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Increased oxidative phosphorylation
in lymphocytes does not atone for
decreased cell numbers after burn injury

Tony Chao, Belinda I. Gomez, Tiffany C. Heard,
Michael A. Dubick and David M. Burmeister

Abstract

The acute systemic inflammatory response syndrome (SIRS) and multiorgan dysfunction (MOD) that occur in large burn

injuries may be attributed, in part, to immunosuppressive responses such as decreased lymphocytes. However, the

mitochondrial bioenergetics of lymphocytes after severe burn injury are poorly understood. The purpose of this study

was to examine mitochondrial function of lymphocytes following severe burns in a swine model. Anesthetized Yorkshire

swine (n¼ 17) sustained 40% total body surface area full-thickness contact burns. Blood was collected at pre-injury

(Baseline; BL) and at 24 and 48 h after injury for complete blood cell analysis, flow cytometry, cytokine analysis, and ficoll

separation of intact lymphocytes for high-resolution mitochondrial respirometry analysis. While neutrophil numbers

increased, a concomitant decrease was found in lymphocytes (P< 0.001) after burn injury, which was not specific to

CD4þ or CD8þ lymphocytes. No changes in immune cell population were observed from 24 h to 48 h post-injury.

IL 12-23 decreased while a transient increase in IL 4 was found from BL to 24h (P< 0.05). CRP progressively increased

from BL to 24h (P< 0.05) and 48h (P< 0.001) post-injury. Routine and maximal mitochondrial respiration progressively

increased from BL to 24h (P< 0.05) and 48 h post-injury (P< 0.001). No changes were found in leak respiration or

residual oxygen consumption. When considering the reduction in lymphocyte number, the total peripheral lymphocyte

bioenergetics per volume of blood significantly decreased from BL to 24h and 48h (P< 0.05). For the first time, we were

able to measure mitochondrial activity in intact lymphocyte mitochondria through high-resolution respirometry in a

severely burned swine model. Our data showed that the non-specific reduction in peripheral T cells after injury was

larger than the increased mitochondrial activity in those cells, which may be a compensatory mechanism for the total

reduction in lymphocytes. Additional studies in the metabolic activation of T cell subpopulations may provide diagnostic

or therapeutic targets after severe burn injury.
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Introduction

Burn injury is a worldwide concern, with approximate-

ly 11 million burn victims requiring medical attention

annually.1 Fortunately, the incidence of burn injuries in

the United States has been decreasing,2 although there

were over 400,000 burn cases in the United States in

2008.1 Additionally, while most burns are acutely sur-

vivable, approximately 300,000 deaths globally can be

attributed to burn injury each year.1 Even when a burn

patient survives the initial insult, various complications

can cause significant morbidity and mortality.
Systemic hyper-metabolic and hyper-inflammatory

stress responses are hallmarks of severe burn injury

that covers over 20% of the total body surface area
(TBSA).3 There is a distinct temporal response to the
injury pattern of severe burns. The initial phase, typi-
cally within the first 48 h post-injury, is termed the “ebb
phase” and is characterized by a decrease in cardiac
output and metabolic rate.4 Subsequently, the “flow
phase” is marked by increased cardiac output and
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metabolic rate with concurrent increases in cytokine
levels,4,5 which can persist long after the burn wound
has healed. This injury response may lead to the devel-
opment of multiple organ dysfunction (MOD),6 and
increase the risk of sepsis and infection, increasing mor-
bidity and mortality.7 The innate and adaptive immune
responses may play a key role in the metabolic switch
from the ebb to flow phases; however, this is large-
ly unstudied.

The lymphocyte immunophenotype is a reflection of
immune system function.8 CD4þT cells and CD8þT
cells comprise a large portion of T-lymphocytes.
CD4þT cells have multiple functions that are crucial
in regulating the response of the innate and adaptive
immune systems.9 CD8þT cells also have diverse roles
in combating pathogens in the immune response and
have a symbiotic supportive role with CD4þT cells.10

Especially in the context of increased susceptibility to
infectious complications, burn-induced immunosup-
pression facilitates the development of MOD, SIRS,
and sepsis following severe burns.11 For example, a
reduction in peripheral lymphocyte population has
been shown in both human and animal studies,8,12–15

In addition to the decreased population, it was shown
that these cells are also less active after thermal
injury.16 Whether an underlying cause of this depressed
activation is due to the altered metabolic capacity of
lymphocytes in the acute time frame post-burn has not
been studied in detail.

In this regard, mitochondria are ubiquitous organ-
elles present in living cells that provide cellular energy
predominantly by oxidative phosphorylation. Proper
lymphocyte mitochondrial function is necessary for
maintaining immune cell function by playing a central
role in, for example, activation signaling and immuno-
phenotype differentiation.17 It has been suggested that
altered mitochondrial function may play a role in the
suppressed immune response in severe burn injury and
sepsis.18–21 However, whether the mitochondrial activ-
ity is up-regulated or depressed remains unclear. For
example, Cheng and colleagues found a reduction in
maximum oxygen consumption in peripheral blood
mononuclear cells,22 whereas Sjovall and colleagues
found increased mitochondrial respiratory capacity in
peripheral blood immune cells of septic patients.18

Studies specific to burn injury have shown altered
mitochondrial activity in specific organs such as adi-
pose tissues,23 skeletal muscle,24,25 and lung and heart
tissues.26 However, the mitochondrial function of
peripheral immune cells following burn injury (specifi-
cally the function of electron transport chain in mito-
chondrial oxidative phosphorylation) has not been
studied in detail. The overall purpose of this study
was to examine peripheral lymphocyte populations
and mitochondrial function following 40% TBSA

burn in a swine model. We find that while mitochon-
drial activity of each T cell increased post-burn, this
increased activity is not sufficient to account for the
drop in overall T cell number.

Methods

Animals

This study utilized adult female Yorkshire swine weigh-
ing 41.7� 3.0 kg (Midwest Research Swine, Gibbon,
MN) that were free of parasites and infection.
Animals were singly housed with ad libitum access to
water and allowed to acclimate to the facilities for at
least 7 d prior to any procedures. This research was
conducted in compliance with the Animal Welfare
Act, the implementing Animal Welfare Regulations,
and the principles of the Guide for the Care and Use
of Laboratory Animals, National Research Council.
The facility’s Institutional Animal Care and Use
Committee approved all research conducted in this
study. The facility where this research was conducted
is fully accredited by AAALAC International.

Thermal injury and care were performed as previ-
ously described.6,27 Briefly, after an overnight fast, ani-
mals were anesthetized with an intramuscular (IM)
injection of tiletamine-zolazepam (Telazol, 6 mg/kg),
intubated, and put on a ventilator with 1%–3% isoflur-
ane. Prior to the administration of burn injury, hair
was removed with clippers followed by shaving cream
and razor on the dorsum, flanks, and legs. Then the
shaved area was cleaned with chlorohexidine. Standard
vascular cut down procedures were conducted to insert
two i.v. lines into the left and right jugular veins for
blood sampling and i.v. fluid resuscitation. These i.v.
lines were secured in place and tunneled to the back of
the neck for ease of access. Animals were then given
an IM injection (0.1–0.24 mg/kg) of Buprenex-
HCl Sustained Release (Veterinary Technologies/
ZooPharm, Windsor, CO) for analgesia, which has
been shown efficacious for 72 h. Custom designed
brass blocks connected to a thermocouple were
heated to 100�C and were applied to the skin for 30 s
to produce full thickness burns.28 This was repeated
until approximately 40% of the TBSA was reached.
Afterward, the burn wounds were covered using
Ioban Antimicrobial dressings (3M, St. Paul, MN).

Following the burn procedure, animals received
resuscitation treatment with i.v. fluids at 15 ml/kg/d.
Additionally, oral fluids were given at 15 ml/kg/d with
oral rehydration solution (ORS; 75 mOsm/l sodium, 65
mOsm/l chloride, 75 mOsm/l Glc, 20mOsm/l potassi-
um, and 10 mOsm/l citrate). All animals had unlimited
access to dry pelleted pig diet. Animal health and
behavior were continuously monitored through
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interaction and a remote vivarium camera. Light seda-
tion with Midazolam (0.1–0.25 mg/kg) was given when
animals (n¼ 4/17) showed indication of stress
or discomfort.

Blood analysis

Baseline (BL) blood samples were taken before thermal
injury and at 24 and 48 h after injury for biochemical,
mitochondrial, and complete blood cell analysis. Blood
samples were collected in K2EDTA-treated BD
Vacutainer tubes (Becton Dickinson and Company,
Franklin Lakes, NJ). BL, 24 h, and 48 h blood samples
were sent to a core biochemistry facility for complete
blood cell analysis utilizing the Abbott Cell-DynVR 3700
Hematology Analyzer system (Abbott Park, IL).

Flow cytometry

To determine CD3þ, CD4þ and CD8þT cell popula-
tion, 200 ll of fresh whole blood collected in a
K2EDTA tube was stained with 15 ll of mouse anti-
porcine CD3e-FITC (Southern Biotech, Birmingham,
AL), 5 ll PE-CYTM7 mouse anti-pig CD4a (BD
Biosciences), 2.5 ll PE mouse anti-pig C8a (BD
Biosciences, Franklin Lakes, NJ), and 20 ll mouse
anti-pig CD45: Alexa FluorVR 647 (Bio-Rad
Antibodies, Hercules, CA). Negative isotype controls
recommended by the supplier for the previously men-
tioned Abs were used in a separate tube. Abs were
incubated at room temperature for 15 min in a dark
space protected from light. After the incubation period,
red blood cells were lysed twice with 2.7 ml deionized
water for 30 s and subsequent neutralization with 0.3
ml 10� PBS, followed by centrifugation at 1000 g for 5
min at 22�C. Then cells were washed and centrifuged
twice with 2 ml 1� PBS. White blood cell (WBC) pel-
lets were resuspended in 1 ml of 1� PBS and data were
collected by flow cytometry (BD FACSCantoTMII, BD
Biosciences) utilizing BD FACSDIVATM Software
(BD Biosciences). Cell population was calculated by
using AccuCount Rainbow Fluorescent Particles (106

beads/ml, Spherotech, Lake Forest, IL). Data acquisi-
tion was made until 1000 events of AccuCount beads
were collected. Lymphocyte population analyses and
graphs were made with FLOWJOv10 software
(Ashland, OR).

Cytokine analysis

Plasma analyses for C-reactive protein (CRP), IL
12-23, and IL 4 levels were measured by ELISA accord-
ing to the manufacturer’s protocol (R&D Systems,
Minneapolis, MN). Each sample was analyzed in dupli-
cate on a 96-well plate and was read by a microplate
reader (Molecular Devices, San Jose, CA).

Mitochondria analysis

Fresh whole blood (2 ml) collected in a K2EDTA-

treated BD Vacutainer tube (BD Biosciences) was

mixed with 2 ml of 1� Hank’s Balanced Salt Solution

(GIBCOVR HBSS, Thermo Fisher Scientific, Grand

Island, NY). Lymphocytes were isolated using the

Ficoll-Paque PLUS (GE Healthcare, Pataskala, OH)

procedure according to the manufacturer’s instruc-
tions. Approximately 2 ml of plasma from the super-

natant was collected for later resuspension of the

lymphocytes, which was completed after two washes

in HBSS and centrifugation. Cells were counted using

the Advia 120 Hematology System (Siemens, Malvern,

PA) to ensure a pure lymphocyte population.
Lymphocyte mitochondrial respiration was mea-

sured in a 2 ml closed-chamber high-resolution

respirometry oxygraph-2k (Oroboros Instruments,

Innsbruck, Austria) at a concentration of 1.0� 106

cells/ml in a constant temperature of 37�C. The

oxygen flux (negative time derivative of oxygen concen-

tration) was recorded with DatLab Software

(Oroboros Instruments). Air calibrations were per-
formed daily prior to mitochondrial analyses.

A substrate-inhibitor-uncoupler-titration (SUIT) pro-

tocol for intact cells according to the manufacturer’s

instructions was followed for each sample.18,29 Once

lymphocytes were put into the closed chamber, respi-

ration supported by substrates in their own plasma was

allowed to stabilize to determine physiological levels of

Routine (basal) respiration. Afterward, 5 mM of oligo-
mycin, an ATP synthase inhibitor, was added to deter-

mine Leak respiration representing uncoupled

respiration without producing ATP. Then, the proto-

nophore, carbonyl cyanide p-(trifluoro-methoxy)

phenyl-hydrazone (FCCP, 1 mM), was titrated to

induce maximal oxygen flux (MOF) potential. Lastly,

complex I and complex III were inhibited by adding

rotenone (1.0 mM) and antimycin A (5.0 mM), respec-
tively, to determine the residual oxygen flux (ROX).

ROX is considered non-mitochondrial respiration.

Statistical analysis

Statistical analyses were conducted using GraphPad

Prism software v7 (San Diego, CA). The D’Agostino-

Pearson omnibus test for normality was done for all

values. An ordinary one-way ANOVA with Tukey’s
multiple comparisons test, with a single pooled vari-

ance was performed on each normally distributed data-

set. A non-parametric Kruskal-Wallis test with Dunn’s

multiple comparisons was performed for non-normal

data sets or data sets with unequal variances. Values

are presented as mean�SE. Statistical significance was

determined when P< 0.05.
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Results

Blood analysis

Complete blood cell analysis (Table 1) showed a signif-
icant increase from BL to 24 h in total WBC (16.9� 0.6
vs 19.9� 0.9 103 cells/ll, P< 0.01, respectively), pri-
marily driven by an increase in neutrophils from BL
to 24 h (4.3� 0.4 vs 11.8� 1.1 103 cells/ll, P< 0.001,
respectively). Conversely, lymphocyte numbers
decreased from BL to 24 h (11.2� 0.7 vs 7.2� 0.4 103

cells/ll, P< 0.001, respectively). No significant
differences were found in the number of monocytes
(Figure 1). Total WBC and their proportion
did not change from 24 h to 48 h (P> 0.05).
Hemoconcentration was also observed as indicated by
increased red blood cells (5.6� 0.1 vs 6.5� 0.2 106 cells/
ll, P< 0.001), hemoglobin (9.7� 0.1 vs 11.1� 0.3 g/dl,
P< 0.001), and hematocrit (29.6� 0.5 vs 34.3� 0.8%,
P< 0.001) from BL to 24 h. However, after 48 h, red

blood cells, hemoglobin, and hematocrit returned to
BL levels (P< 0.001 vs 24 h).

Flow cytometry

Flow cytometry analysis (Figure 2) found a significant
reduction from BL to 24 h in CD3þ T cells (2693� 525
vs 714� 117 cells/ll, P< 0.01). CD3þ T cells at 48 h
(736� 193 cells/ll) remains significantly lower than BL
(P< 0.01) but was not different from 24 h (P> 0.05).
Similarly, a reduction was found in CD4þ T cells from
BL to 24 h (442� 104 vs 134� 22 cells/ll, P< 0.05,
respectively) and 48 h (138� 24 cells/ll, P< 0.05).
CD8þ T cells decreased from BL to 24 h (867� 134
vs 237� 32 cells/ll, P< 0.001, respectively) and 48 h
(209� 29 cells/ll, P< 0.001 vs BL).

Cytokine analyses

Our plasma cytokine analysis for IL 12-23 showed sig-
nificant reductions from BL to 24 h (30.4� 1.87 vs
25.8� 1.69 lg/ll plasma, P< 0.05, respectively) and
48 h (24.6� 1.53 lg/ll plasma, P< 0.001 vs BL).
Similar to the changes in T-cell populations, IL 12-23
levels were not different between 24 h and 48
h (Figure 3a). IL 4 significantly increased from BL to
24 h (8.65� 0.89 vs 10.8� 1.31 ng/ml plasma, P< 0.05,
respectively), but returned to BL level after 48 h (9.55
� 0.98 ng/ml plasma, P< 0.05 vs 24 h) (Figure 3b).
CRP increased from BL to 24 h (52.9� 25.3 and 314
� 22.5 lg/ml plasma, P< 0.05, respectively) and 48 h
(448� 24.0 lg/ml plasma, P< 0.001 vs BL). We also
found that CRP significantly increased from BL to 24
h to 48 h (P< 0.05) (Figure 3c).

Mitochondrial respiration

Representative tracings for high-resolution respirome-
try are shown in Figure 4. We found significant
increases in routine respiration from BL to 24 h (5.58
� 0.37 vs 7.93� 0.74 pmol O2/s/10

6 cells, P< 0.05,
respectively) and 48 h (8.88� 0.65 pmol O2/s/10

6

cells, P< 0.001 vs BL). Routine respiration was not
different between 24 h and 48 h (Figure 5a). No signif-
icant changes were found in leak respiration among BL
(2.82� 0.32 pmol O2/s/10

6 cells), 24 h (3.6� 0.51 pmol
O2/s/10

6 cells), and 48 h (3.5� 0.42 pmol O2/s/10
6 cells)

time points as shown in Figure 5b. MOF potential
increased from BL to 24 h (10.6� 0.81 vs 16.0� 1.07
pmol O2/s/10

6 cells, P< 0.05). MOF potential at 48 h
(20.1� 1.094 pmol O2/s/10

6 cells) was also significantly
greater than BL (P< 0.001) but not different from 24h
(P> 0.05) (Figure 5c). There were no changes in ROX
from BL (1.22� 0.24 pmol O2/s/10

6 cells) to 24 h (1.07
� 0.21 pmol O2/s/10

6 cells) or 48 h (1.31� 0.23 pmol
O2/s/10

6 cells). To determine total lymphocyte
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Figure 1. Immune cell population determined by complete
blood cell analysis from pre-injury (BL) to 24 h and 48 h post-
injury. n¼ 17. *P< 0.05 vs BL, ***P< 0.001.

Table 1. Complete blood cell analysis.

BL 24 h 48 h

White blood

cells (103/ll)
16.9� 0.6 19.9� 0.9* 19.3� 1.0

Red blood cells

(106/ll)
5.6� 0.1 6.5� 0.2*** 5.8� 0.1þþþ

Hemoglobin (g/dl) 9.7� 0.1 11.1� 0.3*** 9.9� 0.2þþþ

Hematocrit (%) 29.6� 0.5 34.3� 0.8*** 30.4� 0.6þþþ

Neutrophils (103/ll) 4.3� 0.4 11.8� 1.1*** 11.4� 0.9***

Monocytes (103/ll) 1.0� 0.5 0.5� 0.1 0.7� 0.1

Lymphocytes

(103/ll)
11.2� 0.7 7.2� 0.4*** 6.9� 0.4***

Platelets (103/ll) 298� 10.1 290� 12.6 271� 13.3*

Values are represented as mean� SE. *P< 0.05 vs BL; ***P< 0.001 vs BL;
þþþP< 0.001 vs 24 h.

406 Innate Immunity 26(5)



mitochondrial activity per volume of blood, we nor-
malized basal routine respiration to the population of
CD3þ T cells and found that total mitochondrial activ-
ity per volume of blood significantly decreased from
BL to 24 h (13.3� 2.25 vs 5.08� 1.38 pmol O2/s/ml
blood, P< 0.05) and 48 h (4.42� 0.88 pmol O2/s/ml
blood, P< 0.05 vs BL). Total mitochondrial activity
was not different between 24 h and 48 h (Figure 5d).

Discussion

Severe burn injury results in complex systemic bio-
chemical changes and a multi-faceted pathophysiolog-
ical response.3 The hallmarks of severe burn injury are
characterized by an early “ebb” phase within the first

48 h where metabolic activity is decreased, followed by
the “flow” phase where metabolic demands are pro-
foundly increased.4,5 It was postulated that these are
protective mechanisms for victims of severe burns.
Suppression of metabolic demands during the ebb
phase allows for conservation of energy in vital
organs.30 Thereafter, the hyper-metabolic drive ensues
as a response to thermoregulation.31 If left unchecked,
the burn-induced hyper-metabolism and hyper-inflam-
matory conditions lead to physiologic exhaustion and
renders the burn victims prone to infectious complica-
tions such as sepsis,3,31 thereby increasing morbidity
and mortality.3,6,7,32,33 Previous studies with over 900
patients observed profound hyper-inflammation and
altered organ function from the early acute period
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Figure 2. Severe burn injury induces changes in lymphocyte population determined by flow cytometry. Histograms for CD3þ T cells
(a), CD4þ T cells (b), and CD8þ T cells (c). We found significant reductions in CD3þ T cells (a), CD4þ T cells (b), and CD8þ T cells
(c) at 24 and 48 h post-burn injury compared with pre-injury BL levels. n¼ 14. *P< 0.05 vs BL, **P< 0.01 vs BL, ***P< 0.001 vs BL.
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Chao et al. 407



after burn injury and persisting up to 3 yr after
injury.5,14–16,34 While mitochondrial dysfunction in spe-
cific tissues has been shown to contribute to hyper-
metabolism after severe burns,24–26,35 the role of
mitochondrial function in immune cells during the
acute phase post-burn injury has not been extensive-
ly studied.

The aim of this study was to investigate the changes

in T cell population and mitochondrial activity in the

first 48 h following severe burn injury. Due to the acci-
dental nature of burn injury, we sought an animal

model in order to obtain pre- and post-burn injury

samples. While rodent models have been used in burn
studies, large animal models (e.g., swine) have similar

skin structure and healing properties, and more closely

mimic the burn-induced hyper-metabolism seen in

humans.36–38 The current porcine model of burn
injury is also in agreement with previous reports show-

ing a dampened adaptive immune response due to

burns. The primary findings of the current report are
that there are increases in phosphorylative capacity of

lymphocytes post-burn. Moreover, while these cells are

metabolically hyperactive in producing ATP, they do

not sufficiently atone for overall reductions in lympho-
cyte numbers after burn injury.

Our blood cell analysis found that total WBC

increased significantly, which was attributed largely to
the profound increase in neutrophils found at 24 h and

48 h over BL levels. Given the massive amounts of

tissue destruction in burn injury, this response of the

innate immune system acutely following injury can
have deleterious consequences. Alternatively, a signifi-

cant reduction in lymphocyte population was found
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after 24 h, which was unchanged after 48 h. Flow
cytometry data also indicated that this change in circu-
lating lymphocytes was not specific to T-cell subpopu-
lations. Specifically, CD3þ, CD4þ, and CD8þ T
lymphocytes were much lower at 24 h post-injury,
with no appreciable recovery by 48 h post-burn
injury. This reduction in circulating lymphocytes is
not attributed to the dilution of whole blood with i.v.
fluids, as we observed hemoconcentration after 24 h. It
has been shown previously that burn injury increases
spontaneous T cell apoptosis,39 which has been associ-
ated with biomarkers such as glucocorticoids, Fas
ligand,40 NO,21,41 and TNF-a42. Although not exam-
ined in the current study, lymphocyte apoptosis may be
responsible for the reduction in cell number
seen herein.

Our cytokine analysis showed decreased levels of IL
12-23 from BL to 24 h and 48 h post-injury. Similar to
T cell populations, IL 12-23 was unchanged from 24 h
and 48 h and our data did not show any trend returning
to the baseline level. Conversely, we found a significant
increase in IL 4 from BL to 24 h, with a significant
reduction from 24 h to 48 h. These cytokine data
may indicate a suppression of Th1 differentiation and
an up-regulation of Th2 cells from BL to 24 h. This
shift to preferring Th2 cells has also been demonstrated
in previous burn studies in mice models.43,44 We can
postulate that the reduction in Th1 may affect the
downward cascade to suppress macrophages and
cytotoxic T cells. Takagi and colleagues suggested
that the preferential switch from Th1 to Th2 may
render burn victims more susceptible to infections.44

Additionally, their work with recombinant human
growth hormone (rhGH) treatment to burn injury
found that rhGH returns the immune response towards
a Th1-dominant phenotype and protects burn survi-
vors from infections and further complications.
Conversely, it was suggested that Th2 cells direct
tissue repair and wound healing.45 Further investiga-
tions into T cell subtypes will help us understand their
role in burn recovery and prevention of infections to
improve outcomes in severely burned victims.

Mitochondria in immune cells play a critical role in
establishing immune cell phenotype and function.17 It
is widely accepted that glycolysis plays a role in
immune cell activation.17 However, Sena et al. found
in their mice study that, in the absence of Glc metab-
olism, mitochondrial metabolism (particularly mito-
chondrial complex III activity and ROS signaling) is
sufficient to support T cell activation in vitro, and
CD4þ and CD8þ T cell expansion in vivo.46 We
found that the oxidative phosphorylation and the
MOF potential in T cell mitochondria is significantly
increased at 24 h and 48 h following burn injury. This is
similar to what was found in intact peripheral blood

immune cells in non-burned septic patients.18 It is
important to note the novelty of our method of mea-
suring mitochondria in intact T cells suspended in a
closed chamber. After isolating T cells from peripheral
blood, we re-suspended the cells in their own plasma
instead of a manufactured cell medium. The substrates
and metabolites in plasma are providing the necessary
fuel for mitochondrial activity, and the routine meas-
urements are a physiological representation of what is
occurring in vivo. Our data show that lymphocyte mito-
chondria are not suppressed, but rather they are hyper-
active acutely after severe burn injury. This would
appear reasonable that the energy demand of the
immune system would immediately increase for
immune cell activation and proliferation in the acute
time frame. However, as the burn victim becomes
hyper-metabolic at the organism level, the physiologi-
cal exhaustion of the immune system may ensue, there-
by suppressing the immune response.

Our data showed no significant changes in leak res-
piration in the presence of increased routine respira-
tion. Thus, we can assume that there are no increases
in mitochondrial uncoupling, and mitochondrial
energy production is not lost as heat. This may also
infer that the increased respiratory response in the
basal state predominantly goes towards phosphoryla-
tion and ATP generating capacity, although we did not
measure ATP levels directly. As a measure of mito-
chondrial efficiency, the proportion of respiration
that is used for ATP production (i.e., coupling control
ratio)47 was similar at all timepoints (�70%), repre-
senting an optimal condition to meet increased meta-
bolic demands. Alternatively, in skeletal muscle it has
been shown that the increase in oxygen utilization is
utilized for uncoupled thermogenic purposes,24 thereby
creating an environment of the metabolic deficit
and contributing to whole-body hyper-metabolism
post-injury.

The MOF potential represents a supra-physiologic
capacity of the electron transport chain induced by
protonophores dissipating membrane potential by
compromising the integrity of the inner membrane.
We found that MOF potential, like routine respiration,
increases within 24 h after burn injury and is further
elevated 48 h post-injury. This shows that there is an
increased proton pumping capacity of complex I–IV of
the electron transport chain after burn injury, indicat-
ing that there may have been morphological changes in
T cell mitochondria to increase its functional capacity.
Immune cell mitochondria can preferentially switch
from oxidative phosphorylation to glycolysis.17,48

Glycolytic activity may increase upon T cell activation,
although our data suggest that oxidative phosphoryla-
tion in mitochondria is also increased after burn injury,
which seems like an ideal occurrence to support T cell
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activity. However, the overall bioenergetics per volume

of blood (i.e., accounting for the reduction in lympho-

cyte number) remains low following severe burn injury,

and still significantly less at 24 h and 48 h post-burn

compared with pre-burn levels. This is attributed large-

ly to the diminished population of peripheral T cells.

We believe that the increased activity of T cell mito-

chondria may represent a potential mechanism to com-

pensate for reduced lymphocyte populations.
There are some limitations to our study. First, our

method for mitochondrial analysis did not allow us to

measure glycolytic activity. Therefore, we were not able

to determine the full spectrum of metabolic activity in

T cells. Due to a low yield in recovering cells from flow

cytometry, we were unable to determine metabolic

activity and functions of specific phenotypes of T cell

subpopulations (e.g., helper T cells, cytotoxic T cells,

regulatory T cells, etc.) after sorting them. Also, our

study only contained one terminal timepoint, and the

more chronic effects of burn injury on immune cell

mitochondria remain the province of future investiga-

tion. Lastly, changes in plasma substrates that may

occur after burn injury may affect oxygen consumption

of lymphocytes in their routine state. Due to limitation

of lymphocyte availability in our sample collection, we

were not able to measure mitochondrial respiration in a

separate respiration media. Despite these limitations,

we were able to measure physiologically relevant lym-

phocyte mitochondrial respiration utilizing a novel

high-resolution respirometry method showing the

impact of severe burn injury on T cell metabol-

ic regulation.
In conclusion, we found a significant reduction in

peripheral lymphocytes with simultaneous increased

metabolic activity per lymphocyte. To our knowledge,

this is the first study to measure lymphocyte mitochon-

drial function utilizing a novel high-resolution respi-

rometry method in lymphocytes post-burn. We found

that lymphocyte mitochondrial activity was not

blunted, but rather increased at 24 h and 48 h after

severe burn injury. Thus, a suppressed immune

system in the acute phase following severe burns may

not be attributed to a reduction in energetic capacity,

but rather a reduction in lymphocyte population.

Although the first 48 h after severe burn injury is pre-

dominantly categorized in the hypometabolic ebb

phase, we found that mitochondria in individual lym-

phocyte begin to show a hypermetabolic phenotype.

Additional studies into the altered metabolism and

function of T cell population temporally following

burns may help us further understand the interplay of

the innate and adaptive immune systems in this

injury pattern.
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