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Abstract—Due to growing concern on brain injury in sport,
and the role that helmets could play in preventing brain
injury caused by impact, biomechanics researchers and
helmet certification organizations are discussing how helmet
assessment methods might change to assess helmets based on
impact parameters relevant to brain injury. To understand
the relationship between kinematic measures and brain
strain, we completed hundreds of impacts using a 50th
percentile Hybrid III head-neck wearing an ice hockey
helmet and input three-dimensional impact kinematics to a
finite element brain model called the Simulated Injury
Monitor (SIMon) (n = 267). Impacts to the helmet front,
back and side included impact speeds from 1.2 to 5.8 ms21.
Linear regression models, compared through multiple regres-
sion techniques, calculating adjusted R2 and the F-statistic,
determined the most efficient set of kinematics capable of
predicting SIMon-computed brain strain, including the
cumulative strain damage measure (specifically CSDM-15)
and maximum principal strain (MPS). Resultant change in
angular velocity, DxR, better predicted CSDM-15 and MPS
than the current helmet certification metric, peak g, and was
the most efficient model for predicting strain, regardless of
impact location. In nearly all cases, the best two-variable
model included peak resultant angular acceleration, aR, and
DxR.

Keywords—Head injury, Brain injury, Brain strain, Injury

biomechanics, Concussion, Helmet assessment, Sport biome-

chanics.

INTRODUCTION

Brain injuries, such as concussion, occur in hockey
at rates up to 0.54 for high school,19 0.41–3.1 for col-

legiate8,15 and 1.81 for professional,32 per 1000 expo-
sures. A 2012 study considering football impacts
dating back to 1961 found instances of brain injuries
causing disability continually increased each year.21

Despite the widespread use of helmets, sport and
recreation-related head injury remains the second most
common cause of hospitalization for traumatic brain
injury (TBI).10 It is understood that helmet use miti-
gates the risk of severe focal head injury, however the
perceived increase in rates of sport-related brain in-
juries has led to increased research efforts examining
the role of helmets in brain protection. At the same
time, international organizations are discussing how
helmet certification methods might change towards
assessing helmet ability to protect wearers from diffuse
brain injury.

Minimum helmet protective capacity is currently
established through standard laboratory impact test-
ing. Acceleration,1,5 or functionals using accelera-
tion,29 establish helmet ability to attenuate impact. The
text in contemporary helmet standards generally does
not include a rationale on the choice of attenuation
metric, however it is generally accepted that the choice
of head acceleration is at least partially motivated by
research on head injury biomechanics dating back to
the 1950s and 1960s.2

A group at Wayne State University performed
some of the earliest work on injury thresholds in the
1960s, developing the cerebral concussion tolerance
curve (WSTC). Based on animal and human exposure
data,11 this work identified the maximum allowable
linear acceleration the head can withstand a given time
duration, defining a relationship between linear head
acceleration and time duration and severe head injury.
Efforts to approximate the WSTC inspired severity
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metrics that aimed to quantify impact severity using
kinematics. The severity index (SI), used for football
helmet certification,29 places a limit on the total value
of resultant linear acceleration integrated over time.
The Head Injury Criterion (HIC) was later developed,
which also integrates linear acceleration but instead
over set time duration 15 or 36 ms. Many of the hel-
met certification standards in use today quantify im-
pact attenuation through peak linear acceleration
(peak g).1,4,5 Helmets certified using the above
approaches are credited with protecting against severe
head injury in contact sports.6 To build on the cele-
brated track record of helmets in preventing severe
injury, helmet certification organizations are now
considering what approaches might be used to quan-
tify impact attenuation relative to the mechanics of
impact that have been suggested as relevant in diffuse
injury.

As early as the 1940s, experimental work has shown
angular motion to be a critical impact component
causing diffuse brain injury. In 1943, Holbourn used a
gelatin mixture to represent brain tissue, where
resulting strains represented the occurrence of brain
injuries. After applying both translational and rota-
tional loads, he found that the greatest strains occurred
under strictly rotational motion.14 Later, Yarnell and
Ommaya subjected rhesus monkeys to whiplash con-
ditions, confirming the significance of angular motion
on brain injuries33 and Gennarelli et al. subjected
squirrel monkeys to linear and angular motions, noting
a greater frequency of brain lesions under head rota-
tion.9 This research established a link between head
rotation and diffuse brain injury.

Today, there exist assessment functions that incor-
porate angular kinematics, though there is no con-
sensus over which kinematic measure or kinematic
function is best for predicting diffuse injury. The gen-
eralized acceleration model for brain injury tolerance
(GAMBIT23) and the head impact power (HIP22) in-
clude both linear and angular kinematics. Brain injury
criterion (BrIC30), rotational injury criterion (RIC17)
and power rotational injury criterion (PRHIC17) in-
clude only angular kinematics. The combined proba-
bility of concussion (CP) was developed as a function
of linear and rotational acceleration and proved to be a
better predictor for concussion than linear acceleration
alone.25 Specific to helmet assessment, the Hockey
summation of tests for the analysis of risk (Hockey
STAR) formula is calculated as a function of linear
and angular acceleration.26

Alongside efforts to establish kinematic functions to
quantify impact severity, numerical head-brain models
have been developed that use measures of stress and
strain in brain tissue to estimate brain injury risk and
distribution. A number of finite element head models

exist, all with the aim to represent human tissue
response to inertial loading. Developed by Takhounts
et al. for the automotive industry, the Simulated In-
jury Monitor (SIMon) approximates the average male
skull, cerebrospinal fluid layers, bridging veins and
brain (cerebrum, cerebellum and upper spinal cord).31

Global Human Body Modeling Consortium
(GHBMC),30 Wayne State University Head Injury
Model (WSUHIM),28 and the University College
Dublin Brain Trauma Model (UCDBTM)28 are
examples of other models currently being used. In
addition to the major structures of the brain and skull
represented by SIMon, these models represent facial
bones, scalp and in some cases a deformable skull.
Computing mechanical measures such as maximum
principal stress, maximum principal strain (MPS) and
maximum pressure represents tissue deformation.
Through correlating brain strain to injury, strain
measures including the cumulative strain damage
measure (CSDM) and maximum axonal strain have
been proposed to represent injury risk. Numerical
models have become tools used to better understand
the relationship between kinematic measures and tis-
sue strain.

Related to the ongoing discourse on kinematic
functions and head-brain models, certification organi-
zations and researchers alike are working towards
improved helmet certification methods. If kinematic
functionals incorporating angular head rotation are
adopted, it will be necessary to use headforms that are
capable of measuring head rotation, and the impact
simulation method must create realistic head rotations.
While the specifics of the impact test equipment are yet
to be determined, it is likely that either angular head
kinematics or tissue strain measures from head models
will be used in future certification methods. Conse-
quently, it is important to document how linear and
angular kinematics correlate with the emerging tissue
strain measures. Such documentation could ultimately
influence choices on test equipment and the use of
kinematic functionals as opposed to numerical head-
brain models.

The objective of this work is to document correla-
tions between measured head kinematics and tissue
strain metrics using one plausible combination of test
equipment and impact simulation method. Using the
HybridIII head-neck and a custom impact experiment
in tandem with the SIMon head-brain finite element
model, we measured linear and angular head kine-
matics at impact and used the measures as inputs to
compute brain tissue strain. The measured kinematics
were then evaluated using multiple regression to
determine which kinematic measures correlated with
estimated brain strain and the minimum number of
kinematics needed to predict strain measures.
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MATERIALS AND METHODS

The experimental setup included a guided rail drop
tower with adjustable drop gimbal, an anthropomor-
phic test device (ATD) head and neck (HybridIII 50th
Percentile, 10 kg total mass of gimbal and head-neck)
and a modular elastomer programmer surface moun-
ted to a stationary steel impact anvil (Fig. 1). A
number of methods can be explored for simulating
head impacts that allow rotation of the head and here
we focused on a flexible neck approach to simulate
impact. The HybridIII neck was used as it represents
one model being considered for future helmet assess-
ment methods in place of the current rigid neck set-
up.1,5 It is recognized that the HybridIII neck is stiff in
axial compression and another surrogate neck may
ultimately be chosen, but here we represent one sce-
nario commonly used for head impact evaluation. In
future work, we will present results that consider a free
drop of a head form absent a neck, similar to that
being considered by European standards associa-
tions.12

A variety of drop heights and impact locations were
completed on 55 CSA certified helmets (Bauer 4500,
size medium) for a total of 267 impacts. The experi-
mental protocol was guided by common impact sites
and severities experienced by collegiate ice hockey

players, based on a study by Brainard et al. Brainard
observed that the majority of impacts were to the front
and back of the helmet and one percent of impacts
resulted in peak linear head accelerations exceeding
80 g.3 In our study, 24% of impacts exceeded 80 g,
which is a greater percentage than that recorded by
Brainard. A greater percentage of high peak g events
were included to capture head kinematics over a wide
range of impact severities. According to Margulies
et al., change in angular velocities exceeding 46.5 rad/s
can cause diffuse axon injury (DAI).20 Due to the
inclusion of impacts resulting in atypically high peak g
values, a small number of impacts reached angular
kinematics that can be considered within range for an
individual to suffer DAI. Impact severity distribution,
as quantified by peak g, is shown in Table 1 and im-
pact locations referenced in this table are shown in
Fig. 2. The range of impact speeds included 1.2 to
5.8 ms21, which encompasses speeds specified in ice
hockey helmet standards.1,5

Nine uniaxial accelerometers (Measurement Spe-
cialties Inc. Hampton VA, model 64C-2000-360) were
mounted in the HybridIII headform, arranged in a 3-2-
2-2 array. Using the conventions prescribed in Pad-
gaonkar et al., we converted linear acceleration mea-
sures from the nine accelerometers to linear
accelerations and angular accelerations about the head
center of mass.24 Linear and angular velocity was
computed from linear and angular acceleration,
respectively using a forward integration function
implemented in Matlab. Impact speed was measured
by a purpose-built velocity gate setup to collect
velocity data within 40 mm of impact.

Impact acceleration data was collected and saved at
100 kHz using National Instruments hardware and
software (PXI 6251 and Labview v8.5, Austin TX).
Analog voltages were anti-alias filtered with cut-off
frequency 4 kHz using hardware prior to post-process
low-pass filtering per CFC 1000.27

The accelerometer data collected was digitally pro-
cessed using Matlab to determine the peak resultant
linear acceleration and direction-specific changes in
angular and linear velocity of the HybridIII headform.

HybridIII kinematics including directional linear
acceleration and angular velocity were input to the
Improved SIMon31 brain-skull FE model (solved with
multi-core processor, CoreTM i7-4790 CPU 8 GB
RAM, Intel�, Santa Clara). The cumulative strain
damage measure (specifically CSDM-15) and MPS are
mechanical measures that here represent brain tissue
deformation. CSDM-15 represents the cumulative
volume fraction of the brain that reaches or exceeds a
tensile strain of 15% or greater. CSDM, computed
with SIMon, has corresponding risk assessment func-
tions based on a body of injury data from animals and

FIGURE 1. Impact tower with helmeted 50th percentile Hy-
bridIII mounted to 50th percentile neck mounted on a custom
gimbal with a purpose built velocity gate.
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college football showing correlations between CSDM
and probability of diffuse anatomic injury.30 PRHIC,
based on integrated angular acceleration and angular
velocity, shows strong correlation with CSDM val-
ues.18 MPS is capable of capturing all strain events
including when strains do not exceed 15%, while the
volume of brain tissue exceeding the 15% strain
threshold is reported through CSDM-15. CSDM-15
and MPS are reported here as these measures were
developed and correlated with injury using the SIMon
model.31

The decision to work with SIMon, is based on the
validation process done by previous researchers
against cadaver and animal experiments31 using neu-
tral density targets and intra-cranial pressures in order
to approximate the behavior of a human brain and

skull.13 The HybridIII head-neck setup was used dur-
ing validation, making SIMon an appropriate choice
for our experimental set-up.

Three-dimensional data from the 267 impacts were
input to SIMon (simulation time needed to reach
convergence being approximately 2–3 h per simula-
tion). CSDM-15 and MPS were determined over
80 ms. impact duration, allowing both CSDM-15 and
MPS to reach a stable maximum. Here, SIMon com-
puted CSDM-15 and MPS are relative measures for
brain strain and therefore increases in strain measures
are considered to indicate greater risk of brain injury.

To determine the most efficient set of kinematics
that predict SIMon computed brain strain, including
CSDM-15 and MPS, linear regression models were
compared through multiple regression techniques
using the equations below.

CSDM15 ¼ a0 þ b1a1 þ b2a2 þ b3a3 þ � � � þ bkak

MPS ¼ c0 þ e1c1 þ e2c2 þ e3c3 þ � � � þ ekck:

Beginning with a single predictor (k = 1), as the
linear model evolved by adding or replacing kinematic
terms (ak, ck), statistical measures including weighted
coefficients (bk, ek) and their significance (p< 0.05)
and adjusted R2 were computed. For a given number
of predictor terms, the magnitude of R2 conveys which
model best predicts variation in CSDM-15 and MPS.
R2 will always increase with added terms, and therefore
adjusted R2 was computed to account for the increased
number of terms.7 To allow comparison of models
with similar R2 values, the F-statistic was calculated.
The F-statistic here was used to represent how effi-
ciently the model predicts the data set and, similar to
R2, a higher F-statistic is favorable.7

Multiple Regression analysis allowed us to compare
all models and identify which kinematics were signifi-
cant predictors (p< 0.05), which model best fit the
data (R2) and determine if this was the most efficient
model to predict the data (F). An ideal model would
have a maximum F-statistic with R2 close to 1 and all
predictor variables showing significance.

The single kinematics that will be considered indi-
vidually and in combination include: peak resultant

TABLE 1. Resulting distribution of the number of impacts categorized by peak g range and impact location.

Location

No. of impacts

Total<45 g >45 g >80 g

Front 43 29 33 105

Back 39 31 18 88

Side 34 28 12 74

All 116 88 63 267

FIGURE 2. BauerTM hockey helmet showing (a) impact
regions defined by 90-degree sections as shown from the top
view, and impact locations for (b) front, (c) side and (d) back
impacts.
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linear acceleration (peak g), impact velocity (Vi),
resultant change in linear velocity (DVR), peak resul-
tant linear velocity (VR), peak resultant angular
acceleration (aR), resultant change in angular velocity
(DxR), directional change in angular velocity (Dxx,
Dxy, Dxz), peak resultant angular velocity (xR) and
directional peak angular velocity (xx, xy, xz). Figure 3
contains example plots of angular velocity to demon-
strate how kinematic terms were defined (e.g. resultant
vs. direction-specific). Maximum kinematic values
were determined irrespective of the time that the values
occurred. The conventions displayed in Fig. 3 for
determining change in resultant and peak angular
velocity values were the same as those used for linear
velocity and linear acceleration.

RESULTS

Results for multiple regression models predicting
CSDM-15 and MPS, considering all impact locations
together, are found in Tables 2 and 3, respectively.
Multiple regression results specific to impact location,
considering separately impacts to the front, back and
side, have been summarized in Tables 4, 5, and 6.
The regression models that achieved the maximum
F-statistic, maximum adjusted R2, and the best two-
variable regression model are indicated in Tables 4, 5,

and 6, respectively, presenting which variables were
used to create each model based on impact location.

The location of MPS is reported in Table 7 by
highlighting the element that experienced the greatest
tensile strain during impact. MPS was most commonly
reached in the cerebrum in regions adjacent to the
cerebellum on the left and the right. Overall, more than
80% of maximum strains occurred in this region (88%
of Front, 93% of Back, 65% for Side impacts).

The single best kinematic predictor for both CSDM-
15 and MPS considering all impact locations together
was DxR as shown by R2 of 0.86 and F-statistic 1629
(Table 2, row 5) for CSDM-15 and R2 of 0.89 and F-
statistic 2023 (Table 3, row 5) for MPS. Each kine-
matic variable was statistically significant in predicting
CSDM-15 and MPS when acting as an individual
predictor (Tables 2, 3, rows 1–7), though DxR identi-
fies as the most efficient model for predicting both
strain measures and a better option than peak g and
aR. The highest adjusted R2 for CSDM-15 was
obtained using a 4-variable regression model including
peak g, Vi, DVR and DxR (Table 2, row 33). A 5-
variable model resulted in the highest adjusted R2 va-
lue for MPS including peak g, DVR, xx, xy, and xz

(Table 3, row 37). Considering all regressions models
(Tables 2, 3, rows 1–37), as a new term was added to a
previous model, adjusted R2 increased or stayed the
same.

FIGURE 3. Angular velocity plotted over time: (a) Three-dimensional angular velocity demonstrating the difference between xy
and Dxy; Dxx and Dxz were determined in the same way and DxR was calculated as the resultant of these three values; (b)
Resultant angular velocity over the impact time duration used to determine xR.
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For CSDM-15, as the number of predictor variables
increased from one to four, the maximum F-statistic
decreased from 1629 (row 5), to 851 (row 19), to 638
(row 21), to 525 (row 33). MPS noted similar trends.
The primary reason for the decreasing trend in
F-statistic was that adjusted R2 only increased from
0.86 (row 5) to 0.89 (row 33) despite increasing the
number of predictor variables from one to four. That is
to say, the modest improvement in explained variance
between models in row 5 and row 33 (0.86–0.89)
required addition of three more predictor variables
resulting in a less efficient regression model (as shown
by low F-statistic).

To establish whether the findings associated with
CSDM-15 and MPS are specific to helmet impact

location, the preceding statistics were repeated con-
sidering data separately for front, back and side impact
locations. All individual impact locations determined
the best single kinematic predictor to be DxR for both
CSDM-15 and MPS, resulting in the greatest
F-statistic in all cases (Table 4). Furthermore, whether
considering all impacts together or individual impact
locations, DxR consistently resulted in stronger corre-
lations than aR. In the case of back impacts, models
predicting CSDM-15 achieved a maximum adjusted R2

of 0.98 with F-statistic 2314 with a two-variable model
including VR and DxR (Table 5). For all other impact
locations for both CSDM-15 and MPS, the greatest
adjusted R2 resulted from a model containing no fewer
than three variables (Table 5).

TABLE 2. Multiple regression models for CSDM-15 with each row containing a unique set of predictor variables to form a model
with the model adjusted coefficient of determination (Adj R2) and F value in the right hand columns (bold text in adjusted R2 and F

columns indicate maximum values).

No. of variables Model no. Peak g Vi DVR VR aR Dxx Dxy Dxz DxR xx xy xz xR Adj R2 F

1 1 0.004 0.36 152

2 0.096 0.40 181

3 0.090 0.44 210

4 0.101 0.46 229

5 0.017 0.86 1629

6 0.022 0.82 1252

7 0.000 0.11 33

2 8 20.002 0.120 0.44 107

9 20.003 0.164 0.48 123

10 20.001 0.018 0.86 841

11 0.001 0.020 0.83 658

12 20.001 0.017 0.86 812

13 0.025 0.019 0.85 731

14 0.026 0.019 0.84 713

15 20.003 0.017 0.86 813

16 0.005 0.000 0.37 75

17 0.096 0.000 0.46 106

18 0.110 0.000 0.48 116

19 0.000 0.017 0.87 851

20 0.000 0.022 0.83 621

3 21 20.003 0.052 0.017 0.88 638

22 20.002 0.071 0.019 0.86 544

23 20.003 0.054 0.017 0.87 619

24 20.002 0.072 0.019 0.85 512

25 0.012 0.016 0.006 0.87 593

26 0.011 0.014 20.002 0.86 525

27 20.002 0.134 0.000 0.46 73

28 20.004 0.179 0.000 0.50 84

4 29 0.000 0.012 0.014 20.002 0.86 394

30 0.000 0.013 0.016 0.006 0.87 443

31 20.002 0.007 0.065 0.019 0.86 407

32 20.003 20.060 0.111 0.016 0.88 482

33 20.002 20.093 0.128 0.017 0.89 525

34 20.002 0.049 0.024 0.020 0.85 391

35 20.002 20.161 0.268 0.000 0.49 60

36 20.003 20.216 0.377 0.000 0.55 78

5 37 20.001 0.024 0.013 0.016 0.005 0.87 362

Variables included in each model are indicated by their regression coefficient displayed in a white box (bold and italicized text indicates that it

is a significant predictor with p value<0.05).
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TABLE 3. Multiple regression models for MPS with each row containing a unique set of predictor variables to form a model with
the model adjusted coefficient of determination (Adj R2) and F value in the right hand columns (bold text in adjusted R2 and F

columns indicate maximum values).

No. of variables Model no. Peak g Vi DVR VR aR Dxx Dxy Dxz DxR xx xy xz xR Adj R2 F

1 1 0.003 0.43 192

2 0.066 0.45 206

3 0.062 0.48 234

4 0.070 0.51 260

5 0.011 0.89 2023

6 0.014 0.83 1239

7 0.000 0.17 49

2 8 0.000 0.060 0.48 116

9 20.001 0.088 0.51 132

10 0.000 0.011 0.89 1008

11 0.022 0.012 0.85 735

12 0.002 0.011 0.89 1009

13 0.020 0.012 0.86 788

14 0.022 0.012 0.86 772

15 0.001 0.011 0.89 1008

16 0.003 0.000 0.44 95

17 0.064 0.000 0.49 116

18 0.074 0.000 0.52 129

19 0.000 0.011 0.89 1025

20 0.000 0.014 0.84 640

3 21 20.001 0.014 0.011 0.89 686

22 0.000 0.027 0.012 0.86 526

23 20.001 0.013 0.011 0.89 679

24 0.000 0.026 0.012 0.86 514

25 0.006 0.010 0.009 0.89 720

26 0.006 0.008 0.003 0.87 556

27 0.989 0.000 0.838 0.49 77

28 20.001 0.092 0.000 0.52 87

4 29 0.000 0.005 0.008 0.002 0.87 417

30 0.000 0.006 0.010 0.008 0.89 541

31 0.000 0.022 0.009 0.012 0.86 397

32 0.000 20.022 0.034 0.011 0.89 514

33 20.001 20.036 0.044 0.011 0.89 530

34 0.000 0.043 20.016 0.013 0.86 398

35 0.000 20.083 0.134 0.000 0.50 61

36 20.001 20.133 0.214 0.000 0.56 78

5 37 0.001 20.019 0.006 0.010 0.009 0.90 447

Variables included in each model are indicated by their regression coefficient displayed in a white box (bold and italicized text indicates that it

is a significant predictor with p value<0.05).

TABLE 4. Summary of the variables included in multiple regression models predicting CSDM-15 (top) and MPS (bottom) resulting
in the greatest F-statistic.

Impact No. of variables Variables included in regression model Adj R2 F

CSDM-15

All 1 DxR 0.86 1629

Front DxR 0.83 522

Back DxR 0.96 2386

Side DxR 0.72 185

MPS

All 1 DxR 0.89 2023

Front DxR 0.83 479

Back DxR 0.93 1072

Side DxR 0.78 253

Each row represents one of the four impact group considerations: all impacts considered together (All) and individual impact locations (Front,

Back, Side). Variables included in each model are indicated (bold and italicized text indicates that it is a significant predictor with p

value< 0.05).
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DISCUSSION

This study used multiple regression techniques to
determine the least number of kinematic terms neces-
sary to predict brain strain calculated using SIMon for
one configuration of test equipment.

This study proves that it is possible to create a
model capable of predicting brain strain measures
based on multiple linear and angular kinematics,
though a single angular kinematic can predict both
CSDM-15 and MPS. The single best kinematic pre-
dictor for CSDM-15 and MPS is DxR, consistent when
considering all impact locations together as well as
when considering each impact location separately. In
all cases, the model that achieved the highest F-statistic
for predicting both brain strain measures included only
DxR. The indication that brain strain can be predicted
using a single kinematic DxR agrees with work by

Takhounts et al. who established angular velocity
correlated better with CSDM and MPS than any other
kinematic measures or functionals when considering
injury in automotive impacts.31 Through the develop-
ment of BrIC, Takhounts et al. confirmed that angular
velocity is a better predictor for CSDM and MPS than
angular acceleration and linear acceleration,30 which is
in agreement with the findings in the present study as
indicated by DxR showing a greater R2 and F-statistic
than peak g and aR.

Considering single variable regression models, DxR

better predicts CSDM-15 and MPS than the current
helmet certification metric, peak g, as shown by the
plots in Figs. 4 and 5. A regression model including
DxR compared to a model containing peak g achieved
greater adjusted R2 and F-statistic. The significance of
this finding is that as standard organizations discuss

TABLE 5. Summary of the variables included in multiple regression models predicting CSDM-15 (top) and MPS (bottom) resulting
in the greatest adjusted R2.

Impacts No. of Variables Variables included in regression model Adj R2 F

CSDM-15

All 4 Peak g Vi DVR DxR 0.89 525

Front 4 Peak g xx xy xz 0.92 289

Back 2 VR DxR 0.98 2314

Side 2 aR DxR 0.82 157

MPS

All 5 Peak g DVR xx xy xz 0.90 447

Front 5 Peak g DVR xx xy xz 0.93 283

Back 3 Dxx Dxy Dxz 0.94 473

Side 4 Peak g Vi DVR aR 0.82 73

Each row represents one of the four impact group considerations: all impacts considered together (All) and individual impact locations (Front,

Back, Side). Variables included in each model are indicated (bold and italicized text indicates that it is a significant predictor with p

value< 0.05).

TABLE 6. Summary of the variables included in the best two-variable regression models for predicting CSDM-15 (top) and MPS
(bottom).

Impacts No. of variables Variables included in regression model Adj R2 F

CSDM-15

All 2 aR DxR 0.87 851

Front aR DxR 0.85 267

Back VR DxR 0.98 2314

Side aR DxR 0.82 157

MPS

All 2 aR DxR 0.89 1025

Front aR DxR 0.89 356

Back aR DxR 0.94 612

Side aR DxR 0.81 142

Each row represents one of the four impact group considerations: all impacts considered together (All) and individual impact locations (Front,

Back, Side). Variables included in each model are indicated (bold and italicized text indicates that it is a significant predictor with p

value< 0.05).
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adopting new test methods to include angular motion,
this work determines that the best method for pre-
dicting brain strain involves monitoring DxR rather
than peak g alone.

Considering CSDM-15, provided DxR was included
in the regression model, adjusted R2 improved by a
maximum 3.5%, when increasing the number of terms
from one variable to four variables (Table 2, row 5 to
row 33). For the same change in predictor variables
(Table 2, row 5 to row 33), the F-statistic decreased by
nearly 70%. A single-variable model is simple and
capable of predicting brain strain measures; therefore,
a more complex, multi-variable model may not be
necessary to estimate diffuse injury of a certification-
style drop test of a helmet.

In the case of both CSDM-15 and MPS, the model
that maximizes adjusted R2 does not align with the

model that maximizes the F-statistic. The model with
maximum adjusted R2 for predicting CSDM-15 in-
cludes peak g, Vi, DVR, and DxR. The model with the
highest adjusted R2 for MPS includes peak g, DVR and
xx, xy, and xz. Fewer variables create a more efficient
model and maximize the F-statistic. Choosing a model
with the highest adjusted R2 could require measuring
up to five different kinematic terms, though brain
strain measures can be predicted with as little as one
angular variable.

Considering impact data for impact locations sep-
arately (front, back, side), there is no agreement on a
set of multiple kinematics that proves to be the best
predictor for CSDM-15 and MPS. The best two-vari-
able model for predicting CSDM-15 for front and side
impacts includes aR and DxR, while back impacts fa-
vour a model that includes VR and DxR (Table 5). For

TABLE 7. Location of SIMon-computed MPS for varying impact locations.

The single element containing MPS for each of the simulated impacts is considered here and all identified elements are highlighted.
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models containing three and four variables, each im-
pact location shows a different set of kinematics
forming the best model for predicting CSDM-15.
Similar trends were found for MPS.

Considering all impact locations together, a two-
variable model based on aR and DxR achieves the
greatest R2 and F-statistic for predicting CSDM-15
(Table 2, row 19), and MPS (Table 3, row 19).
Angular acceleration, aR, in combination with angular
velocity creates an efficient and effective model for
predicting both CSDM-15 and MPS, however, aR in a
model with any linear kinematics greatly reduces the
efficiency as indicated by lower F-statistic. Including
three or more kinematics in an attempt to improve R2

gave no single set of kinematics that was the best for
predicting strain measures. A regression model cen-
tered on DxR proves to be the single most efficient
model to predict CSDM-15 and MPS.

As CSDM-15 and MPS represent different methods
for reporting brain strain, discussion surrounds which
is more appropriate for representing brain injury risk
during impact. CSDM-15 reports the volume of brain
tissue that exceeds a maximum strain of 15%, while
MPS reports the peak tensile strain experienced at any

time during impact. As the lowest reported MPS was
0.13, CSDM-15 captures most of the MPS volumes
present in this study. Plotting CSDM-15 against MPS,
confirms the correlation between the two strain mea-
sures, and shows that higher MPS values are accom-
panied with appropriately increasing volumes reaching
higher strain levels (Fig. 6). This suggests that kine-
matics capable of predicting either measure will be
comparably accurate for representing potential injury
risk during certification style helmeted impacts.

Should a new test protocol that includes head
rotation be adopted, it will be necessary to distinguish
variations in helmet performance. Ice hockey helmets
capable of mitigating DxR, for example, would then be
favourable during helmet assessment protocols, based
on the findings of this study.

It is known that inputting only linear acceleration
(absent of head rotation) into SIMon will result in near
zero tissue strain, however, this work found that linear
kinematics proved significant predictors of both
CSDM-15 and MPS. The primary explanation for this
is that, due to the presence of a neck model, linear
kinematics correlate to angular kinematics and subse-
quently brain strain. The correlation between peak g
and DxR is especially evident in back impacts as seen
in Fig. 7. The primary implication of this finding is

FIGURE 4. Regression models plotted against CSDM-15 for
(a) a model containing peak g only and (b) a model including
DxR.

FIGURE 5. Regression models plotted against MPS for (a) a
model containing peak g only and (b) a model including DxR.
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that the mechanics of the neck dictate headform
rotation and consequently influence which kinematics
are the best predictors of brain strain measures.

Due to the influence of the neck, for discussion on
future assessment functions, the neck must be an
ongoing consideration. It is agreed upon that the Hy-
bridIII neck response differs by rotation axes and until
now it was unclear whether that variation would affect
which kinematics relate to strain measures if used for
helmet certification. While the neck plays a central role
in influencing which kinematics best predict strain, this
work proves that for testing protocols with the Hy-
bridIII head and neck, a single kinematic measure,
DxR, can predict strain measures for all impact loca-
tions. In parallel work, we will be documenting cor-
relations for impact experiments without a neck to
contribute to the ongoing debate regarding neck con-
siderations.

One limitation of this work is that we used the SIMon
model exclusively. It is known that the outputs of the
SIMon model, on the basis of CSDM and MPS, corre-
late with the GHBMC,30 and therefore it may be pos-
sible to extrapolate our findings to other models. Ji et al.
compared impact response variables of SIMon, the
Dartmouth Scaled and Normalized Model (DSNM)
and the Wayne State University Head Injury Model
(WSUHIM), and found that while output variable
magnitudes differed, all models showed correlation with
peak linear and angular acceleration,16 though angular
velocity was not considered in the study. Future work
using additional models should be performed to confirm
correlation efforts. The choice to use SIMon in this
study is based on its validation process. Injury metrics
were developed based on anatomic injury and accident
reconstructions using the HybridIII head and neck,
making its use, in combination with our test bed, the

FIGURE 6. Maximum principal strain plotted against cumulative strain damage measure (specifically CSDM-15).

FIGURE 7. Resultant change in angular velocity, DxR plotted against peak g for impacts to the back of the helmet.
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most appropriate choice. However, we acknowledge the
possibility that the findings in this study could be altered
by virtue of using another brain model.

This study is limited to relatively short impact
durations associated with helmeted impacts. As we aim
to focus on kinematics that predict strain measures
specifically for helmeted impacts, this study did not
consider impact durations exceeding 80 ms.

Further, we acknowledge that the use of the Hy-
bridIII neck influences the results of this study and the
predictor variable coefficients in each regression model
are dictated by our specific experimental setup. Future
work will include helmeted impacts with the HybridIII
head and no neck constraint to determine whether the
findings in the present study change.

This study is the first to document impact location-
specific results to determine the best kinematic pre-
dictors for brain strain measures. Hundreds of hel-
meted impacts were completed at varying locations
and an extensive statistical analysis was performed
showing conclusively that while individual kinematic
parameters are statistically significant when considered
alone, angular velocity is the single best kinematic
predictor for brain strain and that a combination of
linear and angular kinematics can predict brain strain
measures. Considering independently the various im-
pact locations, aR and DxR were identified as the best
two-variable model for strain prediction in nearly all
cases, excluding only back impacts for CSDM-15
prediction. This study also shows that the mechanics of
the neck will dictate the strains predicted, and there-
fore which kinematics predict brain strain. The results
of this study could be used to inform which kinematics
could be included for helmet assessment using drops
with the HybridIII head and neck.
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