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A B S T R A C T

The spread of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is here investigated from an
epidemic model considering four pathways of person-to-person transmission. These pathways represent the
propagation of this novel coronavirus by asymptomatic and symptomatic infected individuals. In this work,
analytical expressions for the disease-free and endemic steady-states are derived. Also, the conditions for era-
dication of this contagious disease are determined. By taking into account realistic parameter values, the pro-
posed model shows an oscillatory convergence to the endemic steady-state, which means the occurrence of a
sequence of peaks in the number of sick individuals as time passes. These results are discussed from a public
health standpoint.

1. Introduction

The ongoing pandemic of coronavirus disease 2019 (COVID-19) has
been responsible for countless deaths, many of them due to the lack of
adequate medical treatment, even in developed countries (Singhal,
2020; Velavan and Meyer, 2020). Two main features of this disease,
which is caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), are (Lai et al., 2020; Mizumoto et al., 2020; Singhal,
2020): asymptomatic carriers can transmit the pathogen and notable
interindividual variation in the course of infection (from absence of
clinical manifestations to severe pneumonia and multi-organ dysfunc-
tion, requiring intensive care).

Theoretical investigations on the spread of contagious infections can
support the decision-making processes by public health authorities
(Ferraz and Monteiro, 2019; Fitch, 2015; Kretzschmar, 2019;
Pennekamp et al., 2017; Schimit and Monteiro, 2010; Tang et al.,
2020). Hence, despite its recent emergence, some aspects of the out-
break of the novel coronavirus were already theoretically examined.
For instance, epidemic models were conceived to evaluate the impact of
mass media (Zhou et al., 2020) and screening programs (Gostic et al.,
2020) on reducing the propagation.

Assume that each individual is in one of four health states: sus-
ceptible (S), asymptomatic infected (A), symptomatic infected (I), or
recovered (R). Asymptomatic means without symptoms; symptomatic
means with symptoms, varying from mild to critical. The novelty of the
model proposed here is to decompose the contagion in the following
four pathways: +S A A2 ,

a1 + +S A I A,
a2 + +S I A I,1 and

+S I I22 . These state transitions are characterized by the rate

constants α1, α2, a1, and a2. In works found in the literature (Gostic
et al., 2020; Yang and Wang, 2020; Zhou et al., 2020), different
transmission pathways of COVID-19 have been considered.

This paper is organized as follows. In Section 2, a deterministic
compartmental model written in terms of differential equations is in-
troduced and analyzed. Recall that a compartment is a homogeneous
subpopulation. In Section 3, numerical simulations are presented to
illustrate the spread of the infectious agent. In Section 4, the possible
relevance of this study is stressed.

2. The SAIR model

Let S(t), A(t), I(t), and R(t) be the numbers of S, A, I, and R-in-
dividuals in a given geographic region at the instant t, respectively. By
taking into consideration the homogeneous mixing assumption (Turnes
and Monteiro, 2014), the proposed model is described by the following
set of first-order differential equations:

= + + +dS t
dt

S t A t aS t I t A t cI t dR t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (1)

= +dA t
dt

S t A t a S t I t A t A t( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 (2)

= +dI t
dt

S t A t a S t I t bI t cI t( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 (3)

= +dR t
dt

A t bI t dR t( ) ( ) ( ) ( ) (4)

The nine parameters α1, α2, β, γ, a1, a2, b, c, and d are positive numbers.
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The rate constants α1 and a1 respectively express the transmission by A
and I-individuals to S-individuals leading to A-individuals; α2 and a2

respectively express the transmission by A and I-individuals to S-in-
dividuals leading to I-individuals. Thus, the rate constants = +1 2
and = +a a a1 2 are related to the infections caused by A and I in-
dividuals, respectively. Also, β and b are the recovery rate constants of
A and I-individuals, respectively; γ and c are the death rate constants of
A and I-individuals, respectively; and d is the death rate constant of R-
individuals. In addition, R-individuals are supposed to be fully pro-
tected from reinfections. If this is not true, then d also includes the
immunity-loss rate constant.

Note that + + + =dS t dt dA t dt dI t dt dR t dt( )/ ( )/ ( )/ ( )/ 0, because
the deaths of A, I, and R-individuals are balanced by the births of S-
individuals. Therefore, + + + =S t A t I t R t N( ) ( ) ( ) ( ) ; that is, the total
number of individuals N remains constant. Since

=R t N S t A t I t( ) ( ) ( ) ( ), the model can be rewritten as:

= + + +dS
dt

SA aSI A cI d N S A I( ) (5)

= +dA
dt

SA a SI A A1 1 (6)

= +dI
dt

SA a SI bI cI2 2 (7)

This third-order system is analyzed from a dynamical systems
theory perspective (Guckenheimer and Holmes, 2002). A stationary
solution (S*, A*, I*), corresponding to an equilibrium point in the state
space S × A × I, is obtained from =dS dt/ 0, =dA dt/ 0, and =dI dt/ 0.
In this model, there are a disease-free stationary solution given by:

=S A I N( *, *, *) ( , 0, 0)1 1 1 (8)

and an endemic stationary solution given by:

=
+ +

+ +
S A I

n n mp
m

d N S q
c d aS S q

qA( *, *, *)
4

2
, ( *)

* ( */ )
, *2 2 2

2
2

2 2
2

(9)

with:
=m a a1 2 2 1 (10)

= + + +n a b c( ) ( )2 1 (11)

= + +p b c( )( ) (12)

= +q S
a S

*
*

1 2

1 2 (13)

If =m 0, then =S p n* /2 .
The local stability of an equilibrium point can be inferred from the

eigenvalues of the Jacobian matrix J, which is obtained from the line-
arization of the set of non-linear differential equations around such a
point. Let λ be the eigenvalues of J, which are determined from

=J I 0det( ) (I is the identity matrix). The Hartman–Grobman the-
orem (Guckenheimer and Holmes, 2002) says that an equilibrium point
is locally asymptotically stable if all its eigenvalues have negative real
parts; if at least one eigenvalue has positive real part, then this point is
unstable.

Consider the parameters 1 and 2 defined as:

= +
+ + +

a N
b c

( )
1

1 2

(14)

=
+ +

a N
N a N b c[ ( )][ ( )]2

1 2
2

1 2 (15)

Stability analysis of the SAIR model reveals that its disease-free solution
is asymptotically stable if ρ1 < 1 and ρ2 < 1, and it is unstable if
ρ1 > 1 and/or ρ2 > 1.

In epidemiology, the basic reproduction number R0 is defined as the
average number of secondary infections caused by a single infectious

individual inserted into a completely susceptible population
(Anderson and May, 1992). Therefore, if R0 > 1, the corresponding
pathogen can invade and/or chronically persist in the host population;
if R0 < 1, it cannot invade and/or it will be naturally eradicated. A
formula for R0 can be derived from a method based on the next gen-
eration matrix FV 1 (Diekmann et al., 2010; van den Driessche, 2017).
In this method, R0 is the spectral radius of FV ,1 in which F is a matrix
related to the appearance of new infections in the infected compart-
ments (which are A and I) and V is a matrix related to the other
transitions occurring in these (two) infected compartments. For the
proposed model:

= +R0
2 (16)

with = nN p/(2 ) and = mN p/2 . If = = 01 2 (no transmission by
asymptomatic carriers), then = +R a N b c/( ),0 2 which is a mathema-
tical expression already found in other studies (Ferraz and Monteiro,
2019; Monteiro et al., 2006).

Therefore, the disease eradication requires ρ1 < 1 and ρ2 < 1 (from
the Jacobian matrix J); alternatively, R0 < 1 (from the next generation
matrix FV 1).

3. Simulation results

The SAIR model was numerically solved by using the 4th-order
RungeKutta integration method with integration time step of 0.01. In
the simulations, =N 1; therefore, the variables of the model represent
normalized amounts of S, A, I, and R-individuals. The initial condition
is + =A I(0) (0) 0.0001, and =R (0) 0. This initial condition means no
pre-existing immunity in humans and introduction of the virus by
0.01% of infected individuals. The time t is measured in days.

Initially, assume that recovery from infection induces long-lasting
immunity. Assume also that A and R-individuals have equal death rates;
thus, if their average life expectancy is 80 years, then

= = ×d [1/(365 80)]day 1. The death rate of I-individuals is simplis-
tically taken as = ×c [3/(100 20)]day 1 (since 3% of I-individuals dies
20 days after being sick (Wu et al., 2020)). Also, the infectious periods
for A and I-individuals are taken as 10 days (Hu et al., 2020) and 15
days (Singhal, 2020) (including an incubation period of 5 days (Singhal,
2020)); thus, = (1/10)day 1 and =b (1/15)day 1. The choices of the
contagion rate constants α1, α2, a1, and a2 should give R 2 60
(Gostic et al., 2020; Singhal, 2020; Tang et al., 2020; Wu et al., 2020)
and q 0.25 9. The reason for this range of q is the following. The
whole infected compartment in steady state is given by the sum of the
asymptomatic fraction fa and the symptomatic fraction fi, that is,

+ =f f 1a i , with = +f A A I*/( * *)a 2 2 2 and = +f I A I*/( * *)i 2 2 2 . If
= =q I A f f*/ * / ,i a2 2 then =q f f(1 )/a a. The infected compartment is

composed from 10% of A-individuals (Mizumoto et al., 2020; Singhal,
2020) to 80% of A-individuals (Day, 2020a; 2020b). Therefore, if

=f 0.1,a then =q 9; if =f 0.8,a then =q 0.25.
Fig. 1 exhibits the time evolution of S(t) (green line), A(t) (black

line), I(t) (red line), and R(t) (blue line) for =a 0.01,1 =a 0.1,2 = 0.2,1
and = 0.52 . With these choices, ρ1 ≃ 1.8 > 1, ρ2 ≃ 1.6 > 1, and
R0 ≃ 2.6 > 1; hence, the disease-free solution is unstable. Note that the
behavior observed in the first 200 days can suggest that the disease
would tend to naturally disappear. However, by increasing the simu-
lation time interval, as shown in Fig. 2, there occurs an oscillatory
convergence to the endemic steady-state, given by S t S( ) * 0.38,2
A t A( ) * 0.00004,2 and I t I( ) * 0.00025,2 with =q I A*/ * 6.32 2 .
Obviously, = + +R t R S A I( ) * 1 ( * * *) 0.622 2 2 2 . In this simulation,

+A I* * 0.03%2 2 . This is the percentage of infected individuals found in
steady state. Fig. 3 presents only I(t) to better visualize its time evolu-
tion. The first peak occurs at =t 72peak . At this instant, I(tpeak) ≃ 0.24;
that is, about 1/4 of the whole population would be symptomatically
infected. In this simulation, this peak is reached from an initial condi-
tion in which 0.01% of the individuals are infected. The lower the
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initial number of infected individuals, the later the first peak occurs.
The initial condition, however, does not affect the steady state reached
by the system as t → ∞.

For =a 0.1,1 =a 0.01,2 = 0.5,1 and = 0.22 (that is, by switching
the values of the contagion parameters used in Figs. 1–3), then
S t S( ) * 0.18,2 R t R( ) * 0.82,2 A t A( ) * 0.00020,2 and
I t I( ) * 0.00011,2 with =q I A*/ * 0.542 2 . Also, ρ1 ≃ 3.0, 0.9,2
and R0 ≃ 5.5. The first peak, with I(tpeak) ≃ 0.16, occurs at =t 26peak .
Fig. 4 presents the time evolution of S(t), A(t), I(t), and R(t) in the first
200 days. Observe that, in Fig. 1 (with a1 < a2 and α1 < α2),
I(t) > A(t); in Fig. 4 (with a1 > a2 and α1 > α2), I(t) < A(t). Figs. 5
and 6 show a transient with peaks in A(t) and I(t) separated by

quiescent periods, as observed in Figs. 2 and 3.
For =a 0.005,1 =a 0.06,2 = 0.01,1 and = 0.022 (which are smaller

numbers than those used in Figs. 1–6), a numerical simulation shows
that =S t S( ) * 1,1 =A t A( ) * 0,1 and =I t I( ) * 01 (obviously,

=R t R( ) * 01 ). For these parameter values, = <0.42 1,1
= <0.14 1,2 and = <R 0.90 10 ; consequently, there is a convergence

to the disease-free steady-state. A reduction in the transmission para-
meters can occur by imposing isolation, lockdown, quarantine, travel
restrictions.

A relevant observation: if this infection does not confer long-term
immunity, then the value of d should be higher. Fig. 7 presents the
dynamical behavior obtained in a simulation with

= × +d [1/(365 80)] (1/365); that is, the acquired immunity lasts for
one year. The other parameter values are the same as used in Figs. 1–3.
In this case, S t S( ) * 0.38,2 A t A( ) * 0.003,2 I t I( ) * 0.021,2
R t R( ) * 0.602 . Also, ρ1 ≃ 1.8, ρ2 ≃ 1.6, R0 ≃ 2.6, and q ≃ 6.3. Ob-
serve that the convergence is also oscillatory to the endemic steady-

Fig. 1. Time evolutions of S(t) (green line), A(t) (black line), I(t) (red line), and
R(t) (blue line) from =S (0) 99.99%, =A (0) 0.001%, =I (0) 0.009%, and

=R (0) 0% obtained from the numerical integration of Eqs. (1)–(4) for =N 1
and 0 ≤ t ≤ 200. In this computer simulation, the parameter values are

=a 0.01,1 =a 0.1,2 = 0.2,1 = 0.5,2 =b 1/15, = 1/10, = ×c 3/(100 20), and
= = ×d 1/(365 80). Observe that, apparently, the disease would tend to

naturally disappear. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Time evolutions of S(t) (green line), A(t) (black line), I(t) (red line), and
R(t) (blue line) by using the same parameter values as employed in Fig. 1 and a
larger time interval of the simulation. After an oscillatory transient, the system
reaches an endemic steady-state given by S * 0.38,2 A* 0.000040,2
I* 0.00025,2 and R* 0.622 . Hence, the disease persists. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. Time evolution of I(t) presented in Fig. 2.

Fig. 4. Time evolutions of S(t) (green line), A(t) (black line), I(t) (red line), and
R(t) (blue line) from =S (0) 99.99%, =A (0) 0.009%, =I (0) 0.001%, and

=R (0) 0% obtained from the numerical integration of Eqs. (1)–(4) for =N 1
and 0 ≤ t ≤ 200. In this simulation, the parameter values are =a 0.1,1

=a 0.01,2 = 0.5,1 = 0.2,2 =b 1/15, = 1/10, = ×c 3/(100 20), and
= = ×d 1/(365 80). As in Fig. 1, the disease apparently tends to disappear.

(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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state; however, this convergence is faster and smoother as compared to
Figs. 1–6.

4. Discussion and conclusion

Usually, the COVID-19 propagation is theoretically investigated by
considering E-individuals, which are those who were exposed to the
pathogen and are in the incubation (latent) period of the infection
(Gostic et al., 2020; Yang and Wang, 2020; Zhou et al., 2020). Such
individuals, however, will become either asymptomatic or sympto-
matic, which are respectively the states A and I of the SAIR model
proposed in this work. In this model, the four possible transmission
pathways involving A and I-individuals are explicitly taken into ac-
count. The actual values of the corresponding rate constants (a1, a2, α1,
α2) of these pathways can be estimated from real-world data collected
from contact tracing and screening programs for SARS-CoV-2. Limiting
social contacts can decrease the values of these contagion parameters
(Lai et al., 2020; Tang et al., 2020) and, consequently, the basic

reproduction number R0. This control strategy has been implemented in
many countries to reduce the transmission risk.

From the proposed model, formulas were derived for R0 (Eq. (16)),
the endemic steady-state S A I( *, *, *)2 2 2 (Eq. (9)), the proportion =q I A*/ *2 2
(Eq. (13)), and the stability of the disease-free steady-state (Eqs. (14)
and (15)). These expressions can be employed to evaluate the effects of
public health actions on the disease spread.

In the early phase of this pandemic, studies estimated R 2 60 .
Also, from the current knowledge of this illness, q 0.25 9. From
assumed values for the contagion rate constants a1, a2, α1, and α2,
computer simulations were performed. Figs. 1–7 illustrate the results of
three simulations. In Figs. 1–3 and 7, R0 ≃ 2.6 and q ≃ 6.3; in Figs. 4–6,
R0 ≃ 5.5 and q ≃ 0.54, which are acceptable values for R0 and q.
Figs. 1–7 show that the viral infection is not naturally eradicated after
the first peak. In fact, there is a sustained transmission after an oscil-
latory transient. This transient implies that, from times to times, peaks
in the amount of sick individuals can occur.

It is relevant to stress that the proportion of the infected population
in steady state, given by +A I* *,2 2 can be very very small. In fact, from
Eqs. (5)–(7), the following relation can be obtained:

= + + +S d A b d I
d

* 1 ( ) * ( ) *
2

2 2

(17)

by taking =N 1. For the vast majority of viral infections, β ≫ d and
b ≫ d, because the recovery time (typically, one or two weeks) is much
shorter than the duration of acquired immunity (typically, years or
decades) and the average life expectancy (typically, six to eight dec-
ades, depending on the country). Therefore:

+ =S A bI
d

R* 1
* *

1 *2
2 2

2 (18)

or:

+S R* * 12 2 (19)

Thus, in steady state, the population is composed almost exclusively of
S and R-individuals. For instance, for the simulations shown in
Figs. 1–6, +A I* * 0.00032 2 ; in Fig. 7, +A I* * 0.0242 2 . Depending on
the parameter values, +A t I t( ) ( ) can also be very very small between

Fig. 5. Time evolutions of S(t) (green line), A(t) (black line), I(t) (red line), and
R(t) (blue line) by using the same parameter values as employed in Fig. 4 and a
larger time interval of the simulation. After an oscillatory transient, the system
reaches an endemic steady-state given by S * 0.18,2 A* 0.00020,2 I* 0.00011,2
and R* 0.822 . As in Fig. 2, the disease persists. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 6. Time evolution of I(t) presented in Fig. 5.

Fig. 7. Time evolutions of S(t) (green line), A(t) (black line), I(t) (red line), and
R(t) (blue line) from =S (0) 99.99%, =A (0) 0.001%, =I (0) 0.009%, and

=R (0) 0% obtained from the numerical integration of Eqs. (1)–(4) for =N 1
and 0 ≤ t ≤ 3000. In this simulation, the parameter values are =a 0.01,1

=a 0.1,2 = 0.2,1 = 0.5,2 =b 1/15, = 1/10, = ×c 3/(100 20),
= ×1/(365 80), = × +d [1/(365 80)] (1/365). In this figure, the convergence

to the endemic steady-state is faster and smoother as compared to Fig. 1. (For
interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)
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two consecutive peaks. In practice, too small numbers can correspond
to eradication. For instance, if + =A t I t( ) ( ) 0.00001 at a given instant
t′ and the host population is composed of 10000 individuals (a small
city), then the number of sick individuals at the instant =t t is

× =10000 0.00001 0.1. In practice, the disease is eradicated (because the
number of individuals must be a positive integer number). Obviously,
local eradication (in small cities) do not imply global eradication (in big
cities or countries) (Bartlett, 1957; Monteiro et al., 2006).

A final remark: the spread of SARS-CoV (severe acute respiratory
syndrome coronavirus) was halted, but the spread of MERS-CoV
(Middle East respiratory syndrome coronavirus MERS-CoV) still con-
tinues (Song et al., 2020). The fate of SARS-CoV-2, the third highly
pathogenic coronavirus emerging in two decades, remains unclear.
However, notice that it can persist and/or be reintroduced in our po-
pulation due to the interaction with environmental reservoirs. There-
fore, without preventive attitudes (such as improved hygiene habits,
movement restrictions, social distancing, wearing face masks) and in
the absence of vaccine for inducing an immune response and of ap-
proved drugs for treating patients, an endemic persistence can be the
future of COVID-19.
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