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SUMMARY
There is unprecedented opportunity to usemachine learning to integrate high-dimensionalmolecular datawith
clinical characteristics to accurately diagnose and manage disease. Asthma is a complex and heterogeneous
disease and cannot be solely explained by an aberrant type 2 (T2) immune response. Available and emerging
multi-omics datasets of asthma show dysregulation of different biological pathways including those linked to
T2 mechanisms. While T2-directed biologics have been life changing for many patients, they have not proven
effective for many others despite similar biomarker profiles. Thus, there is a great need to close this gap to un-
derstand asthma heterogeneity, which can be achieved by harnessing and integrating the rich multi-omics
asthma datasets and the corresponding clinical data. This article presents a compendium of machine learning
approaches that can be utilized to bridge the gap between predictive biomarkers and actual causal signatures
that are validated in clinical trials to ultimately establish true asthma endotypes.
INTRODUCTION

Over the past decade, technologies for deep profiling of the hu-

man system, across a range of disease contexts, have become

readily available. These include a wide range of molecular pro-

files built on genomic, epigenomic, transcriptomic, proteomic,

metabolomic, and antibody-omic datasets.1 A key aspect of

these developments has been the advent of single-cell method-

ologies.2 These technologies are providing deep molecular

snapshots of diverse cell types in which molecular interactions

at different levels maintain homeostasis in health but are dysre-

gulated in disease. To identify features that differentiate health

from disease, existing studies have often focused on individual

omic datasets, which provide a deep molecular profile of only

one aspect of biological regulation. A combination of omic data-

sets can provide a significantly enhanced and holistic picture of

interactions across the components underlying the pathophysi-

ology of disease processes.1,3–5 With rapid advances in modern

machine learning, a suite of approaches has become available to

integrate these high-dimensional multi-modal datasets. An

important distinction here is between artificial intelligence (AI)

and machine learning. Broadly, AI connotes ‘‘imparting’’ human

intelligence to machines, and its application is evident in a range

of contexts that includes clinical decision-making, biomarker
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discovery, drug discovery, 3D printing, and even self-driving

cars.6–12 Machine learning is a subset of AI focused on learning

patterns or relationships (both discriminative and generative)

from data.6 In this article, we have focused on how modern ma-

chine learning techniques can be used to unravel the complexity

and heterogeneity of asthma, both to define disease endotypes

and outcomes, as well as to complement clinical practice with

patterns learned from multi-omics datasets. These techniques

encompass both data-centric approaches that attempt to

improve model performance by augmenting the underlying

data (i.e., by collecting additional layers of multi-modal data),

as well as model-centric approaches that attempt to improve

performance by improving the actual modeling approach. The

two have complementary strengths and are appropriate in

different contexts. We also draw key distinctions between the

use of these machine learning approaches in prediction (e.g.,

defining correlates/predictive biomarkers) and inference of

actual molecular mechanisms.

DEFINING ASTHMA ENDOTYPES

Despite the appreciation that ‘‘asthma,’’ as a chronic disease, is

considered to be at the forefront of the world of precision med-

icine, the approaches and, importantly, their application in the
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clinic remain rudimentary at best. While it is broadly appreciated

that the term ‘‘asthma’’ is an umbrella term that encompasses

multiple different clinical and molecular phenotypes,13 there re-

mains considerable controversy as to what are (1) the ‘‘true’’

endotypes and the factors driving them, (2) the long-term impli-

cations for both outcomes and treatment, and (3) how best to

practically and inexpensively identify them. This section will

explore the role that AI/machine learning has played in these

areas to date, but perhaps more importantly, the role it can

play moving forward.

Clinical heterogeneity of asthma has been appreciated for de-

cades, due in part, to the broad, definition of the disease: non-

specific respiratory symptoms (wheeze, chest tightness, and/

or shortness of breath) in the presence of physiologically

confirmed reversible lower airway obstruction or hyperrespon-

siveness. Using human-based neurocognitive machine learning,

astute clinicians observed distinct differences in clinical charac-

teristics according to age at onset of symptoms and the relation

to atopy/allergy, sinus disease, and asthmatic reactions to

aspirin and other cyclooxygenase inhibitors.14,15 However, the

emergence of non-specific short-acting beta agonists and corti-

costeroids (CS) as the cornerstone of treatment for most patients

with asthma for decades nearly eliminated the concept of hetero-

geneity. This instead enhanced the concept that all asthma was

the same and should be treated the same, likely setting back

studies of its molecular underpinnings and the development of

successful targeted therapies.

THE EMERGENCE OF MOLECULAR PHENOTYPING

Since the early 2000s, it became increasingly recognized that,

indeed, not all asthma patients responded to CS. Pathologic

studies of these severe, poorly CS-responsive patients showed

heterogeneity, and the first reports of efficacy of biologic agents

in biomarker-targeted subgroups helped propel asthma into the

age of precision medicine.16–18 These efforts have now been

translated into the clinic, and in almost all specialty practices, pa-

tients with a clinical diagnosis of asthma are characterized on the

basis of at least one and sometime two biomarkers: blood eosin-

ophils and fraction exhaled nitric oxide (FeNO). Variably identi-

fied as eosinophilic asthma or type-2 high (T2-Hi) asthma, these

two simple biomarkers have identified asthma patients who

generally respond to blockade of the type 2 (T2) cytokines,

IL-4, -5, and/or -13. While this approach has improved clinical

outcomes, this simple T2 biomarker approach remains limited

in its ability to identify the highest risk patients or those who

respond the best.

MOVING TOWARD ENDOTYPES

For many, this association of T2 biomarkers with efficacy of tar-

geted therapy has promoted the concept of endotype. While the

definition of an endotype is still controversial, there is increasing

consensus that an endotype is a subtype of a health condition

defined by a distinct functional or pathobiological mechanism.

This necessity for a confirmed mechanism differentiates endo-

type from phenotype, which in its highest form is a collection

of linked clinical, physiological, and/or cellular/molecular char-
2 Cell Reports Medicine 3, 100857, December 20, 2022
acteristics, without a known essential molecular driver. With

effectiveness of monoclonal antibodies toward IL-4 receptor

alpha (IL4Ra), IL-5, and its receptor (IL5RA) in patients with ele-

vations in T2 biomarkers, the concept of a T2 endotype mecha-

nistically driven by these cytokines has been promoted.19–21 Yet,

further inspection of the data regarding the essential nature of T2

cytokines to all patients fulfilling the current simple biomarker

criteria reveals a vast range of responses to these therapies,

from truly life changing to minimal improvement to actual wors-

ening of disease (or concomitant side effects). It seems likely

that in addition to the T2 cytokine profile, additional factors,

including baseline clinical, metabolic, and immune characteris-

tics, may collectively determine treatment efficacy.21,22 Thus, it

is likely that defining an endotype of T2-Hi asthma, using

biomarker criteria alone, is premature. The unprecedented and

even curative responses to T2 biologics in some patients do,

however, support the identification of a true T2-Hi endotype in

a minority of patients. In these patients, T2 pathways could be

a true critical node for the pathobiology of the endotype. In

others, with similar T2 biomarker elevations, T2 pathways could

be only one of several intersecting non-critical nodes, reac-

tionary, parallel, and even non-contributory. While clinical char-

acteristics such as age at onset and concurrent nasal polyps

may predict responses,22 the complexmolecular characteristics

that determine responses to T2-targeted therapies remain un-

known. Collectively, given that immune-mediated inflammatory

mechanisms are clearly at play in asthma, the challenge is to

identify the key cytokine hubs that orchestrate disease in each

patient for maximum therapeutic efficacy, as also true in other

immune-mediated inflammatory diseases.23

Molecular studies of asthma and severe asthma, where the

current highest need exists, are challenging and expensive

studies to complete. Patients manifest differing cellular and mo-

lecular processes by physical compartment, including differ-

ences in multiple lung compartments and in peripheral blood,

so they require collection of samples from both the lungs and pe-

riphery. Lung sampling of asthma patients is not trivial and re-

quires a dedicated participant/patient. Molecular patterns are

also impacted by background therapy and duration of disease.

Incorporating clinical/physiologic (including environmental and

social determinants24,25) and radiologic characteristics26 (used

collectively with molecular, genetic, and other omic features)

into the input variables (rather than as outcomes) is also impor-

tant. Additionally, comorbidities can also influence asthma and

the overall molecular profile.27,28 These studies require genera-

tion of vast amounts of highly diverse data types that remain diffi-

cult to harmonize, and even more difficult to harmonize from

study to study. Finally, and critically, endotyping requires confir-

mation only obtainable through directed and targeted interven-

tions in which up- or downregulation of that pathway profoundly

impacts asthma outcomes. A paradigm for approaching identifi-

cation of endotypes is presented in Figure 1.

UNDERSTANDING ASTHMA HETEROGENEITY USING
OMICS

Large-scale molecular phenotyping studies of asthma to date

(typically bulk RNA-seq or microarrays) have focused on a single



Figure 1. From clinical characteristics to

endotypes

The process first requires integration of clinial in-

formation and molecular profiles derived from

omics or other studies to identify molecular phe-

notypes. A molecular phenotype reaches endo-

type status when causality is demonstrated by

targeting that specific pathway with relief of dis-

ease symptoms.
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compartment, at a single time, and often only in relation to pre-

defined asthma severity or biomarker endpoints. However, there

is an increasing need for an integrated multi-omics approach to

dissect the underlying pathophysiology of asthma for advancing

precision medicine in this disease. Recent reviews have covered

many of the major findings in these multi-omics studies,29,30

although the immune diversity in the asthmatic airway has not

yet been adequately reviewed. This is primarily because of a

paucity of such data in the literature. In this article, we have dis-

cussed how machine learning would help to establish the

broader significance of the findings in the omics studies and

help in establishing asthma endotypes and predicting outcomes.

Use of an omics approach to understand disease pathogen-

esis is now standard practice in which access to the relevant bio-

logical specimens is feasible. In most studies, the goal has been

to identify disease-associated gene signatures and/or biological

pathways. Omics approaches must be able to handle many vari-

ables and many measurements. Each omic approach applied to

study any disease captures only one aspect of molecular pro-

cesses. This may include the genome, transcriptome, proteome,

metabolome, epigenome, or themicrobiome. There is no one set

of rules that is used to analyze any omics data, and newer algo-

rithms are constantly evolving to refine analysis.31 Thus, any

dataset can be analyzed in a multitude of ways, and therefore

it is essential to validate findings in appropriate experimental

systems.

Omics studies have their roots in genomics data, initially

generated in the form of family-based linkage analysis transition-

ing to more advanced genome-wide association studies

(GWAS). These studies have identified numerous candidate

asthma risk genes that include the 17q12-21 locus,32,33 which

has been replicated in multiple independent studies.34 Using

asthma GWAS findings alone for therapeutic guidance has

been challenging because of confounding variables present in

the different cohorts. Given that GWAS studies have shown

that a specific genetic variant can be associated with more

than one disease,35 in today’s era of precision medicine, there

is increasing interest in establishing the human genome-phe-

nome relationship. How do asthma-associated genes relate to
Cell Reports
the human phenome? It seems plausible

that the association of genetic variants

identified in studies of asthma with the

range of clinical phenotypic characteris-

tics may be better realized when inte-

grated directly with other omics data,

potentially identifying biomarkers and

clinically actionable pathways. An addi-
tional level of dimensionality on molecular phenotypes will be

provided by incorporating single nucleotide polymorphisms in

genes that functionally impact gene expression (expression

quantitative trait loci -eQTLs) or protein sequence (protein quan-

titative trait loci -pQTLs) in a compartment-specific fashion, as

shown for the IL1RL1 (ST2) gene locus.36

While the bulk of omics studies in asthma have utilized tran-

scriptomic data using RNA from bronchial and nasal brushings,

endobronchial biopsies, and sputum and peripheral blood,29,30

one study performed single-cell RNA sequencing (scRNA-seq)

analysis of mild asthma patients.37 The transcriptome of bron-

choalveolar lavage (BAL) cells was interrogated in only two

recent studies.38,39 The older platform to study the transcrip-

tome was DNA microarray, which has now been replaced by

RNA sequencing, and more recently by scRNA-seq.40 Each

RNA-seq study generates a large number of data points, and

integrating data from multiple compartments requires computa-

tional power and poses various statistical challenges. This is an

important area of consideration as there is no gold standard for

harmonizing data across different compartments.

How have transcriptomic or other omics data using specimens

from different compartments helped in furthering our under-

standing of asthma endotypes? Are there overlapping signatures

across different compartments? The latter is an important ques-

tion in studies of asthma since specimens from blood, sputum,

or nasal brushings can be obtained in a much less invasive

fashion than those obtained by endobronchial biopsies or BAL.

This helps to increase sample size and affords the opportunity

for longitudinal analysis.

ENDOTYPING ASTHMA USING OMICS APPROACHES

To achieve consensus on asthma endotypes, an integrative

approach is needed. Collectively, transcriptomic data are the

richest information that can be tapped to refine asthma endo-

types using machine learning. Samples from multiple compart-

ments have been used to derive RNA-seq data with the objective

of identifying biological pathways underlying the asthma disease

spectrum from mild to most severe disease.
Medicine 3, 100857, December 20, 2022 3
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Two general approaches have been used to associate omics

data with clinical phenotypes. The most common approach

has associated gene expression data with a clinical character-

istic.41–45 In a second approach, unbiased methods have been

used to cluster genes that in turn have been linked to specific

characteristics.46,47 Multiple transcriptomic studies have exam-

ined differentially expressed genes (DEGs) in relationship to clin-

ical features such as persistent airflow limitation or inflammatory

phenotype. One of the early studies associated DEGs with cate-

gorical variables such as asthma and absence of disease.48 In

other studies, using gene set variation analysis (GSVA), DEGs

were evaluated for the presence of previously identified

gene clusters derived from human in vitro or mouse-model

studies.41,42,49 These analyses were limited by the accuracy in

classification of clinical phenotypes often based on categorical

cut-points that lacked biologic validation. GSVA gene sets can

also provide incorrect information on pathway analyses, espe-

cially when mouse comparator gene sets are included. Overall,

it is likely that feature deficiencies in both the independent and

dependent variables explained the modest associations found

betweenGSVA-derived gene signatures and clinical characteris-

tics. It is also plausible that data derived from gene set enrich-

ment analysis may suffer from similar limitations. Despite the

limitations, these studies independently associated eosinophilic

or T2 cytokine (IL-4/5/13) gene sets with traits such as persistent

airflow limitation or eosinophilic asthma phenotypes.41,43 Events

in the bronchial epithelium of severe asthmatics were evident by

applyingweighted gene co-expression analysis to airway epithe-

lial cell microarray data.46 Over 60 different gene modules were

identified, grouped by similarities of genes with respect to bio-

logic functions including previously unrecognized relationships

between epithelial growth and repair, mitochondria genes and

neural processes, both of which could underlie pathogenesis

of severe asthma.

A BROAD T2 MOLECULAR PHENOTYPE: REACHING
ENDOTYPE STATUS

A Th2 immune response was associated with the inflammatory

response in the asthmatic airway in the early 1990s.50 Since

then, T2 immune phenotype has taken center stage as a broad

molecular phenotype in asthma and has replaced the terminol-

ogy Th2 because of production of the Th2-associated cytokines

(IL-4, IL-5, and IL-13) in the asthmatic airway by other cell types

such as ILC2s, mast cells, basophils, and even eosinophils. The

broader cellular source of T2 cytokines also suggests the role of

different mechanisms in driving disease.51 A puzzling aspect

related to the T2 gene signature in biological specimens

collected from both mild and severe asthma patients is why

the T2-Hi immune response in mild asthma is generally respon-

sive to CS therapy52 but is refractory to CS in severe asthma,

even when used at high doses.53 Moreover, not all patients

selected for T2-directed therapy, based on the levels of T2-asso-

ciated biomarkers, blood eosinophils, and FeNO, respond to

therapy.22,54 Why do some patients respond to these biologics

with complete alleviation of symptoms and reduced requirement

for CS, while others do not? How can one more accurately iden-

tify the endotype that is characterized by overactivation of IL-
4 Cell Reports Medicine 3, 100857, December 20, 2022
4Ra? Although epithelial transcriptomic studies show consistent

increases in T2 signatures, additional pathological changes such

as epithelial oxidative stress, lack of repair, embeddedmast cell-

derived mediators, and aberrant activation of innate pathways

may also determine more severe disease.39,46,55,56 To unmask

the heterogeneity in disease mechanism and more precisely

designate an asthma endotype that is not evident by assaying

T2 biomarkers alone, it will be helpful to employmachine learning

tools to integrate clinical data with multi-omics data derived from

different biological compartments.

T2-HI AND T2-LO ASTHMA

Sputum transcriptomic data from adults have recently identified

a T2-Lo category of adult asthma characterized by late onset of

disease.47 While the prevailing concept is that these patients are

females with higher BMI, additional studies of independent co-

horts are needed to substantiate this notion. Their disease is

poorly responsive to CS therapy, and symptoms often worsen

from long time use of CS. Is there a common mechanism of

CS insensitivity in these T2-Hi and T2-Lo asthma populations

that can be learned by machine learning? Identification of novel

mechanisms underlying CS insensitivity may help in the develop-

ment of next-generation CS whose application may transcend

asthma.

IMMUNE PROFILING IDENTIFIES T1-HI SEVERE
ASTHMA WITH VALIDATION ACROSS COHORTS USING
MACHINE LEARNING

By integrating immune phenotypes with transcriptomic data and

machine learning, we recently identified distinct immune pheno-

types in severe asthma that were indistinguishable by existing

biomarkers.38 Although characterization of immune cells in the

airways may provide deeper insight into immune dysregulation

in the distal airway, there are few studies that have interrogated

BAL cells by deep immune profiling. Our study identified two

divergent immune phenotypes in patients with severe asthma

by analyzing BAL immune cells using mass cytometry/CyTOF.

We found that one group of patients had an abundance of IL-

4+ and IL-5+ FceRIa+ innate immune cells distinct from mast

cells or basophils, while the other group had a heightened adap-

tive immune response that was characterized by a dominance of

CD4+ and CD8+ IFN-g+ T cells comprising tissue resident mem-

ory cells and T effector/memory. This second group also had Th2

cells, albeit fewer than IFN-g+ T cells, and still fewer Th17 cells.38

Transcriptomic data from the T cell-enriched group also revealed

signatures of mast cells. Clearly, the immune response in both

groups was refractory to high doses of CS. Because of the exis-

tence of a common T2 response in both groups, the patients

were indistinguishable by standard biomarker measurements

(blood eosinophils and FeNO). Of note, although NOS2 is

induced in the asthmatic epithelium by T2 cytokines, IFN-g is

also a potent inducer of NOS2 in epithelial cells.57,58 Moreover,

IFN-g has been shown to promote eosinophil activation in hu-

mans.59,60 Using a novel deconvolution algorithm, ICLite, gene

modules derived from transcriptomic data were linked to the

immune cells.38,61 ICLite does not use pre-defined gene
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expression sets for deconvolution. It breaks bulk transcriptional

data into smaller sets of modules of correlated genes. The gene

modules are then linked to specific cell populations within a

mixture of cell types. Machine learning enabled validation of

the data in an independent asthma cohort for which only BAL

cell transcriptomic data were available.38 Novel therapeutic tar-

gets beyond T2 were also unraveled in the study. Other available

transcriptome deconvolution algorithms include CIBERSORT

and AutoGeneS.62,63 CIBERSORT relies on preselected gene

expression signatures for deconvolution of bulk RNA-seq data

to estimate cell types of interest. AutoGeneS does not require

this prior knowledge and selects discriminative genes based

on multiple criteria to infer cell-type proportions.

USE OF OMICS TO STUDY ASTHMA EXACERBATIONS

A particularly debilitating aspect of asthma is disease exacerba-

tion.64 Asthma exacerbations are episodic in nature and can

cause rapid deterioration of lung function requiring immediate

medical attention. What are the signatures of asthma exacerba-

tions?Can they be detected in samples obtained by less invasive

methods? It is important to note that using bioinformatics to pre-

dict exacerbations (asthma attacks) is likely as difficult as pre-

dicting one disease of ‘‘asthma,’’ as reporting of exacerbations

is highly patient dependent and subjective, with potentially

different drivers by different types of exacerbations. Notwith-

standing this consideration, a few studies are discussed that

looked at asthma exacerbation using a bioinformatic approach.

A single longitudinal analysis of nasal brushings and peripheral

blood of 208 children reported signatures and predictors of

asthma exacerbations during exacerbations.65 The study identi-

fied distinct gene signatures across the time course of disease

establishment. For example, epithelial-associated SMAD3

signaling was found early in exacerbations, which is interesting

given that SMAD3 is downstream of TGF-b, which is associated

with airway remodeling. A subsequent upregulation of epidermal

growth factor receptor signaling, extracellular matrix production,

mucus hypersecretion, and eosinophil activation was observed,

highlighting the dynamic nature of molecular events during an

exacerbation. However, the finding of a high T2 inflammation

and low type I IFN response gene signature in nasal samples

at baseline that predicted short-term exacerbation risk is partic-

ularly useful clinically. Also, it is in line with an earlier finding

that showed that nasal IL-13 expression portends exacerbation

risk.66 Identification of distinct gene modules in virus- versus

non-virus-mediated exacerbations was another important

finding in this study. However, studies of lower airways are not

feasible during exacerbations. A study of an adult population

found that expression of a single gene, CEACAM5, in bronchial

biopsies distinguished persistent versus persistent frequent ex-

acerbators.67 It is unclear whether higher CEACAM5 expression

during exacerbations is specific to the lower airways given that

the study in children did not examine lower airway samples,

which are difficult to obtain from children. A recent study

analyzed BAL cells of asthma patients with historical exacerba-

tions by scRNA-seq.68 CD8 T cells and several monocyte clus-

ters were found to be more abundant in the BAL fluid of patients

with asthma exacerbations compared with that in healthy con-
trols. Previous studies have also associated CD8 T cells with

asthma exacerbations. A study performed RNA-seq of nasal

brushings from 190 subjects and using a machine learning pipe-

line developed an asthma classifier gene module comprising 90

genes that helped to distinguish asthma and healthy control.69

The classifier was validated across eight test sets that included

RNA-seq data from an independent cohort.69 While this study

did not focus on asthma exacerbations, the ability to utilize ma-

chine learning to identify a gene signature in asthma using sam-

ples that can be accessed easily is encouraging. Undoubtedly,

establishing gene signatures for key asthma traits is more chal-

lenging because of the need for adequate sample size and the

importance of validation in independent cohorts. However, it is

clear that machine learning tools can be applied to existing

and emerging datasets to determine the broader significance

of current data on asthma exacerbations and ultimately to estab-

lish causality.

LESSONS LEARNED FROM OTHER OMICS STUDIES

It is important to integrate data from other omics approaches

with the transcriptomic datasets to establish asthma endotypes.

However, there are only few omics studies that have explored

epigenomics, proteomics, or metabolomics of human asthma.

Epigenomics is important to study given that asthma develops

from gene-environment interactions. Studies of peripheral blood

mononuclear cells have identified methylation in gene loci asso-

ciatedwith T2 immunity that trackwith serum IgE levels.70 An ep-

igenomic study across tissues, including airway epithelial cells,

identified CpG methylation sites in the airway cells of asthmatic

patients.71 Gene network analysis identified four modules, one of

which associated with eosinophil levels in BAL fluid, another with

FeNO, and the remaining two with CS use. The authors used a

systems biology approach to integrate GWAS, epigenetic, and

transcriptomic data to associate epigenetic signatures with

distinct molecular pathways that would not have been possible

using transcriptomic data alone.

Similarly, unraveling asthma metabolomics is also important

since there is emerging evidence of an important role of cellular

metabolism, influenced by not only the external environment but

also by microbiota, in driving immune responses and cellular

function as a whole. In one study, volatile organic metabolites

in exhaled breath were found to be better indicators of response

to CS and disease outcome than FeNO levels.72 Using nuclear

magnetic resonance (NMR) spectroscopy andmachine learning,

NMR spectra of exhaled breath condensate clustered asthmatic

patients into three phenotypic groups. One of the clusters

associated with neutrophilic asthma with low peripheral blood

eosinophil and high neutrophil counts.73 In another study, me-

tabolomic data from exhaled breath allowed discrimination be-

tween peripheral blood eosinophil and neutrophil levels, as well

as differences in oral CS use.74 While these studies bode well

for using metabolomics data for asthma endotyping, there was

heterogeneity in the findings because of limited sample size.

However, exhaled breath is an attractive source of biological ma-

terial that lends well to asthma endotyping in both children and

adults. As in the epigenomic study, it will be interesting to inte-

grate the metabolomic data with other omics data available
Cell Reports Medicine 3, 100857, December 20, 2022 5
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from public databases to determine the significance of the find-

ings beyond a single cohort.

There has been limited progress in the area of asthma prote-

omics with early studies devoted to assay of cytokines and che-

mokines in biological fluids by immunoassays.75,76 The early

immunoassay-based investigations have progressed to use of

unbiased mass spectrometry to characterize the asthma prote-

ome. Liquid chromatography-mass spectrometry analysis of

the sputum proteome identified proteomic clusters and potential

protein biomarkers that were associated with eosinophilic,

neutrophilic, or highly atopic with low granulocytic inflamma-

tion.77 Employing shotgun mass spectrometry, 18 proteins

were identified that differed in abundance between allergic and

nonallergic asthma, allergic rhinitis, and healthy controls.78 As

in all omics studies, there is a need to standardize proteomics

protocols that would allow replication of data across indepen-

dent cohorts in order to have confidence when associating

with asthma traits. Also, no current technology is yet able to cap-

ture all components of the human proteome.

INTEGRATIVE OMICS FOR BETTER UNDERSTANDING
OF ASTHMA ENDOTYPES AND TREATMENT
STRATEGIES

To date, based on identification of a T2 phenotype in both CS-

responsive mild allergic asthma and CS-refractory severe

asthma, multiple clinical trials have targeted molecules associ-

ated with the T2 phenotype.79 However, despite best efforts to

select patients based on their biomarker status, primarily blood

eosinophil levels and FeNO, the response to treatment has not

been uniform.80 In a recent study that targeted the alarmin IL-

33, surprisingly, simultaneous targeting of two T2-associated

molecules, IL-4Ra and IL-33, did not lead to a better outcome

than when either was targeted alone.81 This suggests that com-

plete blockade of one immune pathway may shift the balance to

another since immune responses cross-regulate each other.82 It

is clear that one subgroup of severe asthma patients harbor a

high T1 (IFN-g) immune response admixed with a T2 response.

It is conceivable that complete blockade of T2 in some individ-

uals harboring a mixed immune response would trigger an un-

checked T1/IFN-g response, as observed during the treatment

of atopic dermatitis,83 a high IFN-g response having been asso-

ciated with severe asthma in multiple studies.38,53,84–90 These

findings overall show that there is a need to integrate data

derived from different platforms to make better informed

decisions about targeting specific pathways to treat asthma.

Integrative multi-omics has been applied to unravel disease

mechanisms and host-microbe interactions in chronic obstruc-

tive pulmonary disease.3,5

No study has yet integrated molecular data from multiple

compartments to identify novel recognizable phenotypes or en-

dotypes, with treatment implications. In fact, few studies have

attempted to harmonize multiple different types of data,91,92

with none integrating clinical and biological/omics data. Novel

unbiased or less biased approaches that harmonize distinct

data types, ideally over time, to derive novel phenotypes are

indeed rare, yet urgently needed. In addition to omics data, it

would be important to integrate social, clinical, and environ-
6 Cell Reports Medicine 3, 100857, December 20, 2022
mental data associated with patients, as well as additional char-

acterizations of the airways, including computed tomography

imaging to better stratify asthma subtypes. For example, in

addition to traditional methods of spirometry, the tool of impulse

oscillometry shows promise in identifying airway dysfunction in

both children and adults.93 Disease characterization would

also immensely benefit from inclusion of longitudinal omics

and clinical data.

MACHINE LEARNING TOOLS TO IMPROVE CLINICAL
CARE OF ASTHMA

As discussed above, multi-omics datasets (genomic/epige-

nomic, transcriptomic, proteomic, metabolomic, and lipidomic

profiles) are now publicly available with associated clinical data

that can be used to derive more precise information about mo-

lecular phenotypes and their relationship to asthma traits. In

some cases, these molecular phenotypes can emerge as endo-

types when they correspond to differential disease outcomes by

pathway-targeted treatment modalities. Moving from molecular

phenotypes to endotypes needs rigorous validation through

relevant trials (Figures 1 and 2), which have not been performed

yet. As has been shown, combining multi-omics profiles gener-

ated from the same individual can reveal important features

not afforded by analysis of a single data type.94 Consideration

should be given to incorporating (and harmonizing) clinical

data as well, so that it can also be analyzed taking into account

relevant covariates. Multi-omic integration withmachine learning

approaches can be conceptually distinguished in different ways.

The first is to categorize these approaches into unsupervised

(i.e., do not use labels in the model training process) vs. super-

vised ones (i.e., incorporate labels in themodel training process).

They can also be categorized based on the underlying goals,

e.g., predictive machine learning models focused on the dis-

covery of predictive/correlative biomarkers vs. interpretable

machine learning models that can provide inference of causal

factors beyond biomarkers.95 Within both sets of approaches

(predictive vs. interpretable machine learning), a subset of tech-

niques use prior knowledge, while others are solely based on the

underlying data.

Unsupervised approaches (i.e., approaches that only take into

account data without any corresponding group/outcome labels)

for the integration of multi-omics datasets include techniques

such as multiple canonical correlation analyses (MCCA),96 multi-

ple co-inertia analyses (MCIA),97 multiple factor analyses

(MFA),98 and similarity network fusion (SNF).99 MCCA is an

extension of sparse canonical correlation analysis to more than

two omics datasets by the addition of a LASSO-like L1 regulari-

zation penalty term. MCIA97 relies on concatenations and pro-

jects different omics datasets into the same lower dimensional

space. In this lower dimensional space, similar subjects are

located close to each other. MFA98 is similar to MCCA96; howev-

er, in this method the information content in each omic dataset is

given equal weight. SNF99 is a transformation-based approach

that computes similarity graphs where vertices correspond to

the samples. There are additional methods based on modern

factor analysis such as multi-omics factor analysis (MOFA)100

or MOFA+.101 Some of these approaches, e.g., MOFA+, are



Figure 2. Predictive and interpretable machine learning approaches to integrate multi-omics datasets in asthma
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designed primarily for multi-modal single-cell data;101 i.e., they

are based on structural and distributional assumptions germane

to single-cell multi-omic datasets.101 Unsupervised approaches

detect broad structure in the data: some approaches may iden-

tify clusters that correspond to multiple molecular phenotypes,

while others may be highly granular and split the same/similar

molecular phenotypes into multiple clusters. It is important to

keep in mind that these approaches are primarily meant for visu-

alizing/understanding global data structure, and specific insights

drawn from visualizations corresponding to overtuned hyper-

parameters may cause erroneous overinterpretations.

Beyond these unsupervised machine learning and dimension-

ality reduction/visualization approaches, one could also use su-

pervised approaches (Figure 2). These align multi-omic datasets

with specific outcomes labels/groups/endotypes of interest.

They require pre-defined labels, but they are also able to home

in on very specific signatures that track with the labels of interest.

Importantly, the success of these approaches is inherently

dependent on the quality of the training data, i.e., the availability

of a high-quality truth set (reference labels/groups). Even the

most appropriate model will not work with low-quality or poorly

annotated data as machine learning approaches are inherently

garbage in, garbage out. Within supervised approaches, there

are two broad categories. The first category focuses on the iden-

tification of predictive biomarkers. Typically, multi-omic datasets

are highly dimensional (i.e., the number of features exceed the

number of samples). For these datasets, a key consideration of

the analytical approaches is to avoid overfitting. An important

consideration is the evaluation of these approaches with data

held out using techniques like k-fold or leave-one-out cross-vali-

dation as well as the establishment of rigorous negative controls

to benchmark model performance against (e.g., permutation

testing102). We and others have successfully used these rigorous

evaluation frameworks in a wide range of immune correlate ana-

lyses in infectious disease.103–107 A range of predictive machine

learning approaches including those that use regularized regres-

sion (e.g., LASSO,108 L1 regularized regression, or Elastic Net,

L1 + L2 regularized regression) or bootstrap aggregated decision
trees (e.g., random forest109) are well adapted to avoid overfitting

and identify predictive biomarkers. These approaches also

include both linear (LASSO) and non-linear models (e.g., random

forest). Other related approaches use classifying/regressing to

outcomes of interest using dimensionality-reduced representa-

tions of data, e.g., principal components regression110 or partial

least squares (PLS) regression.111 One example of such an

approach is Immune Cell Linkage through Exploratory Matrices

(ICLite) that allows deconvolution of bulk RNA-seq data derived

from mixed cell populations.38,61 ICLite constructs modules of

functionally related genes and links them to specific lineages in

mixed cell populations using a sparse PLS approach. These ap-

proaches are often tailored to specific disease contexts.

More recent machine learning approaches use embeddings to

reduce high-dimensional feature spaces into efficient represen-

tations. Modern deep learning approaches such as convolution

neural networks can be used on these. However, while such ap-

proaches are typically highly accurate in terms of predic-

tion,112,113 it is important to keep in mind that the signatures

identified by these approaches may simply be correlative, i.e.,

not have anything to do with the underlying molecular mecha-

nisms. Thus, insights from these approaches may not be directly

useful for hypothesis generation and/or corresponding perturba-

tion experiment design. However, they are still valuable as bio-

markers in a clinical setting. Finally, while many of these ap-

proaches are based solely on available data, others leverage

prior knowledge. The quality is often dependent on the nature

and volume of available priors. For example, Data Integration

Analysis for Biomarker Discovery using Latent Components

(DIABLO)114 is another recently developed multi-omics method

that can simultaneously use various omics variables (e.g., tran-

scriptome, proteome, metabolome) during the integration pro-

cess to identify phenotypic groups.114 It allows both modular-

based analyses and cross-over study designs. Interestingly, in

a study of peripheral blood after allergen challenges in patients

with asthma, DIABLO114 identified both known and novel multi-

omics biomarkers consisting of mRNAs, miRNAs, epigenomic

status, proteins, and metabolites. An important next step will
Cell Reports Medicine 3, 100857, December 20, 2022 7
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be to determine how to experimentally validate integrated find-

ings such as these. These methods have been widely used for

multi-omic integration across other clinical contexts and can

be applied to multi-omics asthma datasets.

The second set of approaches moves beyond predictive bio-

markers to inference of actual mechanisms underlying the

group/outcome of interest. We and others have developed inter-

pretable machine learning approaches for multi-omic integration

that move beyond predictive biomarkers to actual causal signa-

tures.95 There has been extensive research in causal reasoning

over the last 2 decades.115 However, these approaches are suit-

able primarily for low-dimensional datasets due to the underlying

computational complexity. Fortunately, this barrier has recently

been overcome.95 For example, we recently reported a novel

latent factor regression framework, Essential Regression (ER)

that integrates high-dimensional multi-omic datasets without

any assumptions regarding underlying data-generating mecha-

nisms.95 ER clusters the observable features into latent factors

with guarantees regarding identifiability, and then it identifies

significant latent factors with putative cause-effect relationships

to outcome. ER generates mechanistic hypotheses solely based

on latent factors identified from multi-omic data without the

incorporation of any prior knowledge. It is thus applicable to con-

texts where prior knowledge is weak or unavailable and is not

limited by the nature and quality of available prior knowledge.

Importantly, as ERdoes notmake any assumptions about under-

lying data-generating mechanisms, it can also incorporate other

data types (clinical, social determinants of health, etc.) beyond

the standard multi-omic assays. Including these additional data-

sets in appropriate contexts can often significantly enhance the

quality of the underlying inference.

Within approaches that provide inference beyond prediction,

there are modern techniques that also incorporate prior knowl-

edge. For example, Causal Oriented Search of Multi-Omics

Space (COSMOS) integrates phosphoproteomics, transcrip-

tomics, and metabolomics datasets, combining network-level

causal reasoning to signaling networks.116 COSMOS generates

mechanistic hypotheses for experimental observations. We also

developed another complementary approach that combines

transcriptomic data with the modularity of the underlying protein

interactome network to identify expression modules that under-

lie a clinical outcome of interest (rejection in the context of pedi-

atric liver transplantation).117 The same framework can be

extrapolated to asthmamulti-omic data. Overall, these inference

frameworks without or with prior knowledge are complementary;

while the former does not require any priors, the latter leverages

higher-order structures in pathways or prior-knowledge biolog-

ical networks. The former can be used for any multi-modal data-

sets, while the latter can be used for multi-omic datasets that

directly measure or map to molecules that are represented in

pathways (e.g., genes/proteins or metabolites). Further, while

deep learning approaches have traditionally been hard to inter-

pret, recent techniques have creatively used techniques like

backpropagation to make these interpretable and amenable to

inference beyond prediction.118 These methods can integrate

multi-omic datasets to uncover signatures of asthma molecular

phenotypes that can be validated in hypothesis-driven experi-

ments/corresponding perturbation systems to establish endo-
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types. Methods like ER that do not make assumptions regarding

underlying data-generating mechanisms are especially well

suited to integrate data across scales of organization and

different tissues/cell types. And careful choice of an appropriate

method keeping these considerations in mind leads to more

reproducible and actionable science.

CONCLUDING REMARKS

To date, many of the systems approaches to study asthma pro-

duce interesting observations regarding potential pathway

engagement, with less robust prediction of clinical features or

treatment responses. Even with single compartment ap-

proaches, moving the list of pathways (genes/proteins) from

hypothesis generation to development of clinically meaningful

biomarkers and therapeutic targets remains challenging. As pro-

posed in this article, machine learning approaches can be lever-

aged to identify the most actionable/highest priority pathways.

The choice of approach (unsupervised vs. supervised, prediction

vs. inference, etc.) depends both on the question and the nature

of underlying data. For adequately powered cohorts with well-

defined labels, supervised approaches that home in on putative

causal factors are likely the most biologically relevant and clini-

cally actionable. However, for an underpowered study, the

same approach is unsuitable and can lead to overinterpetation

and spurious inference. There, unsupervised approaches may

be more appropriate. And incorporating complementary infor-

mation and feedback (priors) is useful when there are reasonably

strong context-specific priors. However, weak priors should be

treated with caution as they can contradict strong inferences

from a well-powered and well-designed study. Contradictions

or irreproducibility can stem from a wide range of sources:

from poor experimental design (e.g., data full of technical arti-

facts) to inappropriate analytical frameworks (e.g., failure to cor-

rect for batch effects) to low power. When comparing studies, it

is important to keep these in mind and appropriately weigh for

better designed and better powered studies.

There are also practical challenges to implementing AI/ma-

chine learning in independent studies in order to derive common

actionable signatures that can be further tested in clinical trials. It

is well known that a key challenge to implementing AI in clinical

decision-making is the fairness of the underlying large clinical

datasets.119 These biases can lead to inherently flawed models.

Similar challenges pertain to multi-omics integration of cellular

and molecular datasets using machine learning methods. These

multi-modal datasets, especially genomic and epigenomic data,

can also suffer from similar sampling biases. Sampling biases

can stem from a wide range of issues from the exclusion of un-

der-represented minorities and under-resourced populations in

cohort studies to non-uniform sampling across the socioeco-

nomic spectrum. These sampling biases could translate to

inherent discovery biases despite rigor of the analytical ap-

proaches. Further, running clinical trials requires enormous re-

sources including long-term doctor-patient relationships, and

the coupledmachine learning approaches are often notmatched

in terms of power considerations. Collaborations across groups

and cohorts to expand the datasets available for training and

replication are critical to improve the quality of insights available
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from these systems approaches. Further, if funding agencies

enforce FAIR (findability, accessibility, interoperability, and reus-

ability) principles for reusability of data, this would dramatically

improve availability of data across cohorts for independent repli-

cation.120 Overall, cross-talk between asthma researchers, clini-

cians, and systems immunologists would enable critical review

of data from previousmousemodels, GWAS studies, and clinical

trials with the goal to identify the most critical factors in those

pathways, and those most amenable to biomarker development

or molecular targeting. Appropriate context-specific use of pre-

dictive vs. interpretable machine learning approaches will help

distinguish molecular phenotypes and actual endotypes that

are validated in clinical trials.
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José, M.E., Cruz, M.J., Valdés-Cuadrado, L., Crujeiras, R.M., Arias, P.,

and Salgado, F.J. (2020). iTRAQ-based proteomic analysis reveals po-

tential serum biomarkers of allergic and nonallergic asthma. Allergy 75,

3171–3183. https://doi.org/10.1111/all.14406.

79. Brusselle, G.G., and Koppelman, G.H. (2022). Biologic therapies for se-

vere asthma. N. Engl. J. Med. 386, 157–171. https://doi.org/10.1056/

NEJMra2032506.

80. Yamane, M., Ohnishi, H., Tsuji, K., Anabuki, K., and Yokoyama, A. (2022).

Dupilumab-induced peripheral neuropathy in a patient with severe

asthma. Ann. Allergy Asthma Immunol. 128, 611. https://doi.org/10.

1016/j.anai.2022.01.028.

81. Wechsler, M.E., Ruddy, M.K., Pavord, I.D., Israel, E., Rabe, K.F., Ford,

L.B., Maspero, J.F., Abdulai, R.M., Hu, C.C., Martincova, R., et al.

(2021). Efficacy and Safety of itepekimab in patients with moderate-to-

severe asthma. N. Engl. J. Med. 385, 1656–1668. https://doi.org/10.

1056/NEJMoa2024257.

82. Hu, X., and Ivashkiv, L.B. (2009). Cross-regulation of signaling pathways

by interferon-gamma: implications for immune responses and autoim-

mune diseases. Immunity 31, 539–550. https://doi.org/10.1016/j.im-

muni.2009.09.002.

83. Brøgger, P., Blom, L.H., Simonsen, S., Thyssen, J.P., and Skov, L. (2020).

Antagonism of the interleukin 4 receptor alpha promotes TH 1-signalling
Cell Reports Medicine 3, 100857, December 20, 2022 11

https://doi.org/10.1164/rccm.201406-1099OC
https://doi.org/10.1164/rccm.201406-1099OC
https://doi.org/10.1016/j.jaci.2018.05.026
https://doi.org/10.1016/j.jaci.2018.05.026
https://doi.org/10.1038/mi.2014.6
https://doi.org/10.1016/j.jaci.2016.09.002
http://refhub.elsevier.com/S2666-3791(22)00421-9/sref59
http://refhub.elsevier.com/S2666-3791(22)00421-9/sref59
http://refhub.elsevier.com/S2666-3791(22)00421-9/sref59
http://refhub.elsevier.com/S2666-3791(22)00421-9/sref59
https://doi.org/10.1046/j.1365-2249.1999.01068.x
https://doi.org/10.1016/j.xpro.2021.100847
https://doi.org/10.1016/j.cels.2021.05.006
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1136/thx.2005.045195
https://doi.org/10.1038/s41590-019-0347-8
https://doi.org/10.1038/s41590-019-0347-8
https://doi.org/10.1016/j.jaci.2013.11.025
https://doi.org/10.1002/ctm2.816
https://doi.org/10.1002/ctm2.816
https://doi.org/10.1016/j.jaci.2020.09.032
https://doi.org/10.1016/j.jaci.2020.09.032
https://doi.org/10.1038/s41598-018-27189-4
https://doi.org/10.1038/s41598-018-27189-4
https://doi.org/10.1016/j.jaci.2016.07.036
https://doi.org/10.1016/j.jaci.2016.07.036
https://doi.org/10.1172/jci.insight.90151
https://doi.org/10.1172/jci.insight.90151
https://doi.org/10.1136/thx.2010.156695
https://doi.org/10.1136/thx.2010.156695
https://doi.org/10.1186/s12967-017-1365-7
https://doi.org/10.1016/j.jaci.2018.10.058
https://doi.org/10.1016/j.jaci.2018.10.058
https://doi.org/10.1016/j.jaci.2007.10.015
https://doi.org/10.1111/cea.13129
https://doi.org/10.1016/j.jaci.2019.03.013
https://doi.org/10.1111/all.14406
https://doi.org/10.1056/NEJMra2032506
https://doi.org/10.1056/NEJMra2032506
https://doi.org/10.1016/j.anai.2022.01.028
https://doi.org/10.1016/j.anai.2022.01.028
https://doi.org/10.1056/NEJMoa2024257
https://doi.org/10.1056/NEJMoa2024257
https://doi.org/10.1016/j.immuni.2009.09.002
https://doi.org/10.1016/j.immuni.2009.09.002


Perspective
ll

OPEN ACCESS
among T cells from patients with atopic dermatitis after stimulation.

Scand. J. Immunol. 91, e12835. https://doi.org/10.1111/sji.12835.

84. Duvall, M.G., Barnig, C., Cernadas, M., Ricklefs, I., Krishnamoorthy, N.,

Grossman, N.L., Bhakta, N.R., Fahy, J.V., Bleecker, E.R., Castro, M.,

et al. (2017). Natural killer cell-mediated inflammation resolution is

disabled in severe asthma. Sci. Immunol. 2, eaam5446. https://doi.org/

10.1126/sciimmunol.aam5446.

85. Gauthier, M., Chakraborty, K., Oriss, T.B., Raundhal, M., Das, S., Chen,

J., Huff, R., Sinha, A., Fajt, M., Ray, P., et al. (2017). Severe asthma in hu-

mans and mouse model suggests a CXCL10 signature underlies cortico-

steroid-resistant Th1 bias. JCI Insight 2, 94580. https://doi.org/10.1172/

jci.insight.94580.

86. Gauthier, M., Kale, S.L., Oriss, T.B., Scholl, K., Das, S., Yuan, H., Hu, S.,

Chen, J., Camiolo, M., Ray, P., et al. (2022). Dual role for CXCR3 and

CCR5 in asthmatic type 1 inflammation. J. Allergy Clin. Immunol. 149,

113–124.e7. https://doi.org/10.1016/j.jaci.2021.05.044.

87. Muehling, L.M., Heymann, P.W., Wright, P.W., Eccles, J.D., Agrawal, R.,

Carper, H.T., Murphy, D.D., Workman, L.J., Word, C.R., Ratcliffe, S.J.,

et al. (2020). Human TH1 and TH2 cells targeting rhinovirus and allergen

coordinately promote allergic asthma. J. Allergy Clin. Immunol. 146,

555–570. https://doi.org/10.1016/j.jaci.2020.03.037.

88. Oriss, T.B., Raundhal, M., Morse, C., Huff, R.E., Das, S., Hannum, R.,

Gauthier, M.C., Scholl, K.L., Chakraborty, K., Nouraie, S.M., et al.

(2017). IRF5 distinguishes severe asthma in humans and drives Th1

phenotype and airway hyperreactivity in mice. JCI Insight 2, 91019.

https://doi.org/10.1172/jci.insight.91019.

89. Raundhal, M., Morse, C., Khare, A., Oriss, T.B., Milosevic, J., Trudeau, J.,

Huff, R., Pilewski, J., Holguin, F., Kolls, J., et al. (2015). High IFN-gamma

and low SLPI mark severe asthma in mice and humans. J. Clin. Invest.

125, 3037–3050. https://doi.org/10.1172/jci80911.

90. Wisniewski, J.A., Muehling, L.M., Eccles, J.D., Capaldo, B.J., Agrawal,

R., Shirley, D.A., Patrie, J.T., Workman, L.J., Schuyler, A.J., Lawrence,

M.G., et al. (2018). TH1 signatures are present in the lower airways of chil-

dren with severe asthma, regardless of allergic status. J. Allergy Clin. Im-

munol. 141, 2048–2060.e13. https://doi.org/10.1016/j.jaci.2017.08.020.

91. Wu, W., Bang, S., Bleecker, E.R., Castro, M., Denlinger, L., Erzurum,

S.C., Fahy, J.V., Fitzpatrick, A.M., Gaston, B.M., Hastie, A.T., et al.

(2019). Multiview cluster Analysis identifies variable corticosteroid

response phenotypes in severe asthma. Am. J. Respir. Crit. Care Med.

199, 1358–1367. https://doi.org/10.1164/rccm.201808-1543OC.

92. Wu, W., Bleecker, E., Moore, W., Busse, W.W., Castro, M., Chung, K.F.,

Calhoun, W.J., Erzurum, S., Gaston, B., Israel, E., et al. (2014). Unsuper-

vised phenotyping of Severe Asthma Research Program participants us-

ing expanded lung data. J. Allergy Clin. Immunol. 133, 1280–1288.

https://doi.org/10.1016/j.jaci.2013.11.042.

93. Galant, S.P., Komarow, H.D., Shin, H.W., Siddiqui, S., and Lipworth, B.J.

(2017). The case for impulse oscillometry in themanagement of asthma in

children and adults. Ann. Allergy Asthma Immunol. 118, 664–671. https://

doi.org/10.1016/j.anai.2017.04.009.

94. Rappoport, N., and Shamir, R. (2018). Multi-omic and multi-view clus-

tering algorithms: review and cancer benchmark. Nucleic Acids Res.

46, 10546–10562. https://doi.org/10.1093/nar/gky889.

95. Bing, X., Lovelace, T., Bunea, F., Wegkamp, M., Kasturi, S.P., Singh, H.,

Benos, P.V., and Das, J. (2022). Essential Regression: a generalizable

framework for inferring causal latent factors from multi-omic datasets.

Patterns (N Y) 3, 100473. https://doi.org/10.1016/j.patter.2022.100473.

96. Witten, D.M., and Tibshirani, R.J. (2009). Extensions of sparse canonical

correlation analysis with applications to genomic data. Stat. Appl. Genet.

Mol. Biol. 8, Article28. https://doi.org/10.2202/1544-6115.1470.

97. Meng, C., Kuster, B., Culhane, A.C., and Gholami, A.M. (2014). A multi-

variate approach to the integration of multi-omics datasets. BMC Bioinf.

15, 162. https://doi.org/10.1186/1471-2105-15-162.
12 Cell Reports Medicine 3, 100857, December 20, 2022
98. de Tayrac, M., Le, S., Aubry, M., Mosser, J., and Husson, F. (2009).

Simultaneous analysis of distinct Omics data sets with integration of bio-

logical knowledge: multiple Factor Analysis approach. BMC Genom. 10,

32. https://doi.org/10.1186/1471-2164-10-32.

99. Wang, B., Mezlini, A.M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-

Kains, B., and Goldenberg, A. (2014). Similarity network fusion for aggre-

gating data types on a genomic scale. Nat. Methods 11, 333–337. https://

doi.org/10.1038/nmeth.2810.

100. Argelaguet, R., Velten, B., Arnol, D., Dietrich, S., Zenz, T., Marioni, J.C.,

Buettner, F., Huber, W., and Stegle, O. (2018). Multi-Omics Factor Anal-

ysis-a framework for unsupervised integration of multi-omics data sets.

Mol. Syst. Biol. 14, e8124. https://doi.org/10.15252/msb.20178124.

101. Argelaguet, R., Arnol, D., Bredikhin, D., Deloro, Y., Velten, B., Marioni,

J.C., and Stegle, O. (2020). MOFA+: a statistical framework for compre-

hensive integration ofmulti-modal single-cell data. GenomeBiol. 21, 111.

https://doi.org/10.1186/s13059-020-02015-1.

102. Ojala, M., and Garriga, G.C. (2010). Permuattion tests for studying clas-

sifier performance. J. Mach. Lear.Res. 11, 1833–1863.

103. Suscovich, T.J., Fallon, J.K., Das, J., Demas, A.R., Crain, J., Linde, C.H.,

Michell, A., Natarajan, H., Arevalo, C., Broge, T., et al. (2020). Mapping

functional humoral correlates of protection against malaria challenge

following RTS, S/AS01 vaccination. Sci. Transl. Med. 12, eabb4757.

https://doi.org/10.1126/scitranslmed.abb4757.

104. Das, J., Devadhasan, A., Linde, C., Broge, T., Sassic, J., Mangano, M.,

O’Keefe, S., Suscovich, T., Streeck, H., Irrinki, A., et al. (2020). Mining

for humoral correlates of HIV control and latent reservoir size. PLoS

Pathog. 16, e1008868. https://doi.org/10.1371/journal.ppat.1008868.

105. Lu, L.L., Das, J., Grace, P.S., Fortune, S.M., Restrepo, B.I., and Alter, G.

(2020). Antibody fc glycosylation discriminates between latent and active

tuberculosis. J. Infect. Dis. 222, 2093–2102. https://doi.org/10.1093/in-

fdis/jiz643.

106. Ackerman, M.E., Das, J., Pittala, S., Broge, T., Linde, C., Suscovich, T.J.,

Brown, E.P., Bradley, T., Natarajan, H., Lin, S., et al. (2018). Route of im-

munization definesmultiple mechanisms of vaccine-mediated protection

against SIV. Nat. Med. 24, 1590–1598. https://doi.org/10.1038/s41591-

018-0161-0.

107. Das, J., Fallon, J.K., Yu, T.C., Michell, A., Suscovich, T.J., Linde, C., Na-

tarajan, H.,Weiner, J., Coccia, M., Gregory, S., et al. (2021). Delayed frac-

tional dosingwith RTS, S/AS01 improves humoral immunity tomalaria via

a balance of polyfunctional NANP6- and Pf16-specific antibodies.Med 2,

1269–1286.e9. https://doi.org/10.1016/j.medj.2021.10.003.

108. Tibshirani, R. (1996). Regression Shrinkage and selection via the lasso.

J. Roy. Stat. Soc. B 58, 267–288.

109. Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32.

110. Bair, E., Hastie, T., Paul, D., and Tibshirani, R. (2006). Prediction by su-

pervised principal components. J. Am. Stat. Assoc. 101, 119–137.

111. Boulesteix, A.L., and Strimmer, K. (2007). Partial least squares: a versatile

tool for the analysis of high-dimensional genomic data. Brief. Bioinform.

8, 32–44. https://doi.org/10.1093/bib/bbl016.

112. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger,

O., Tunyasuvunakool, K., Bates, R., �Zı́dek, A., Potapenko, A., et al.

(2021). Highly accurate protein structure prediction with AlphaFold. Na-

ture 596, 583–589. https://doi.org/10.1038/s41586-021-03819-2.

113. Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., �Zı́dek, A.,

Bridgland, A., Cowie, A., Meyer, C., Laydon, A., et al. (2021). Highly ac-

curate protein structure prediction for the human proteome. Nature

596, 590–596. https://doi.org/10.1038/s41586-021-03828-1.

114. Singh, A., Shannon, C.P., Gautier, B., Rohart, F., Vacher, M., Tebbutt,
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