernatants. As shown in Figure 2, cytokines sig-
nificantly induced in preterm or term cord blood by the vaccine 
combination relative to RPMI control and/or HBV vaccine alone 
included CSF2 (GM-CSF), IL-6, IL-10, CXCL8, CCL2, and CCL3. 
Interestingly, IL-12p70 was significantly induced by the vaccine 
combination in the preterm. Of note, the similarity of the BCG 
cytokine/chemokine profile to that induced by (BCG  +  HBV) 
suggested that the vaccine combination effect was mainly driven 
by BCG.

hBV, Bcg, and (Bcg + hBV) induce 
Distinct rna Transcription clusters in 
cBMcs/PBMcs isolated from Preterm, 
Term, and adult individuals
To investigate how addition of BCG to HBV vaccination alters 
gene expression patterns at the mRNA level, RNA isolated from 

neonatal CBMCs (term and preterm) or adult PBMCs stimulated 
for 4 h with vehicle (control), BCG, HBV, or (BCG + HBV) was 
subjected to quantitative real-time PCR array comprised of 84 
genes in human innate and adaptive immune pathways. mRNA 
levels were quantified in 4–5 individuals/group. Figure 3 shows 
that there were increases in expression of several cytokine and 
chemokine transcripts upon mononuclear cell stimulation 
with (BCG + HBV) compared to unstimulated or HBV-treated 
cells. Some of them reached statistical significance in all  
(i.e., CSF2) or some age groups (i.e., CXCL8 in preterms and 
adults). Interestingly, some of these genes encode proteins with 
defined roles in vaccine efficacy (13, 42–48). Figure 4A demon-
strates treatment-driven segregation of age groups by a principle 
component biplot of mRNA gene expression data. The points 
representing age and treatment group (open circles) approximate 
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FigUre 2 | Cytokine and chemokine profiles induced by hepatitis B vaccine (HBV) and Bacille Calmette–Guérin (BCG) in human preterm, term, and adult whole 
blood. Preterm, term, and adult whole blood was stimulated for 6 h with either HBV, BCG, or (BCG + HBV) and supernatants analyzed via Multiplex Cytokine 
Analysis. Statistical significance was determined by repeated measure or ordinary one-way ANOVA with Holm-Sidak post hoc test (or their non-parametric 
equivalent Friedman or Kruskal–Wallis with Dunn post hoc test). *p < 0.05, **p < 0.01 of preterm vs. term vs. adult; #,+p < 0.05, ##,++p < 0.01 of groups indicated by 
the corresponding color, respectively, vs. saline or HBV. N = 7 preterm newborns, N = 6 term newborns, N = 7 adults.
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gene expression patterns between groupings. The unsupervised 
hierarchical heat map in Figure 4B demonstrates similar cluster-
ing by treatment and outlines in a red to blue scale high to low 
gene expression per gene.

(Bcg + hBV) significantly enhance the 
level of anti-rhBsag-specific igg Titers  
in neonatal Mice (immunized on DOl0  
and DOl7) but not adult Mice
To assess the impact of (BCG + HBV) in vivo, we turned to a 
murine model. Mice at DOL 0–5 have been utilized as a model 
for preterm innate and adaptive immunity (49, 50) while mice 
at DOL7 have been used to model the term newborn (4, 15, 
51–53). We made use of these age-specific models to investigate 
whether BCG can enhance early-life immunization with HBV, 
for which anti-Hepatitis B sAg Ab titers are the established 
correlate of protection (54). Figure 5A demonstrates the sched-
ule according to which the mice of all three age groups were 
prime-immunized and booster immunized 2  weeks later. The 
age at prime immunization was DOL0 (the “preterm” group, 
n = 9–14), DOL7 (the “term” group, n = 14–16) and 6–8 weeks 
for the adult group (n =  15–17). These data were acquired in 

two separate experiments, each of which included all three age 
groups and within each age group all five treatment groups. The 
linear graphs represent median anti-rHBsAg IgG titers over time 
post-prime immunization (Figure  5B). The box-and-whisker 
plots depict Ab titers 21 and 42 days post-prime immunization. 
To assess whether the potential beneficial effect of addition of 
BCG to HBV depends on co-administration of both vaccines 
into the same site, we differentiated two combined treatment 
groups: one in which (BCG  +  HBV) were combined (i.e., 
admixed) and injected into the right flank s.c. and one in which 
HBV was injected into the right thigh and BCG was injected 
either into the scruff (neonatal mice on DOL0) or left thigh 
(neonatal mice on DOL7 and adult mice). Addition of BCG 
to HBV significantly enhanced Ab responses at 21  days post-
prime immunization in neonatal mice immunized on DOL0 
and DOL7 but not in adult mice. Whereas in DOL0 mice, it 
was the separate injection of BCG and HBV that significantly 
enhanced anti-rHBsAg IgG titers, the combined injection was 
the administration technique that lead to enhanced Ab titers 
in DOL7 mice. While this effect was sustained at D42 post-
prime immunization in mice immunized on DOL0, it was no 
longer evident in neonatal mice prime-immunized on DOL7 
(Figure 5C). Interestingly, switching toward IgG2c was observed 
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FigUre 3 | Gene expression profiles induced by hepatitis B vaccine (HBV) and Bacille Calmette–Guérin (BCG) in human preterm, term, and adult mononuclear 
cells. Preterm and term cord blood mononuclear cells, and adult peripheral blood mononuclear cells was stimulated for 4 h with either HBV, BCG or (BCG + HBV) 
and cells were harvested for quantitative real-time PCR analysis. Statistical significance was determined by repeated measure or ordinary one-way ANOVA with 
Holm-Sidak post hoc test (or their non-parametric equivalent Friedman or Kruskal–Wallis with Dunn post hoc test). *p < 0.05, **p < 0.01 of preterm vs. term vs. 
adult; #,+p < 0.05, ##,++p < 0.01 of groups indicated by the corresponding color, respectively, vs. saline or HBV. N = 4–5/group.
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only in adult mice immunized with (BCG + HBV) (Figure S1 in 
Supplementary Material). In addition, BCG did not significantly 
modulate Ab avidity, suggesting that BCG did not affect affinity 
maturation of anti-rHBsAg Abs (Figure S2 in Supplementary 
Material).

DiscUssiOn

In this study, we have demonstrated for the first time that BCG, 
alone or when coadministered with HBV in a neonatal context, 
can enhance human innate cytokine responses in vitro. Moreover, 
we show that BCG can enhance hepatitis B antigen-specific 
murine adaptive responses in vivo. These observations are impor-
tant in that newborns and young infants are highly susceptible 
to infection with intracellular pathogens including viruses, such 
as hepatitis B virus. Acquisition of hepatitis B virus during the 
newborn period carries risks of developing both hepatocellular 
carcinoma and liver cirrhosis. Moreover, most licensed vaccines, 
including HBV, are not optimally effective at birth and require 
multiple booster immunizations later in life despite the fact that 
hepatitis B immunization in newborns induces higher primary 
and memory Ab responses than in adults (55). Under the current 

immunization schedule with an ALUM adjuvanted HBV vac-
cine, the term newborn does not reach a status of immunological 
protection against HBV, as measured by titers of anti-rHBsAg 
Abs, until 6 months of life. For the preterm newborn with a birth 
weight <2 kg the unmet need to enhance responses to HBV is 
exacerbated by the fact that a birth dose is not recommended 
as priming has been inefficient in this population. With age-
specific differences in the quantity and quality of cellular and 
soluble factors playing a role (56), the neonatal immune system 
is distinct from that of infants and adults, with bias toward 
induction of regulatory T  cell and Th2-type T  cell responses. 
Distinct early-life immunity limits the efficacy of adjuvants that 
activate newborn DCs to produce Th1-polarizing cytokines. The 
preterm newborn, in addition to demonstrating low innate Th1 
support, demonstrates a low TLR-mediated production of Th17-
supporting cytokines, with robust anti-inflammatory IL-10 levels 
(57–60). Combined stimulation of newborn cells through certain 
combinations of PRRs may potentially overcome the early-life 
bias against Th1 responses (30, 38, 61). In summary, there is an 
unmet need for early-life vaccine strategies that provide earlier 
protection against HBV infection for the term and in particular 
for the preterm infant.
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FigUre 4 | Principal component analysis of gene expression data reveals treatment-specific segregation of different age groups. Gene expression data were 
generated as outlined in Figure 3. (a) Principal components analysis biplot of mRNA gene expression data where observations (samples) are points and gene 
expression profiles are arrows shows dominant clustering of profiles by treatment. The distance between points approximates gene expression pattern differences 
among groupings. Arrows indicate genes that have greater biplot scores and drives the differences between groups. Arrowheads close to a particular group indicate 
genes are expressed at a greater relative abundance differences in those samples. (B) Unsupervised hierarchical heatmap shows clustering of treatments 
demonstrating log2-fold changes, expression values of genes in each sample; red to blue scale represent intensity of fold changes per genes (red indicates up, blue 
indicates down). Each row means individual gene and each column indicates groupings of age and treatment. P, preterm; T, term; A, adult.
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While HBV immunization of the term infant effectively 
reduces chronic Hepatitis B infection in countries with universal 
neonatal immunization, the window of vulnerability in term and 
preterm infants at birth (into infancy) is still a major concern. 
This concern could be addressed by maternal or an optimized 
(one dose) HBV immunization of the newborn at birth. The com-
mon goal among maternal vaccination programs is temporary 
protection of the young infant against severe illness and death by 
ensuring sufficient and timely transfer of protective antibodies 
from the mother (62). Unfortunately, while some attempt have 
been made, clinical studies of vaccination against hepatitis B 
have showed lower immunogenicity in pregnant women than in 
nonpregnant women (63, 64). Regarding improved immuniza-
tion of the newborn, as the Center for Disease Control outlines, 
worldwide, most people with chronic Hepatitis B are infected 
at birth or during early childhood. While a positive mother is a 
significant source of risk for Hepatitis B infection as a newborn, 
the recommendation to administer Hepatitis B vaccination at 

birth in many countries including the United States is based on 
the understanding that asymptomatic chronic carriers within the 
family and family contacts can be a significant risk for infection 
in the neonatal period (ACIP, recommendations for Hepatitis B 
immunization).

BCG is the most commonly administered vaccine in world 
history with billions of doses given globally at or soon after birth to 
protect against disseminated TB during infancy (65). In addition 
to its protective effects against TB, for which there is no established 
correlate of protection, BCG administration may also enhance Ab 
responses to unrelated pathogens in human newborns and infants 
(20, 27, 28) and in newborn mice (26). Protective heterologous 
effects of certain live-attenuated vaccines including BCG have 
been demonstrated that reduce morbidity and mortality beyond 
what can be attributable to prevention of the target disease (23, 
25). BCG activates TLRs, including TLR2 and TLR4 (66), as well as 
C-type lectin receptors (CLRs) such as Dectin-1 and macrophage-
inducible C-type lectin (Mincle) (67–70), resulting in strong 
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FigUre 5 | Combined immunization of newborn mice with Bacille Calmette–Guérin (BCG) and hepatitis B vaccine (HBV) in vivo enhances anti-recombinant HBV 
surface antigen (rHBsAg) IgG titers 21 days post-immunization. (a) Schematic representation of the immunization and blood draw schedule for the in vivo 
experiments: prime immunization was administered either on day of life (DOL) 0, DOL7, or at 6–8 weeks of life with either saline, BCG, HBV vaccine, BCG and HBV 
in a combined s.c. injection or BCG and HBV vaccine injected in separate sites. Booster immunization was performed with either saline in the mice prime-
immunized with saline or BCG, or with HBV vaccine in the mice prime-immunized with either HBV vaccine alone, or BCG and HBV (either in combined or separate 
injection). Blood draws in the adult mice were obtained prior to prime immunization, prior to booster immunization, at 21 days and at 42 days post-prime 
immunization. Blood draws in the neonatal mice immunized on DOL7 were performed prior to booster immunization, at 21 days and at 42 days post-prime 
immunization. Blood draws in the mice immunized on DOL0 were obtained at 21 days and at 42 days post-prime immunization. Some neonatal mice from both the 
group immunized on DOL0 as well as DOL7 were sacrificed for a baseline blood draw prior to prime immunization. (B) Anti-rHBsAg IgG titers in mice immunized on 
DOL0, mice immunized on DOL7 and at 6–8 weeks of life. (c) Fold change over the HBV vaccine immunized group of the median anti-rHBsAg IgG titers. N = 9–14/
group for the mice immunized on DOL0; N = 14–16/group for the mice immunized on DOL7; N = 15–17/group for the mice immunized at 6–8 weeks of life. Data 
are representative of two independent experiments each of which included all three age groups and within each age group all five treatment groups. Statistical 
analysis of differences between the treatment groups was performed via Kruskal–Wallis test with Dunn’s post hoc test. *p < 0.05, **p < 0.01.
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Th1-biased immune responses. Of note, combined TLR and CLR 
activation synergistically enhances Th1- and Th17-cytokine induc-
tion in human newborn monocyte-derived dendritic cells (38), 
raising the possibility that engagement of multiple PRRs by BCG 
may contribute to the observed enhancement of HBV immuno-
genicity. Accordingly, we examined the cytokine profiles induced 
by (BCG +  HBV) relative to HBV alone in term and moderate 
to late preterm human infants on the protein and mRNA levels 
in vitro and then to examine the impact of cytokine polarization on 
the adaptive anti-rHBsAg-specific Ab production in vivo utilizing 
both mice on DOL0 as well as DOL7 to mirror different levels of 
immune ontogeny.

Our study characterized (BCG  +  HBV)-induced human 
leukocyte cytokine profiles at different GAs at the protein and 
mRNA level. Of these IL1B, IL6, CSF2, and TNF were key drivers 
of gene clustering in the principal component analysis by treat-
ment instead of by age. The interleukins induced are particularly 
noteworthy as they have been associated with enhanced adap-
tive immunity: (a) IL-1β, whose production was synergistically 
induced by (BCG + HBV) in human preterm and term cord blood 
as well as peripheral adult blood in  vitro, is an inflammasome-
produced cytokine that may improve vaccine immunogenicity 
(42–45), having a role in neutrophil recruitment (71) and in Ab 
production (72) and has been used directly as an adjuvant (73). 
Indeed, IL-1β has been implicated as important to immunogenic-
ity of HBV, in particular anti-HBsAg Ab responses (74–76) and 
(b) IL-6, a Th17-polarizing cytokine that stimulates differentiation 
and maturation of B cells to Ab-producing plasma cells, stimulates 
T cell proliferation, and is a murine adjuvant (46, 47, 77).

In neonatal mice, compared to HBV alone, we found that 
(BCG + HBV) induced significantly higher anti-rHBsAg-specific 
IgG levels at 21 days after prime immunization. In DOL0 mice, 
this effect was significant when BCG and HBV were injected 
into separate sites, in DOL7 mice this effect was significant when 
both vaccines were injected in combination. Although it should 
be recognized that the kinetics of immune ontogeny are distinct 
in mice compared to humans, this relatively early effect of BCG 
co-administration is intriguing. If such enhancing effects of 
BCG would extend to humans, they may fall within the window 
of susceptibility inherent to current term infant immunization 
schedules, prior to completion of HBV booster immunization. 
While in adult mice, the (BCG  +  HBV) group demonstrated 
higher Ab titers, the difference relative to HBV alone did not 
reach statistical significance. A surprising finding of this study 

was the observation that in the DOL0 mouse the separate injec-
tion of BCG and HBV compared to a combined injection in the 
same age group was the potent route of administration whereas 
in both the DOL7 mouse as well as in the adult mouse, the 
combined injection was more effective than the separate admin-
istration. This observation could reflect age-specific immunity 
and deserves further investigation. In summary, our study 
demonstrates that (BCG + HBV) synergistically induced IL-1β 
in vitro and enhanced neonatal anti-rHBsAg-specific Ab titers at 
an early stage post prime and first booster immunization in vivo. 
Given evidence in mice and humans that IL-1β production 
enhances the magnitude of HBV-induced Ab responses (74–76), 
we speculate that robust (BCG + HBV)-induced inflammasome 
activation may contribute to the observed enhancement in HBV 
immunogenicity.

Our study features many strengths including, to our knowl-
edge, multiple novel aspects: (a) an age-specific approach to 
characterizing vaccine–vaccine interactions including study of 
preterm humans and newborn DOL0 mice, reflecting aspects of 
preterm humans who represent ~11% of all global live births and 
are particularly susceptible to infection (3); (b) human in vitro 
modeling of (BCG + HBV) effects, in a way that reflects immune 
ontological differences present in these age groups in  vivo;  
(c) evaluating the impact of vaccine–vaccine interactions on 
innate cytokine induction using mathematical and bioinformatic 
approaches, and (d) characterizing age- and administration- (e.g., 
combined vs. separate injections) specific BCG-HBV interactions 
in newborn mice in vivo.

Our study also has a number of limitations. With regard to 
our in  vitro systems, although providing potentially valuable 
human data that have predicted adjuvantation effects in vivo (13), 
they may not optimally reflect vaccine effects in vivo. The use of 
a whole blood assay aims to reflect in  vivo conditions includ-
ing differences in cell quantity and immunphenotype between 
the neonate and the adult. Consequently, whole blood data are 
limited with regard to the ability to ascribe cytokine differences to 
single cell function or cell composition (78). Moreover, there are 
differences in the functionality and composition of mononuclear 
cells from adult individuals and mononuclear cells derived from 
neonatal cord blood (e.g., more predominantly lymphocytic) 
(78). Potential confounders in the use of preterm cord blood 
include maternal disease such as preeclampsia, a disease not 
captured in our collection of data for the preterm cord blood 
samples. We were able to limit the effects of steroid exposure on 
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our sample collection for a group of preterm cord blood samples 
as steroids were known to have been given over 48  h prior to 
cord blood collection (Table 1). We also recognize that attention 
must by paid to the type of anti-coagulant used for peripheral 
or cord blood collections as the type of cytokine used can affect 
cytokine production. We chose pyrogen-free anti-coagulant 
heparin sodium because it is certified to be endotoxin-free. 
Future studies may need to compare the results obtained with 
other methods of anti-coagulation, such as EDTA. Our in vivo 
studies feature distinct species (mouse) and route of adminis-
tration (subcutaneous) from human newborns (intradermal). 
Indeed, we were not able to demonstrate higher primary anti-
HBV Ab responses in our neonatal mice relative to our adult 
mice as has been previously demonstrated in humans (55).  
Nevertheless, the cogent pattern of enhanced age-dependent HBV 
responses in the presence of BCG, mirroring those observed in 
some clinical cohorts (20) suggests that our data may be relevant 
to the effects of these vaccines in human newborns in vivo.

Future work will be necessary to elucidate the immunological 
mechanisms involved in the BCG adjuvantation phenomenon 
described here, and hence enable design of a new generation 
of vaccines that recapitulate desirable features of the live vac-
cine BCG as (a) a single dose effectiveness and (b) induction of 
both adaptive and trained immunity. At this point, it is unclear 
whether the observed BCG-driven phenomena relate mechanis-
tically to “heterologous” effects that could be mediated by trained 
immunity (79). In addition to informing optimization of the use 
of BCG vaccine together with other vaccines, characterizing 
BCG-induced enhancement of Ab titers in response to unrelated 
vaccines may inform development of “BCG-like” adjuvantation 
systems (12). Furthermore, of importance to global health, these 
findings support the hypothesis, that in the appropriate context in 
countries in which neonatal immunization with BCG is recom-
mended, concurrent administration of (BCG + HBV) at birth to 
the moderate to late preterm and term newborn may enhance the 
protective response to HBV immunization. Of note, in relatively 
small preterm studies thus far, BCG has been immunogenic and 
safe when administered to the moderately to late preterm infant 
[31–33  weeks GA] (80). Further studies of the safety, efficacy 
and mechanism of action of the combination of (BCG + HBV) 
compared to each alone in newborn animals, including humans, 
will shed further light into this important area crucial to the 
protection of the most vulnerable among us.
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