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Abstract: The chloroplast protein CP12, which is widespread in photosynthetic organisms, belongs
to the intrinsically disordered proteins family. This small protein (80 amino acid residues long)
presents a bias in its composition; it is enriched in charged amino acids, has a small number of
hydrophobic residues, and has a high proportion of disorder-promoting residues. More precisely,
CP12 is a conditionally disordered proteins (CDP) dependent upon the redox state of its four cysteine
residues. During the day, reducing conditions prevail in the chloroplast, and CP12 is fully disordered.
Under oxidizing conditions (night), its cysteine residues form two disulfide bridges that confer some
stability to some structural elements. Like many CDPs, CP12 plays key roles, and its redox-dependent
conditional disorder is important for the main function of CP12: the dark/light regulation of the
Calvin-Benson-Bassham (CBB) cycle responsible for CO2 assimilation. Oxidized CP12 binds to
glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase and thereby inhibits their
activity. However, recent studies reveal that CP12 may have other functions beyond the CBB cycle
regulation. In this review, we report the discovery of this protein, its features as a disordered protein,
and the many functions this small protein can have.

Keywords: Calvin-Benson-Bassham cycle; conditionally disordered protein; history of modern
science; metabolism regulation; moonlighting protein; protein-protein interaction

1. Introduction

As V. Uversky mentioned, the discovery of the natural abundance and functional
importance of intrinsically disordered proteins (IDPs) has changed protein science [1]. It is
now widely accepted that the protein structure-function paradigm that dominated scientific
minds for more than 100 years does not hold true for all proteins, and IDPs or proteins
containing disordered regions (IDR)s are widespread in all areas of life. IDPs and IDRs differ
from structured globular proteins and domains in many respects, such as their amino acid
composition, complexity of sequence, hydrophobicity, charge, flexibility, and rate of amino
acid substitutions over evolutionary time [2]. They play significant roles in many biological
processes, such as control of the cell cycle, transcriptional activation, and signaling, and they
frequently interact with many partners or function as central hubs in protein interaction
networks. However, in the plant kingdom only a few IDPs have been studied through a
recent analysis of 12 plant genomes, which revealed that the occurrence of disorder in plants
is similar to that in many other eukaryotes [3]. In plants, most of the information on IDPs
comes from Arabidopsis thaliana, and among them, to cite but a few, the late embryogenesis
abundant (LEA) proteins that are important IDPs are mainly associated with environmental
stress [4]. In the algae research field, a recent experimental study reported that 682 proteins
from a chlorophyte, Chlamydomonas reinhardtii, were heat-resistant, and 299 were predicted
to be disordered by four different disorder predictors [5]. However, only a few algal
proteins that are fully or partially disordered have been studied [6–9]. Among them, only
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the essential pyrenoid component 1 (EPYC1) [10–14], and, above all, the chloroplast protein
of 12 kDa (CP12), as evidenced below, have been experimentally studied in depth.

2. Discovery of a Small Protein, CP12, in Photosynthetic Organisms

In 1996, cDNA clones were reported from expression libraries for a nuclear-encoded
chloroplast protein in three higher plants: pea, spinach, and tobacco, which was named
CP12 [15]. This was the first report on CP12, and at this stage, not much was known about
this protein. The authors found that this protein consists of about 75 amino acid residues,
and it had an abnormal electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) experiments. In addition, they noticed that the CP12
proteins from the three higher plants had a high content of charged amino acid residues,
and their conclusion at this time was that this protein was highly hydrophilic and very
likely a good candidate for a soluble stroma-located protein within the chloroplast. In
all of the three species, two conserved cysteine residues are present at the N- and at the
C-terminus that are separated by eight amino acid residues with a central proline residue.
The secondary structure prediction suggested that CP12 has a central helix and is organized
into two domains, with each containing two cysteine residues that could form disulfide
bonds (Figure 1). In this pioneer work, they also showed that CP12 could interact with an
enzyme from the Calvin-Benson-Bassham (CBB) cycle, the glyceraldehyde -3-phosphate
dehydrogenase (GAPDH, EC 1.2.1.13) [15].
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by the presence of NAD(H), but the presence of NADP or NADPH, as well as the high 
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light. Their results and those of other groups in the literature suggested that the enzymes 
within the complex were inactive and became active upon dissociation [17–19]. Since the 
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Figure 1. Schematic representation of the predicted secondary structure of mature CP12. Cysteine
residues proposed to form peptide loops and that can form two disulfide bridges (C23–C31 and
C66–C75) when CP12 is oxidized are indicated with black circles. These two loops are separated by
an alpha helix. The proline residue conserved in CP12 from Plantae is shown with a yellow circle.
Numbering is from the C. reinhardtii mature CP12 sequence. This figure was created with BioRender
(https://biorender.com/ (accessed on 25 July 2022)) and adapted from Wedel et al. [16].

Later, in a work performed on spinach leaves, the same group showed that CP12
not only interacts with GAPDH but also with another enzyme of the CBB cycle, the
phosphoribulokinase (PRK, EC 2.7.1.19) [16]. They showed that CP12 could form a 600 kDa
complex with the two enzymes mentioned above. This ternary complex was not affected
by the presence of NAD(H), but the presence of NADP or NADPH, as well as the high
concentration of a reducing agent, dithiothreitol (DTT), led to its dissociation. The authors
proposed a model in which the ternary complex exists under dark and dissociates under
light. Their results and those of other groups in the literature suggested that the enzymes
within the complex were inactive and became active upon dissociation [17–19]. Since the
CBB cycle does not operate in the dark and become active in the light, the association–
dissociation of this complex could be a means to regulate the CBB cycle upon dark-light
transitions and reciprocally.

At the same time, Avilan et al. found a complex made up of PRK and GAPDH in
the green alga, C. reinhardtii [20]. In the green algae, there is a unique form of GAPDH,
the homotetrameric A4, while in higher plants there is also an A2B2 where the B-type
subunit has a C-terminal extremity that presents homology to the C-terminus of CP12.
These authors deeply analyzed the characteristics and the kinetics of the enzymes within
the complex and those of the enzymes that dissociated from it [20–23]. They purified this
complex to homogeneity, and, later, the presence of CP12 in the PRK/GAPDH complex
reported previously was revealed by MALDI-ToF mass spectrometry [24]. N-terminal
sequencing by Edman degradation of the ternary complex allowed one to determine the
first amino acid residues of each protein and revealed that the sequence of the mature
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CP12 starts at SGQPA [25]. Therefore, the complex isolated by Avilan et al. had the same
compositions as that found by Wedel et al. Indeed, in 1998, Wedel et al. showed that CP12
was present not only in higher plants but also in C. reinhardtii, as well as in many other
species (mosses, cyanobacteria). The presence of CP12 in this complex agreed with the
cryo-electron microscopy performed on this purified complex, which suggested that other
components besides PRK and GAPDH were present [26]. The activities of the enzymes
involved in this complex were regulated in vitro by metabolites such as NADP(H) [16,27,28].
All together, these results provided new ideas for the regulation of photosynthesis and
were further investigated by many groups.

In C. reinhardtii, it was shown that not only the regulatory properties of GAPDH but
also its kinetics parameters were affected by CP12. Native GAPDH and recombinant algal
GAPDH displayed Michaelis-Menten kinetics with NADH and NADPH as cofactors, with
a marked preference for NADPH. Both forms displayed positive cooperativity towards the
substrate, 1,3-bisphosphoglycerate (BPGA), but interestingly, these kinetic analyses showed
that the native GAPDH had a two-fold lower catalytic constant for the reduction of BPGA,
as well as a two-fold lower pseudo-affinity (K0.5) for BPGA compared to recombinant
GAPDH [24]. These results were surprising, but using mass spectrometry the authors
showed that the native GAPDH was still associated with CP12. At the same time, as
only a partial sequence of the C. reinhardtii CP12 was obtained by PCR, the same authors
cloned the entire cDNA of this algal protein and subsequently expressed the protein in
Escherichia coli [25].

If some results suggested that the PRK/GAPDH/CP12 allowed for the regulation
of these enzymes, the presence of this small protein raised a question about its role in
the formation of the complex. The role of CP12 in the assembly pathway of the algal
PRK/GAPDH/CP12 complex was thus investigated as no complex could be reconstituted
in vitro with the native PRK and the recombinant GAPDH devoid of CP12.

In darkened spinach leaves, Scheibe’s group also showed that GAPDH can exist under
two inactive aggregated states, one that corresponded to a hexadecameric A8B8 form and
another one that corresponded to the PRK/GAPDH/CP12 complex. Only the dissociation
of these edifices with reducing treatment mimicking light resulted in the activity of the
released enzymes [29]. The role of CP12 was, by then, far from being understood. Of
interest, in the literature, many high oligomerization states of either GAPDH or PRK, in
spinach but also in Phaesolus vulgaris, have been reported [30]. In spinach, the oligomeric en-
zymes had latent activity that only appeared upon dissociation [31,32]. In the 20th century,
the existence of supramolecular complexes was not recognized in living cells and their
existence was seen as artefactual. Therefore, the data were differentially interpreted, but it
is very likely that the high molecular mass of GAPDH and PRK with latent activity in fact
corresponded to supramolecular complexes.

In the green algae as in the higher plants, it was later shown that the four cysteine
residues could form two disulfide bridges, one bridging the N-terminal cysteine pair
(residues 23 and 31 in C. reinhardtii) and one bridging the C-terminal pair (residues 66 and
75 in C. reinhardtii). It was shown using surface plasmon resonance that CP12 under its
oxidized state, with two disulfide bridges, was able to bind sequentially to GAPDH with a
high affinity (KD equal to 0.44 nM), and then this subcomplex was able to bind to PRK (KD
equal to 60 nM). The affinity of CP12 for GAPDH was higher than the one found (µM range)
for the Arabidopsis complex [33]. The entity composed of one tetrameric GAPDH, one
dimeric PRK, and CP12 (the stoichiometry of which was yet unknown) was defined as a unit.
This entity was then able to dimerize to provide the native complex. CP12 therefore acted as
a linker in the assembly of the ternary PRK/GAPDH/CP12 complex [25]. Later, native mass
spectrometry revealed that two monomeric CP12 molecules were bound to one GAPDH
tetramer [34]. Consequently, the stoichiometry inside the ternary complex is two tetrameric
GAPDH, two dimeric PRK, and four monomeric CP12. Studies using mutagenesis and
limited proteolysis have allowed the residues involved in the interaction between CP12
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and GAPDH from C. reinhardtii to be mapped and to show that this interaction involves
the S-loop arginine residues of GAPDH and the C-terminus of CP12 [35].

3. CP12, a Flexible Protein

The first observation of CP12 as an IDP was its abnormal behavior under SDS-PAGE.
The protein migrates as a 15 kDa under oxidized form and 25 kDa under its reduced
form for C. reinhardtii, while the expected theoretical molecular mass of the monomer is
8.5 kDa (Figure 2A,B). Moreover, using size-exclusion chromatography, the elution volume
of C. reinhardtii CP12 released from the PRK/GAPDH/CP12 complex corresponded to an
apparent molecular mass of 35 ± 4 kDa using a column calibrated with globular proteins
(Figure 2C). This could correspond to a tetrameric globular form that has never been proven
or to an elongated form. These enigmatic behaviors of CP12 were only understood after the
concept of IDP was claimed [2,36–38]. The size exclusion elution volume mentioned above
correlates to a hydrodynamic radius of 2.8 ± 0.1 nm, which corresponds to the expected
hydrodynamic properties of a random-coil polymer of 8.8 kDa. These values were in
agreement with those confirmed by fluorescence correlation spectroscopy experiments [39].
In 2003, for the first time, it was proposed that the C. reinhardtii CP12 belongs to the
IDP family (formerly also called an “intrinsically unstructured protein”) [25]. Indeed,
CP12 possesses a range of properties that are landmarks of IDPs such as a bias in amino
acid composition, is enriched in charged amino acid residues, is depleted in hydrophobic
residues, and has a high proportion of disorder-promoting residues (Figure 3). Even if CP12
has a high proportion of disorder-promoting residues, the presence of cysteine residues
was first surprising as cysteine residues were considered as “order-promoting residues”
due to their ability to form inter- or intramolecular disulfide bridges.
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of C. reinhardtii recombinant CP12 under oxidized (black) or reduced (red) conditions (column:
Superdex 200 10 × 300 mm). Above the chromatogram, the dots from A to G indicate the position
of molecular-weight standard globular proteins. A: Ferritine (MW 440 kDa, rH 6.8 nm); B: Catalase
(MW 240 kDa, rH 5.5 nm); C: dimer of Bovine Serum Albumin (BSA, MW 136 kDa, rH 4.5 nm);
D: monomer of BSA (MW 68 kDa, rH 3.5 nm); E: Ovalbumin (MW 43 kDa, rH 3 nm); F: Cytochrome
(MW 12.5 kDa, rH 2 nm) C; and G: oxidized form of DTT. MW and rH stand for molecular weight
and hydrodynamic radius.
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Select 25.

After the identification of CP12 as an IDP, a range of biophysical techniques confirmed
that reduced CP12 completely lacks stable secondary and tertiary structural elements. The
circular dichroism (CD) spectrum of reduced CP12 (or imitations of reduced CP12 using
cysteine to serine mutants) showed a minimum ellipticity at 200 nm, as is characteristic
for disordered proteins (Figure 4A) [25]. The Kratky representation of the small-angle
X-ray scattering (SAXS) data of reduced CP12 exhibited a plateau at q.Rg > 2 typical of
random polymers and characteristic of fully disordered proteins (Figure 4B) [41]. The
1H nuclear magnetic resonance (NMR) frequencies of all resonances from reduced CP12
showed minimal chemical shift dispersion (clustered from 7.5 to 8.5 ppm); their linewidths
were sharp, and all the features of NMR data were typical of that disordered proteins
(Figure 4C) [41]. In addition, NMR data confirmed that reduced CP12 exchanges between
a myriad of possible conformations rapidly at a timescale of less than a nanosecond,
as expected for an IDP. Other biophysical methods confirmed the IDP properties for
reduced CP12, including Förster resonance energy transfer (FRET), fluorescence correlation
spectroscopy (FCS), or mass spectrometry [42]. Moreover, it was shown that under oxidized
conditions, CP12 was partially folded but still very flexible, and only a model structure
obtained by sequence-based molecular modelling was available for many years [43]. CD
analysis showed that it was much more helical than in its reduced form (Figure 4A), and an
ion-mobility mass spectrometry study showed that the algal oxidized CP12 exists under
two conformational states, a compact one and an extended one [34]. Later, experimental
data obtained by SAXS also showed atypical features: the Kratky plot of oxidized CP12
was an intermediate between that of a well-folded protein (a bell-shaped curve with a
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maximum at q.Rg value of
√

3) and that of a fully disordered protein (such as that of reduced
CP12), and these features are characteristic of protein with unstable structural properties
(Figure 4B) [44,45]. The SAXS profile revealed the co-existence of two populations of
conformers in solution, a compact one and a more disordered one, with all features being
characteristic of protein with unstable structural properties. Similarly, the 1H-15N NMR
spectrum of oxidized CP12 differed from that of reduced CP12 and showed a small number
of dispersed resonances together with a large number of broad resonances clustered from
7.5 to 8.5 ppm (Figure 4C). All these experimental data could be reconciled with a two-
state equilibrium for the algal oxidized CP12: (i) 60% of the oxidized CP12 molecules
have two helices in the N-terminal half of the protein and a globular domain at the C-
terminus; (ii) 40% of the oxidized CP12 molecules have only the globular fold at the
C-terminus, while the N-terminal half remains disordered [44]. The multiple structural
transitions and conformational flexibility of CP12 could provide a clue on how this protein
can carry variable functions and bind multiple partners. When the stable C-terminal
structural element of the C. reinhardtii oxidized CP12 binds to GAPDH, it induces a cryptic
disorder, and its unstable N-terminal region is further destabilized to favor a disordered
conformation [44]. This structural transition upon GAPDH binding contrasts to plant
oxidized CP12, where the binding of GAPDH leads to a compaction of the N-terminal
region [36,37]. These differences in the stability of the N-terminal region of oxidized CP12
correlate with the differences of relative affinity of CP12 for GAPDH between the algal and
the plant species mentioned above with opposite entropic contribution to the binding.
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Figure 4. Biophysical analysis of CP12 confirmed that CP12 is an IDP. (A) Circular dichroism spectra
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terminal disulfide bridge (mimicking reducing conditions, red). (B) Normalised Kratky representation
of the SAXS data of the oxidized (black) and reduced (red) form of recombinant C. reinhardtii CP12.
(C) NMR 1H-15N-HSQC spectra of the oxidized (black) and reduced (red) form of recombinant
C. reinhardtii CP12. The box between 9.5 and 10 ppm corresponds to the insert shown on the left.
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Because the structural properties of CP12 vary significantly depending upon the redox
conditions, the term conditionally disordered was coined for this protein. Structural proper-
ties of CDP such as CP12 are challenging to analyze [46]. Therefore, the only high-resolution
structures available for CP12 are those of oxidized CP12 within the ternary complex and
have been deciphered recently by crystallography and cryo-electron microscopy [47–50].

CP12 is not the unique protein that undergoes structural transitions upon oxida-
tion/reduction, and it is predicted that redox-sensitive CDPs are widespread and have key
roles in many eukaryotic processes [51]. Based on the computational platform, IUPred2A,
it was predicted that cysteine-rich sequences display significant disorder in the reduced
but not the oxidized form, increasing the potential for such sequences to function in a
redox-sensitive manner [52]. In photosynthetic organisms where dark-light transitions are
correlated to different oxido-reduction conditions, this concept is of paramount importance.
The redox structural transitions that have been observed for CP12 might be highly relevant
to CP12 being a redox switch of the CBB cycle [53].

4. CP12, a Widespread Protein with Sequence Variations on an Original Theme

After 2002, the number of manuscripts dealing with this protein started to increase,
and CP12 has been found in many species such as higher plants, microalgae and cyanobac-
teria [54]. The canonical CP12 sequence contains one N-terminal cysteine residue pair
separated by seven or eight residues, one C-terminal cysteine residue pair separated by
eight residues encompassing a central proline residue (CxxxPxxxxC), and a core sequence
AWD_VEEL (Figure 5). The two pairs of cysteine residues are capable of forming disulfide
bridges required to form the ternary complex described above in green algae and higher
plants [55]. However, in the glaucophyte Cyanophora paradoxa, CP12 lacks the two cysteine
residues at the N-terminus [54]. The lack of the N-terminal pair of cysteine residues was
also found in the red algal Galdieria sulphuraria CP12 and Synechococcus elongatus PCC7942,
but it did not impair the formation of the ternary complex [56,57]. Though these two
cysteine residues were claimed to be important to the PRK binding in higher plants, the
presence of the disulfide bond at the N-terminus of CP12 might not be a requisite for
PRK binding. It is, however, possible that the affinity between PRK and CP12 is much
lower when this disulfide bond is absent and that its absence modulates the stability of
the N-terminal helical hairpin described above. Indeed, the mutant of CP12 lacking this
disulfide bond is less prone to interact with PRK, but a faint band is still present, indicating
a degree of PRK and CP12 interaction [16].
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In cyanobacteria, CP12 proteins fused to two cystathionine β-synthase (CBS) domains
(CBS-CP12) were found beside the stand-alone CP12, and at present, CBS-fused CP12 has
only been reported in these organisms. These CBS-proteins are widespread, and the analysis
of 333 cyanobacterial genomes revealed the presence of many variants (Figure 5) [58].

A CP12-like protein was reported in the freshwater diatom, Asterionella formosa, that
was associated with GAPDH and the ferredoxin NADP reductase, but the sequence of this
protein is not available [59,60]. In contrast, in the marine diatom, Thalassiosira pseudonana,
three CP12 proteins were identified, CP12-1 and CP12-2 were predicted to be localized in
the chloroplast, and only CP12-2 was found in expressed sequence tags (ESTs) database
and further characterized [61]. The gene coding for this protein in other diatoms was also
found. In diatoms, nonetheless, PRK/GAPDH/CP12 has never been found [62], and it
seems that the absence of two cysteine residues at positions 245 and 248 on diatom PRK
could explain this [63]. Like the canonical CP12, the T. pseudonana CP12 possesses some
intrinsically disordered regions, is highly dynamic but possesses a central coiled coil motif,
and is dimeric, and these characteristics give T. pseudonana CP12-2 a form of an elongated
cylinder with kinks [61].

The cyanophage-infecting marine picocyanobacteria of the genera Prochlorococcus
and Synechococcus have been shown to express a protein that has a C-terminal extension
similar to that of CP12. This protein shuts down the CBB cycle, as does the canonical CP12,
and uses the NADPH produced by the host to fuel their own deoxynucleotide biosynthesis
for replication [64]. Other proteins also possess a C-terminal extension similar to the C-
terminus of CP12, such as the B subunit of the higher plant A2B2 GAPDH, the adenylate
kinase 3 (ADK3) from C. reinhardtii, and the argininosuccinate lyase. This CxxxPxxxxC
extremity interacts with GAPDH in the PRK/GAPDH/CP12, and this interaction is also
conserved in the A2B2 GAPDH and the ADK3 [65,66]. In the prasinophycean green algae,
Ostreococcus tauri and Ostreococcus lucimarinus, CP12 is not present, but they possess the
redox-regulated B subunit of GAPDH, which is typical of Streptophyta [67].

Three isoforms of CP12 have been reported in higher plants [66]. In A. thaliana, the
transcripts localization of the isoforms differs; CP12-1 and CP12-2 are mostly expressed in
photosynthetic tissues, whereas CP12-3 is expressed in non-photosynthetic tissues such
as in the roots. In contrast, in C. reinhardtii, one unique isoform has been reported to be
localized in the chloroplast. In the C4 plant maize (Zea mays), a CP12 homolog was found
in the bundle sheath and not in the mesophyll cells [68]. Recently, two CP12 proteins were
found in sugarcane, another C4 plant [69]. Though yet never reported, it is very likely that
plants with a crassulacean acid metabolism (CAM) also possess this protein. Therefore, it
seems that this protein is ubiquitous in the plant kingdom.

5. One Gene, One Protein, Many Functions
5.1. CP12 Jack-of-All Trades but Master of the CBB Cycle

As mentioned above, CP12 is known to be the master of the CBB cycle [9]. The involve-
ment of oxidized CP12 in supramolecular complexes containing GAPDH and PRK has been
demonstrated in several photosynthetic organisms though the strength of binding between
these proteins differs among species. As mentioned above, the dissociation constant for
GAPDH/CP12 is in the micromolar range in A. thaliana [33] but in the nanomolar range
in C. reinhardtii [25]. The flexibility and the net negative charge of CP12 may increase its
reactive area and ‘stickiness’ compared with rigid proteins, thus enhancing the ability of
this protein to act as a ‘scaffold protein’ [70].

In S. elongatus PCC7942, CP12 forms the ternary complex in response to NADP(H)/NAD(H)
ratio. Of interest, most CBB enzymes are not redox-regulated in cyanobacteria [57], whereas
in higher plants and green algae, some CBB enzymes are redox-regulated via the thiore-
doxins (Trx). In Plantae, the Trx participate, in addition to the association-dissociation of
the complex PRK/CP12/GAPDH, regulates PRK and GAPDH enzymes activities. PRK
and CP12 are reduced by Trx f and m and could be oxidized by the newly characterized
TrxLike2 [71,72]. The presence of CP12 has been shown to modify the PRK redox regulation,
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and, in particular, the formation of the ternary complex decreases the time required for
PRK activation [73]. CP12 is also responsible for the redox regulation of the A4 form of
GAPDH in C. reinhardtii [35]. In contrast, the A2B2 form of GAPDH is autonomously redox-
regulated, and CP12 therefore might not be required. Nevertheless, the A2B2 GAPDH is
found in the ternary complex and is more easily activated in dimmer light than the A8B8
GAPDH oligomer mentioned above [29]. This suggests that CP12 can have other functions
than the redox regulation of PRK and GAPDH.

The expression of the genes encoding GAPDH, PRK, and CP12-2 in A. thaliana was
found to be coordinated, and this suggests that they are regulated at the transcriptional
level [74,75]. This suggests that CP12 is involved in the post-translational regulation
and at the transcriptional level. A recent study showed that reduced C. reinhardtii CP12
stabilizes PRK in vitro and in vivo, but the mechanism of this protection needs further
investigation [76,77]. In the mutant strain of C. reinhardtii, where the CP12 protein is
absent, while the abundance of numerous proteins increases (see below), the abundance of
others, including PRK, involved in photosynthesis, decreases. This is in agreement with
other studies on N. tabacum, A. thaliana, and S. guianensis that showed that photosynthetic
efficiency is reduced in the CP12 deletion mutant [76–80].

5.2. CP12, Other Functions

Like many IDPs, CP12 is a promiscuous protein, and in C. reinhardtii, in an oxidized
state, it can bind other enzymes such as the malate dehydrogenase, the elongation factor
1α2, and 38 kDa ribosome-associated protein, but to a lesser extent than PRK, GAPDH,
and the fructose-1,6-bisphosphate aldolase [81]. IDPs are well known to be a hub for the
supramolecular complex, but it is surprising that, so far, no interacting partners have been
identified for the disordered reduced CP12, and this has probably been overlooked.

Several studies have shown that the role of CP12 is beyond the CBB cycle. In C. rein-
hardtii, the deletion of the protein induced a re-routing of the metabolism under the light.
In particular, metabolic pathways involving malate shuttles increased in the mutant such
as the tricarboxylic acid cycle (TCA) and the glyoxylate pathway [77]. Malate shuttles,
combined with other signaling factors, play a putative role in algal CO2-concentrating
mechanisms (CCM) [82,83]. In relation to this, it can be noticed that CP12 increases in low
CO2 conditions in T. pseudonana, conditions that trigger CCM [84]. In N. tabacum antisense
plants, the activity of malate dehydrogenase and glucose-6-phosphate dehydrogenase
decreased, and transcripts for polyamine metabolism and polyphenol oxidase were up-
regulated [78,79]. A CP12-disrupted strain was engineered in S. elongatus PCC7942, and its
growth was similar to that of wild-type cells under continuous light but was significantly
reduced under the light/dark cycle (12 h/12 h) [57,85]. In the dark, the O2 consumption
by the mutant strain was lower, and the concentration of ribulose-1,5-bisphosphate, the
product of the PRK reaction, was higher than for the wild-type. In cyanobacteria, the main
metabolic pathway in the dark is the oxidative pentose phosphate (OPP) pathway that also
encompasses the ribulose-1,5 -bisphosphate. By inhibiting the activity of PRK and GAPDH
in the dark, CP12 thus regulates the carbon flow from the CBB cycle to the OPP cycle. The
authors also found that the cyanobacterial CP12 can bind NADPH (not NADH), but this
has not been reported and/or studied to our knowledge in any other CP12. All these results
show that the role of CP12 is beyond the regulation of the CBB cycle. In the sugarcane, the
expression of one of the isoform of the CP12—ShCP12-1—decreased immediately on the
onset of sucrose accumulation that occurs under the yellow canopy syndrome, a specific
pattern of leaf yellowing accompanied by abnormal and lethal accumulation of sucrose
and starch in leaves [69]. This CP12 might therefore be the primary regulation point of
sugar feedback regulation occurring in C4 plants, while the two carboxylating enzymes,
ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) and phosphoenolpyruvate
carboxylase, were only negatively regulated at a later stage and might be the secondary
regulation points.
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In cyanobacteria, CP12 has been found in a fusion protein with a CBS domain, as
mentioned above. A study of CBS-CP12 from Microcystis aeruginosa revealed that the gene
expression of this protein is clearly light-induced. In addition, CBS-CP12 oligomerizes and
forms a hexamer but does not form the ternary complex with GAPDH and PRK. It can bind
AMP and then inhibits the activation of PRK by thioredoxins [86]. The authors propose
that this new architecture provides CP12 additional regulatory functions in cyanobacteria.

5.3. CP12, an Anti-Stress Protein

In both A. thaliana and N. tabacum, the antisense suppression of CP12 increased the
expression of proteins related to oxidative stress [87]. Recently, it has been shown in
C. reinhardtii that the suppression of CP12 leads also to an increase in the proteins involved
in stress [77]. In addition, in cyanobacteria, CP12 might be involved in oxidative stress by
controlling the electrons flux from Photosystem I. Indeed, while the growth at low light of
the wild-type and the CP12 mutant strain were the same, at high light the mutant strain
grew more slowly. The chlorophyll content also decreased in this strain, and the reactive
oxygen species increased [85], while in A. thaliana and C. reinhardtii, it has been shown that
CP12 provides the thiol groups PRK and GAPDH protection against oxidative damage [87].
In cyanobacteria, the defense mechanism could be different and independent of the thiol
groups of these enzymes [57].

In C. reinhardtii, CP12 protected GAPDH against heat inactivation and aggregation
and therefore plays the role of a specific chaperone [88]. As mentioned above, CP12 also
protects PRK against irreversible inactivation in vitro [77]. Besides these roles as a specific
chaperone, CP12 from other organisms is more abundant in stress conditions, and this is
the case for the T. pseudonana CP12-2. The expression of this protein was higher under low
CO2 [84] but also under N, P, or Si limited conditions [89]. These results therefore indicate
that CP12 is not specific to carbon metabolism.

In the tropical legume, Stylosanthes guianensis, the higher expression of CP12 increases
growth and plant height. In addition to the expected functions, a potential role for CP12 in
chilling tolerance has been suggested [80]. A recent transcriptomic analysis of maize also
revealed the different regulations of cold-responsive genes and, among them, the CP12
gene is present [90].

All these results show that the role of CP12 is not restricted to the formation of the
well-known supramolecular complex involving PRK and GAPDH but is probably more
general and characterized not only by conformation heterogeneity but also by functional
heterogeneity defining its moonlighting signature as many IDPs.

5.4. CP12 and Metal Ions

Metal binding is ubiquitous in biology, being important for folding, stability, trans-
portation, and catalysis [91]. C. reinhardtii recombinant CP12 purified by affinity chromatog-
raphy on nickel columns had a yellow color, even after dialysis with a buffer devoid of
metal and imidazole. The absorption spectra from 280 to 600 nm showed the presence of a
broad peak around 410 nm, and these spectra strongly resembled those of ferredoxin [92].
Using electrospray non-denaturing mass spectrometry, the authors showed that CP12 was
specifically able to bind Cu2+ and Ni2+ with a low affinity (dissociation constants of 26
and 11 µM, respectively) [92], values close to those obtained for the binding of copper to
prion proteins (KD of 14 µM) [93]. Cu2+ catalyzed the oxidation of the reduced CP12, with
the reformation of disulfide bonds leading to the formation of oxidized CP12, which was
able to bind a Cu2+ ion. In addition, a hydrophobic cluster analysis showed that CP12
had high similarity with copper chaperones from A. thaliana. Though many questions
remain unanswered, one can hypothesize that CP12 may play a role in copper homeostasis
like other copper chaperones [94]. Later, using top-down mass spectrometry, three regions
were found to be involved in metal ion binding: Asp16-Asp23, Asp38-Lys50, and Asp70-
Glu76 [88]. It has been suggested that the binding of copper led to a more rigid structure,
but this requires further investigation. Later, using two-dimensional polyacrylamide gel
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electrophoresis separation of the stroma fraction of A. thaliana chloroplasts followed by
calcium overlay assay, CP12 was identified as a calcium-binding protein [95]. Though
this protein does not possess the canonical calcium-binding EF-hand motif, the authors
suggested that negatively charged amino acid residues could be involved in this binding.
The biological functions of the Cu2+, Ni2+, and Ca2+ binding, however, remain unsolved
and need to be further investigated.

6. Conclusions

Photosynthesis regulation depends on many signals, including pH, metabolite concen-
trations, and oxido-reduction conditions. For photosynthesis to be optimized, the signals
received have to be transmitted in a rapid and specific manner and often involve protein-
protein interactions; IDPs are well suited for such functions. The chloroplast protein, CP12,
a redox dependent conditionally disordered protein, acting as a linker or scaffold between
PRK and GAPDH, can integrate these multiple signals to regulate their activity. The redox
state of CP12 conditions a severe structural transition of its structural properties from a
completely disordered state under reducing conditions to a partially stable state under
oxidizing conditions. This redox-dependent structural transition is also concomitant with
the association-dissociation with PRK and GAPDH enzymes and thus the regulation of
their activity under dark (inactive enzymes) or light (active enzymes). The two enzymes,
PRK and GAPDH, do not catalyze consecutive reactions but are using ATP and NADPH,
respectively, both products from the primary phase of photosynthesis. PRK produces the
RuBisCO substrate, ribulose 1,5-bisphosphate, from the ribulose-5-phosphate, an interme-
diate of the OPP pathway. GAPDH uses NADPH to produce glyceraldehyde-3-phosphate,
which can be exported and is also an intermediate of the OPP. Therefore, CP12 using as a
regulatory protein of both PRK and GAPDH, thus “killing two birds with one stone”, con-
tributes to the fine tuning of metabolic pathways such as the CBB cycle, the glycolysis, and
the OPP, avoiding futile cycling. It is also involved in the regulation of TCA and glyoxylate
cycles involving the malate shuttle and possibly involved in CCM. Moreover, besides its
role in controlling metabolic pathways, CP12 provides a cell-signaling pathway, triggers
anti-stress responses and protects against oxidative damage. It is also able to bind metal
ions, though hitherto the biological significance of this remains unknown (Figure 6). The
pursuit of knowledge on these disordered proteins will probably produce new concepts in
the sciences as the more we learn and the more questions we will find to ask. The discovery
of disordered proteins and of CP12, 70 years after the discovery of the CBB cycle, offers
new insights into the photosynthesis field, and this is probably not a dead end.
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