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Whole‑transcriptome sequencing uncovers 
core regulatory modules and gene signatures 
of human fetal growth restriction
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Chenqi Lu2*   and Jiuhong Kang1*

Abstract 

Background:  Fetal growth restriction (FGR) contributes the primary cause of perinatal mortality and morbidity with 
impacts on the long-term health. To determine the core gene expression network and gene signatures, which in com-
bination with ultrasound confirmation will more effectively differentiate constitutionally normal small for gestational 
age and pathological FGR groups, we performed RNA sequencing for protein-coding genes, lncRNAs, and small RNAs 
in a case–control study of umbilical cord blood.

Results:  Five pairs of FGR case and control umbilical cord blood samples were used for RNA sequencing and 
weighted gene co-expression network analysis (WGCNA). Results showed that 339 mRNAs, 295 lncRNAs, and 13 
miRNAs were significantly differentially expressed between FGR cases and controls. Bioinformatics analysis indicated 
that these differentially expressed molecules were mainly involved in metabolism, neural, cardiac, and immune 
systems, and identified 18 WGCNA modules for FGR. Further quantitative verification was performed using umbilical 
cord blood and maternal peripheral blood from 12 pairs of FGR cases and controls. The logistic regression and receiver 
operating characteristic curve indicated that RP11_552M6.1, LINC01291, and Asgr1 in umbilical cord blood, while 
Sfrp2, miR-432-5p, and miR-1306-3p in maternal peripheral blood had potential significance for FGR.

Conclusions:  We comprehensively profiled the whole-transcriptome landscape of human umbilical cord blood 
with FGR, constructed the core WGCNA modules, and delineated the critical gene signatures of FGR. These findings 
provide key insight into intrauterine perturbations and candidate signatures for FGR.

Keywords:  Fetal growth restriction, Case–control study, Whole-transcriptome, lncRNAs, miRNAs, Gene co-expression 
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Background
Fetal growth restriction (FGR) is a common pregnancy 
complication that occurs in 5–10% of all pregnancies. 
FGR is the primary cause of perinatal mortality and mor-
bidity, and has impacts on the long-term health of the off-
spring [1–3]. Children surviving FGR are at a greater risk 
of developing neurodevelopmental dysfunction during 
childhood and cardiovascular and/or metabolic diseases 
subsequently in life [4]. The increased risk of cardiovas-
cular disease is due to the increased workload of the fetal 
heart, which is associated with postsystolic shortening 
and fetal exposure to higher levels of maternal cortisol 
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[5]. Additionally, individuals with FGR have a higher 
tendency to develop obesity [6]. Preterm delivery is a 
major strategy for resolving this problem but may result 
in a nonviable fetus [7, 8]. Late-onset FGR, which occurs 
after 32 weeks of gestation, is more complicated, results 
in fewer characteristic histological changes and has an 
unknown underlying mechanism [9]. Thus, timely and 
accurate prenatal detection of FGR remains challenging.

Recent developments in high-throughput sequenc-
ing enable the assessment of the entire transcriptome of 
mRNAs, long noncoding RNAs (lncRNAs), and micro-
RNAs (miRNAs) with the potential to uncover the bio-
logical processes driving complex phenotypes. Systems 
biology methods can better capture the complexity of 
inter-gene relationships and the signaling pathways asso-
ciated with diseases, and offer the opportunity to better 
define the co-regulatory patterns that underlie complex 
phenotypes. Weighted gene co-expression network anal-
ysis (WGCNA) has been successfully applied in several 
studies to facilitate the systems-level characterization of 
expression pattern by clustering highly-correlated genes 
into co-expression modules with conserved biological 
functions [10, 11].

Studies assessing the transcriptome-wide profile of 
human placentas with FGR are beginning to emerge, and 
a few protein-coding genes and noncoding RNAs have 
been assessed [12, 13]. However, the inconsistent find-
ings suggest that placental biomarkers have a low reli-
ability, limiting their clinical ability [14]. FGR, especially 
abnormal fetal growth confirmed by repeated ultrasound, 
has a multifactorial nature with many causes, including 
maternal, fetal, and placental factors [15]. Birth weight 
is correlated with the maternal body mass index (BMI) 
and delivery gestational age [16]. Moreover, information 
from previous studies is limited by sample heterogeneity, 
such as placental differences, and a focus on univariate 
gene expression analyses contrasting normal and adverse 
phenotypic outcomes. Thus, a case–control study with a 
matching control to each FGR infant, could eliminate the 
confounding factors and provide more persuasive evi-
dences. Furthermore, high-throughput sequencing for 
the entire transcriptome of umbilical cord blood as the 
origin of FGR infant could provide an exemplary oppor-
tunity to demonstrate the core gene networks by eluci-
dating fetal growth-related processes.

Therefore, in combination with the core gene expres-
sion network obtained from a case–control study of 
umbilical cord blood, the ultrasound confirmation could 
more effectively differentiate constitutionally normal 
small for gestational age and pathological FGR groups, 
and provide candidate approaches for disease interven-
tion and prevention at an early time-point. In this study, 
we comprehensively profiled the transcriptome-wide 

landscape of human umbilical cord blood in a case–con-
trol study by implementing a network-based approach to 
construct the core gene co-expression network and delin-
eate the critical gene signature of FGR.

Methods
Study participants
Using a case–control study, FGR cases and correspond-
ing controls were matched according to gestational age, 
maternal BMI and age (Additional file  1: Table  S1) to 
exclude the maternal factors. The inclusion criteria of 
FGR were based on the birth weight reference percen-
tiles as an estimated weight below the 10th percentile 
for gestational age [17]. These FGR and control infants 
had a birth score not less than 9 and no birth defects. 
The women had no smoking history and no other preg-
nancy complication, and the women with preeclampsia 
and other complications of pregnancy were excluded. 
Five pairs of FGR cases and controls obtained at Shang-
hai First Maternity and Infant Hospital (Tongji Uni-
versity, Shanghai, China) between 2017 and 2018 were 
used for RNA sequencing. Further quantitative RT-PCR 
verification was performed in the umbilical cord blood 
and maternal peripheral blood obtained from the 12 
FGR cases and 12 controls (Additional file  2: Table  S2). 
All women provided written informed consent, and the 
study protocol was approved by the Ethics Committee 
of Shanghai First Maternity and Infant Hospital (No. 
KS17115).

Sample collection
In total, 2.5  mL of umbilical cord blood and 2.5  mL of 
maternal peripheral blood were collected at the time 
of delivery into PAXgene whole blood RNA tubes (Pre-
Analytix) and stored at 25 °C for at least 2 h, at − 20 °C 
for 24 h, and at − 80 °C until processing. The total RNA 
was extracted using a RNeasy Protect Animal Blood Kit 
(Qiagen) according to the manufacturer’s instructions. 
The RNA concentration and purity were measured using 
a NanoDrop ND100 spectrophotometer (Thermo Scien-
tific) and BioAnalyzer 2100 system (Agilent).

RNA‑sequencing workflow
For lncRNAs and mRNA, the RNA-sequencing library 
generation, workflow, and data analysis were performed 
as previously described [18]. The small RNA sequencing 
including miRNAs was also performed. After the auto-
matic quality control and adapter trimming by Trim_
Galore (http://www.bioin​forma​tics.babra​ham.ac.uk/
proje​cts/trim_galor​e/), the RNA paired-end reads were 
mapped to the human genome hg38 by HISAT2 [19], 
and quality controlled using RSeQC [20]. Based on the 
annotation file (Homo_sapiens.GRCh38.83.gtf ) in the 
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Ensembl database, the read counts were calculated by 
featureCounts [21], and normalized by rlogTransforma-
tion. The differentially expressed genes (DEGs) were ana-
lyzed by DESeq 2 package in R [22].

Bioinformatics and stability analyses
The lncRNA targets were predicted with LncTar, RNA-
plex, and RIsearch, while the miRNA targets were pre-
dicted with miRanda, PITA, and RNAhybrid. The gene 
ontology (GO) and signaling pathway enrichment anal-
yses were completed using DAVID web servers [23]. 
Based on the log2(Fold Change), we performed the gene 
set enrichment analysis (GSEA) for the significant sign-
aling pathways and imprinted genes [24–26]. The gene 
co-expression network was generated using the WGCNA 
package in R [11]. The parameters were as follows: net-
workType = unsigned, corType = Pearson, Power = 9, 
minModuleSize = 50, mergeCutHeight = 0.35, reassign-
Threshold = 0.99 and the remaining default parameters. 
The regulatory network was illustrated by the igraph 
package in R, and a circos graph was obtained by the 
RCircos package [27]. The logistic regression analysis and 
receiver operating characteristic (ROC) curve were per-
formed by glm and pROC packages, and 95% CI of area 
under the curve (AUC) were calculated by boot package 
in R. The stability of gene modules was also assessed [28].

Quantitative RT‑PCR analyses
The first-strand cDNA was synthesized by M-MLV 
Reverse Transcriptase (TaKaRa) with 500 ng total RNA. 
The qRT-PCR assays were performed with SYBR® Pre-
mix Ex TaqTM II (TaKaRa) on an Mx3000P QPCR 
System (Agilent). The qRT-PCR primers for the candi-
date protein-coding genes and lncRNAs were shown in 
Additional file  3: Table  S3. The Bulge-LoopTM miRNA 
qPCR Primer Sets (RiboBio) were used for the expression 
detection of miRNAs. The expression levels of protein-
coding genes and lncRNAs were normalized to GAPDH, 
while the miRNAs were normalized to U6. The statistical 
significance was analyzed by Student’s t-test.

Results
Significantly different transcriptome of FGR and control 
umbilical cord blood
To examine differences in the entire transcriptome 
between FGR cases and normal controls, we performed 
RNA sequencing for protein-coding genes, lncRNAs, and 
miRNAs in a case–control study with five pairs of umbili-
cal cord blood samples (Additional file 1: Table S1). The 
differential expression analysis and hierarchical cluster-
ing showed that the protein-coding genes mostly tended 
to be down-regulated (Fig.  1a), while the lncRNAs 
(Fig. 1b) and miRNAs (Fig. 1c) tended to be up-regulated 

in the FGR cases as compared to the corresponding con-
trols. All of the differentially expressed genes includ-
ing protein coding genes, lncRNAs, and miRNAs were 
shown in Additional file  4: Table  S4. The representative 
differentially expressed protein coding genes and lncR-
NAs were shown in Fig. 1d, e, respectively. These findings 
indicate that the entire transcriptome of umbilical cord 
blood from FGR case is significantly different from the 
corresponding control.

Differentially expressed protein‑coding genes 
and physiological functional signaling pathways
Among the 339 differentially expressed protein-coding 
genes, 224 genes were down-regulated, and 115 genes 
were up-regulated in FGR cases (Fig.  2a, Additional 
file  4: Table  S4). The GO enrichment analysis showed 
that these down-regulated genes were mainly enriched 
in plasma membrane, arachidonic acid binding, and 
neutrophil degranulation (Fig.  2b). Further signaling 
pathway analysis indicated that these genes were mainly 
involved in osteoclast differentiation, phagosome, and 
lysosome (Fig.  2c). Additionally, the up-regulated genes 
were mainly enriched in MHC class I protein complex 
binding, the cellular defense response (Fig.  2d), natural 
killer cell-mediated cytotoxicity and Graft-versus-host 
disease (Fig. 2e). Further GSEA results (Additional file 5: 
Table  S5, Additional file  6: Table  S6, Additional file  7: 
Table S7) showed that these genes were mainly enriched 
in glutathione metabolism (Fig. 2f ), Alzheimer’s disease, 
Parkinson’s disease, Huntington’s disease (Fig.  2g), car-
diac muscle contraction (Fig. 2h), systemic lupus erythe-
matosus and oxidative phosphorylation (Fig.  2i). These 
findings indicate that the differentially expressed pro-
tein-coding genes are not only enriched in known FGR-
related processes, such as metabolism and neural and 
cardiac systems, but also significantly associated with the 
immune system.

Differentially expressed miRNAs and physiological 
functional signaling pathways
Based on the top-30 highly varied miRNAs with larger 
log2(Fold Change) including the 13 significantly differ-
entially expressed miRNAs (Fig.  3a, Additional file  4: 
Table  S4), we predicted miRNA targets by miRanda, 
PITA, and RNAhybrid. The top-30 popular target 
genes as regulated by these miRNAs were shown in 
Fig.  3b, including the suppressor of cytokine signal-
ing 1 (SOCS1), which is required for normal postnatal 
growth and survival [29, 30]. Further GO (Fig.  3c) and 
signaling pathway (Fig. 3d) analyses showed that the pre-
dicted targets of these miRNAs mainly focused on DNA 
binding, mitosis, integrated pancreatic cancer pathway, 
DNA damage response only ATM dependent, insulin 
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signaling, and type II diabetes mellitus. An integrated 
analysis of the predicted targets and human diseases 
using the Human MicroRNA Disease Database (HMDD, 
v2.0) indicated that these miRNAs were significantly 
correlated with immune cells and published diseases 
(Fig. 3e). The clustering and family analysis showed that 

these miRNA precursors focused on the miR-194 family 
and Chr14_100911139-100911213 cluster (Fig.  3f ), and 
neoplasm, leukemia, inflammation, and prolactinoma 
(Fig. 3g). For the 13 significantly differentially expressed 
miRNAs, we also observed the significance of the 
Chr14_100911139-100911213 cluster and prolactinoma. 

Fig. 1  Significantly different transcriptome of FGR and control umbilical cord blood. a–c Hierarchical clustering analysis identified 339 protein 
coding genes (a), 295 lncRNAs (b), and 13 miRNAs (c), that are differentially expressed between FGR and the corresponding control. d Examples 
of critical protein coding genes (S100A6, S100A4) expressed in normal control that is repressed in FGR. e Examples of critical lncRNAs (LINC01291, 
LINC01293) not expressed in normal control that becomes activated in FGR

(See figure on next page.)
Fig. 2  Differentially expressed protein-coding genes and physiological functional signaling pathways. a Volcano plot of the differentially expressed 
protein-coding genes (115 up-regulated and 224 down-regulated). b GO term enrichment of the down-regulated differentially expressed 
protein-coding genes. Green, molecular function. Blue, cellular component. Red, biological process. c Signaling pathway enrichment of the 
down-regulated differentially expressed protein-coding genes. d GO term enrichment of the up-regulated differentially expressed protein-coding 
genes. e Signaling pathway enrichment of the up-regulated differentially expressed protein-coding genes. f–h GSEA plots of FGR-related adult 
diseases, including metabolism (f), neural system (g), and cardiac system (h). i GSEA plots of predictive FGR-related diseases, including immune 
system (left panel) and oxidative phosphorylation (right panel)
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Fig. 3  Differentially expressed miRNAs and physiological functional signaling pathways. a Volcano plot of the differentially expressed miRNAs (11 
up-regulated and 2 down-regulated). b The top-30 popular targets as predicted for the critical miRNAs (top-30). c GO enrichment of the predictive 
targets of the critical miRNAs (top-30). d Signaling pathway enrichment of the predictive targets of the critical miRNAs (top-30). e Specific diseases 
in TCGA database correlated with the predictive targets of the critical miRNAs (left panel, top-30; right panel, 13 differentially expressed miRNAs). 
f Clustering and family analyses of the precursors of the critical miRNAs (top-30, red for 13 differentially expressed miRNAs). g Specific diseases 
correlated with the precursors of the critical miRNAs (top-30, red for 13 differentially expressed miRNAs)
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These findings indicate that the significantly varied 
miRNAs are not only involved in FGR-related diseases 
but also focused on specific gene clusters and various 
diseases.

Core regulatory network and imprinted genes of FGR
To systematically investigate the core regulatory net-
work of FGR at the entire transcriptome level, we per-
formed RNA sequencing for the expression profile of 
lncRNAs, and found 79 lncRNAs significantly down-
regulated and 216 lncRNAs significantly up-regulated 
(Fig.  4a, Additional file  4: Table  S4). Further analyses 
of the regulatory relationship among the 339 protein-
coding genes and 295 lncRNAs showed that seven lncR-
NAs were predicted to cis-regulate their neighboring 
protein-coding genes within a 2-kb region (Fig. 4b), and 
7616 trans-regulatory relationships were obtained. To 
clearly demonstrate the trans-regulatory relationships, 
the top-35 significantly differentially expressed lncRNAs 
and protein-coding genes with larger degrees was shown 
(Fig.  4c). In combination of lncRNA-mRNA, miRNA-
mRNA, and miRNA-lncRNA analyses, we observed 7 
cis-, 59 trans-, and 2 miRNA regulatory relationships 
after screening with the Pearson correlation coefficient 
(PCC) (absolute value > 0.9) (Fig.  4d). The lncRNAs and 
protein-coding genes in cis-regulatory relationships had 
a positive PCC, while the lncRNAs and their trans-regu-
lated protein-coding genes had a negative PCC (Fig. 4e). 
All significantly differentially expressed molecules and 
the interactions were shown in the circos plot (Fig. 4f ).

As imprinted genes are critical in growth and develop-
ment [31], we performed further analysis based on 240 
imprinted genes obtained from two existed public data-
bases (http://www.genei​mprin​t.com and http://igc.otago​
.ac.nz/home.html) (Fig. 4g). The expression levels of these 
imprinted genes were significantly negatively associated 
with FGR (Fig.  4h), and six imprinted genes (Col9a3, 
Dlk1, Fuca1, Lilrb4, Sfrp2, and Ventx) were significantly 
differentially expressed between FGR cases and controls 
(Fig.  4i). These findings observed a cluster of imprinted 
genes as correlated with FGR and might provide poten-
tial signatures for FGR.

Critical gene co‑expression network modules closely 
correlated with FGR
To clarify the significant gene co-expression network 
involved in FGR, we performed WGCNA and clustered 
the entire transcriptome of FGR cases and controls 
(Fig.  5a). All genes focused on 18 modules (Additional 
file  8: Table  S8), and most genes were clustered in the 
turquoise module as enriched in neutrophil degranula-
tion (Fig.  5b). The module salmon was mainly enriched 
in metabolic process, while module green focused on 

regulation of immune response. The Pearson correlation 
analysis of the relationships between the network mod-
ules and sample characteristics showed that the turquoise 
and purple modules were significantly positively cor-
related with birth weight, while the turquoise and mid-
nightblue modules were significantly different between 
FGR cases and controls (Fig. 5c). Similarly, we found that 
the cyan module was negatively correlated with maternal 
BMI and positively correlated with infant gender, and the 
tan module was negatively correlated with maternal age. 
Further investigation of the module stability suggested 
that the first four modules, including the turquoise, blue, 
brown, and yellow modules, exhibited much higher sta-
bility than the other modules (Fig. 5d).

Further hierarchical clustering indicated that the tur-
quoise module was significantly correlated with birth 
weight and could clearly separate the FGR and con-
trol groups (Fig.  5e). The GO enrichment and signaling 
pathway analyses suggested that the turquoise module 
was mainly enriched in osteoclast differentiation and 
transcriptional misregulation in cancer (Fig.  5f ). These 
findings indicate that the critical module turquoise is sig-
nificantly correlated with FGR, but further confirmation 
of these genes in the module by a large sample size will 
provide more evidence for elucidating FGR.

The protein‑coding genes, lncRNAs, and miRNAs 
as potential signatures for FGR
To detect the significance of differentially expressed 
transcriptome, we detected the expression level of the 
top-10 up-regulated and top-10 down-regulated mol-
ecules for protein coding genes and lncRNAs, six differ-
entially expressed imprinted genes, and 13 differentially 
expressed miRNAs (Additional file 4: Table S4) in 12 FGR 
and 12 control umbilical cord blood samples (Additional 
file  2: Table  S2) by quantitative RT-PCR analyses. The 
representative two imprinted genes (Sfrp2 and Dlk1), 
Slpi, and five lncRNAs (LINC01291, RP11_552M6.1, 
RP11_588G21.1, CTD_2083E4.5, and AMZ2P2) were 
shown in Fig. 6a. Furthermore, we performed a forward 
stepwise logistic regression analysis, and the ROC plot 
showed that RP11_552M6.1, LINC01291, and Asgr1 in 
final model could make the AUC value to 0.958 (Fig. 6b), 
indicating significantly predictive potential for FGR. To 
observe the application potential in clinic, we examined 
the expression level of the differentially expressed mol-
ecules in the 12 pairs of FGR case and control maternal 
peripheral blood samples. The ROC plot showed that 
the expression pattern of Sfrp2, miR-432-5p, and miR-
1306-3p had significantly predictive power (AUC = 0.882) 
in maternal peripheral blood of FGR (Fig. 6c). These find-
ings suggeste that a cluster of protein-coding genes, lncR-
NAs, and miRNAs that is critically correlated with FGR 

http://www.geneimprint.com
http://igc.otago.ac.nz/home.html
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Fig. 4  Core regulatory network and significant imprinted genes of FGR. a Volcano plot of the differentially expressed lncRNAs (216 up-regulated 
and 79 down-regulated). b Predicted cis-regulatory relationships among the differentially expressed protein-coding genes and lncRNAs. c 
Representative trans-regulatory relationships among the top 35 differentially expressed protein-coding gene and lncRNAs. d Regulatory network 
among the differentially expressed protein-coding genes, lncRNAs, and miRNAs after screening with the correlation coefficient (> 0.9). e PCC plots 
of all differentially expressed lncRNAs, protein-coding genes, and miRNAs. DEG, differentially expressed genes. PPI, protein–protein interaction. f 
Circos plot of all differentially expressed protein-coding genes, lncRNAs, and miRNAs on human chromosomes. g Imprinted genes collected from 
the Gene imprint and Otago databases. h GSEA plot of all imprinted genes in FGR and control umbilical cord blood samples. i Six imprinted genes 
(Col9a3, Dlk1, Fuca1, Lilrb4, Sfrp2, and Ventx) significantly differentially expressed in umbilical cord blood of FGR versus control
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and may provide potential signatures of FGR. Further 
investigation of their diagnostic potential in a large sam-
ple size at early stage of pregnancy, and the functional 
study on significant signatures may improve the under-
standing of FGR.

Discussion
Due to the lack of case–control studies investigating 
fetal-originated umbilical cord blood, the regulatory net-
works of FGR remain unclear, and the early prediction 
and diagnosis of FGR are challenging. In this case–con-
trol study, we performed a systematic whole-transcrip-
tome profiling of the functional regulatory networks in 
human FGR case and control umbilical cord blood sam-
ples. The differentially expressed whole-transcriptome, 
imprinted genes, and weighted gene co-expression analy-
ses revealed an enrichment in functional processes and 
critical modules related to growth, development, and the 
immune system.

Several studies have demonstrated that maternal fac-
tors such as age, BMI, preeclampsia, chronic hyperten-
sion, and anemia are associated with FGR [16, 32]. Fetal 
factors and placental factors, including malformation, 
infections, and abnormal placental vascular system are 
also associated with FGR. The measurement of placental 
biomarkers in maternal blood is a common method used 
to evaluate placental functions related to pregnancy out-
comes [33]. However, these placental molecules are het-
erogeneous and identified in various locations, such as 
placental tissue, amniochorionic membranes, amniotic 
fluid, cord blood and maternal blood [34]. The sample 
heterogeneity in the placenta and multifactorial nature 
of FGR especially abnormal fetal growth, should be con-
firmed by repeated ultrasound. Thus, matching controls 
to each FGR infant based on these characteristics could 
eliminate their potential influences on fetal weight and 
yield more constructive evidences. Our study focused 
on a case–control study of the entire transcriptome of 
umbilical cord blood to demonstrate the most core gene 
networks in FGR. The combination of the core gene 
expression signatures and ultrasound confirmation could 
more effectively separate normal small infants from 
pathological FGR infants, and lead to an effective strat-
egy for FGR intervention or even prevention at an early 
time-point.

As FGR confers a high risk of increased perina-
tal, childhood, and adulthood complications, effec-
tive screening and treatment procedures are critical for 
avoiding adverse health outcomes in neonates born with 
FGR [35]. Here, we used RNA sequencing to assess the 
entire transcriptome (mRNA, lncRNA, and miRNAs), 
then uncovered the significant signatures and potential 
signaling pathways of FGR. It has been reported that FGR 
may lead to a cardiovascular risk, metabolic problems, 
and poor neurodevelopmental outcomes in adulthood 
[36, 37]. Based on system biology and network-based 
analyses of the differentially expressed whole-transcrip-
tome, this study not only confirmed that the differentially 
expressed genes of FGR at the whole-transcriptome level 
are significantly enriched in metabolism and neural and 
cardiac systems but also elucidated the critical correla-
tion between the differentially expressed transcriptome 
and immune system diseases, such as Graft-versus-host 
disease and systemic lupus erythematosus. These find-
ings provide more potential and effective approaches for 
immune treatment of FGR. Since human umbilical cord 
blood includes various cell types such as lymphocytes, 
monocytes, and mesenchymal stem cells [38–40], which 
may have different effects on the transcriptome profile of 
protein-coding genes, lncRNAs, and miRNAs. To clearly 
explore the exact contribution of each cell source of 
whole blood on RNA profile may provide more specific 
evidence in the future.

To better capture the inter-gene relationships and 
define the co-regulatory patterns involved in FGR, we 
performed WGCNA to explore the systems-level expres-
sion changes and clustered the highly-correlated genes 
into co-expression modules [10, 11]. This study identified 
five modules related to maternal-infant demographic var-
iables. Interestingly, we found that the turquoise module 
could clearly separate the FGR group from the controls 
and was positively correlated with birth weight among 
the FGR cases. Similarly, we found that the cyan module 
was negatively correlated with maternal BMI and posi-
tively correlated with infant gender, while the tan mod-
ule was negatively correlated with maternal age. It has 
been reported that infant gender may affect the placental 
gene expression and function [41, 42]. Whether infant 
gender affects the gene expression profile of umbilical 
cord blood needs further study with a large sample size. 

Fig. 5  Critical gene co-expression network modules closely correlated with FGR. a Results of the WGCNA and clustering of the entire transcriptome. 
b Module size of the gene co-expression network and GO enrichment analyses of 18 modules. c Person correlation analysis of the network modules 
and continuous demographic characteristics of the FGR infants. The color gradient indicates the direction, i.e., positive (red) and negative (blue), 
and the strength of the correlation. d Boxplot of stability (Jaccard similarity coefficient) between each module of real data and modules from 
1000 bootstrap re-sampling datasets. The line indexes the best-case stability of the random modules in the simulation. e Hierarchical clustering of 
candidate genes in the representative turquoise module. f Signaling pathway analysis of the turquoise module

(See figure on next page.)
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And the effects of infant gender on these genes enriched 
in the tan module also needs further confirmation. To 
evaluate the utility of these modules in elucidating the 
molecular underpinnings of FGR, we performed GO and 
signaling pathway enrichment analyses of each module. 

These analyses indicated that the significant FGR mod-
ules focused on metabolism, immune systems and tran-
scriptional misregulation. However, further studies are 
warranted to determine whether these gene signatures 
are relevant to postnatal health, and to provide further 

Fig. 6  The protein-coding genes, lncRNAs and miRNAs as potential signatures for FGR. a Quantitative verification assay of representative genes and 
lncRNAs in 12 FGR cases and 12 controls (Ctrl) umbilical cord blood samples. The statistical significance was analyzed by Student’s t-test. * and ** 
represented P < 0.05 and P < 0.01, respectively. b The ROC curve for the potential gene signatures including RP11_552M6.1, LINC01291, and Asgr1 
in 12 FGR and 12 control umbilical cord blood samples. c The ROC curve for the potential predictive markers including Sfrp2, miR-432-5p, and 
miR-1306-3p in 12 FGR and 12 control maternal peripheral blood samples. ROC, receiver operating characteristic. AUC​ area under the curve
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mechanistic insight into the consequences of abnormal 
fetal growth.

Furthermore, to systematically investigate the core 
regulatory network of FGR at the whole-transcriptome 
level, we performed an integrated analysis of protein-
coding genes, lncRNAs, and miRNAs. By combining the 
lncRNA-mRNA, miRNA-mRNA, miRNA-lncRNA, and 
protein–protein interaction (PPI) analyses, we observed 
7 cis-, 59 trans-, 2 miRNA, and 70 PPI regulatory rela-
tionships. LncRNAs and protein-coding genes in cis-reg-
ulatory relationship had a positive PCC, while lncRNAs 
and trans-regulated genes had a negative PCC, which is 
similar to miRNAs and their targets. It has been reported 
that imprinted genes can regulate growth and develop-
ment [31]. Here, we found that the expression levels of six 
imprinted genes (Col9a3, Dlk1, Fuca1, Lilrb4, Sfrp2, and 
Ventx) significantly differed between FGR cases and con-
trols. Furthermore, we confirmed the expression level of 
the top-10 differentially expressed protein-coding genes 
and lncRNAs, six imprinted genes and 13 miRNAs in 
umbilical cord blood and maternal peripheral blood. The 
ROC plots showed that RP11_552M6.1, LINC01291, and 
Asgr1 in umbilical cord blood, while Sfrp2, miR-432-5p, 
and miR-1306-3p in the maternal peripheral blood had 
significantly predictive power for FGR. These findings 
suggest a cluster of molecular signatures that are poten-
tially diagnostic and predictive markers of FGR.

Since the limited sample size used in this study, the sta-
bility of the gene modules defined by the WGCNA has 
been further investigated by the bootstrap method [28]. 
In consistent with Shannon et al., the distribution of the 
Jaccard similarity coefficients of each module between 
the real data and bootstrapped set suggested that the 
gene modules with large gene sizes had higher stabil-
ity than the small sized modules. Furthermore, we con-
firmed the turquoise, blue, brown, and yellow modules 
exhibited much higher stability than the other modules 
as compared with the best-case stability of the random 
modules in the simulation. Furthermore, considering 
with the limited sample size in this study, these 95% CI 
AUCs of logistic regression models were also calculated 
by 1000 bootstraps. Then, these findings need further 
investigation of the diagnostic potential of these potential 
molecules in a large sample size, and their relevance to 
postnatal health in childhood and adulthood for the con-
sequences of abnormal fetal growth.

Conclusions
This study comprehensively profiled the transcriptome-
wide landscape of human umbilical cord blood, con-
structed the core gene co-expression network, delineated 
the critical gene signatures including imprinted genes 
correlated with FGR, and provided key insight into 

intrauterine perturbations and candidate signatures of 
FGR. However, it needs further exploration for the diag-
nostic significance in a large sample size during early 
stage of pregnancy, and functional and mechanistic study 
to provide more evidences for elucidating FGR.
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