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Background: Pyroptosis and prostate cancer (PCa) are closely related. The role

of pyroptosis-related long non-coding RNAs (lncRNAs) (PRLs) in PCa remains

elusive. This study aimed to explore the relationship between PRL and

PCa prognosis.

Methods: Gene expression and clinical signatures were obtained from The

Cancer Genome Atlas and Gene Expression Omnibus databases. A PRL risk

prediction model was established by survival random forest analysis and least

absolute shrinkage and selection operator regression. Functional enrichment,

immune status, immune checkpoints, genetic mutations, and drug

susceptibility analyses related to risk scores were performed by the single-

sample gene set enrichment analysis, gene set variation analysis, and copy

number variation analysis. PRL expression was verified in PCa cells. Cell

Counting Kit-8, 5-ethynyl-2′-deoxyuridine, wound healing, transwell, and

Western blotting assay were used to detect the proliferation, migration,

invasion, and pyroptosis of PCa cells, respectively.

Results: Prognostic features based on six PRL (AC129507.1, AC005253.1,

AC127502.2, AC068580.3, LIMD1-AS1, and LINC01852) were constructed,

and patients in the high-score group had a worse prognosis than those in

the low-score group. This feature was determined to be independent by Cox

regression analysis, and the area under the curve of the 1-, 3-, and 5-year

receiver operating characteristic curves in the testing cohort was 1, 0.93, and

0.92, respectively. Moreover, the external cohort validation confirmed the

robustness of the PRL risk prediction model. There was a clear distinction

between the immune status of the two groups. The expression of multiple

immune checkpoints was also reduced in the high-score group. Gene

mutation proportion in the high-score group increased, and the sensitivity to

drugs increased significantly. Six PRLs were upregulated in PCa cells. Silencing

of AC005253.1 inhibited cell proliferation, migration, and invasion in DU145 and
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PC-3 cells. Moreover, silencing of AC005253.1 promoted pyroptosis and

inflammasome AIM2 expression.

Conclusions: Overall, we constructed a prognostic model of PCa with six PRLs

and identified their expression in PCa cells. The experimental verification

showed that AC005253.1 could affect the proliferation, migration, and

invasion abilities of PCa cells. Meanwhile, AC005253.1 may play an important

role in PCa by affecting pyroptosis through the AIM2 inflammasome. This result

requires further research for verification.
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Introduction

Prostate cancer (PCa) is the second most common cancer in

the male population worldwide and is one of the top five causes

of cancer-related death (1). Epidemiological examinations and

clinical studies have found that the incidence of PCa is still rising

(2). The symptoms of patients with early-stage PCa are

non-specific, so PCa is often found in the middle and late

stages, and surgical treatment at this time has a poor

prognosis and a low survival rate (3). With several important

recent discoveries in immune mechanisms and advanced

molecular diagnostic platforms, immunotherapy is emerging

as a viable option for PCa, especially castration-resistant PCa,

to stimulate antitumor immunity (4, 5). Different patient

responses to the same immunotherapy have been observed in

patients with different types and stages of cancer (6). Moreover,

the patient response depends on multiple factors, including

intratumoral heterogeneity and prior treatment history,

suggesting that the need for individualized and combined

therapy is an important direction for future successful

immunotherapy (7, 8). Diagnostic, prognostic, and predictive

biomarkers enable patient-specific management of PCa (9).

Specific biomarkers to facilitate the clinical selection of

immunotherapy patients include programmed death ligand 1

(PD-L1) and prostatic acid phosphatase (PAP), but these

approaches are limited by tumor heterogeneity or small

percentage populations (10, 11). Therefore, there is an urgent

need to identify new and effective biomarkers to establish a

prognostic model of PCa.

Pyroptosis, distinct from apoptosis, is a type of programmed

cell death induced by the inflammasome and carried out by

gasdermin proteins (12). It is characterized by cell rupture and

many pro-inflammatory factors being discharged (13, 14).

Pyroptosis affects tumor cell invasion, multiplication, and

migration, affecting cancer prognosis (15). The association
02
between pyroptosis and cancer is highly intricate because as a

way of cell death, pyroptosis could inhibit cancer occurrence and

development. Meanwhile, the release of inflammatory mediators

and various signaling pathways in pyroptosis is associated with

tumorigenesis and resistance to chemotherapy (16, 17). Due to

the close association between pyroptosis and cancer progress

and prognosis, various prognostic biomarker studies based on

pyroptosis genes have been identified and used to construct gene

signatures with predictive power. For example, risk signatures

based on five pyroptosis-related genes (PRGs) were biomarkers

to predict the immunological condition and the outcome of lung

adenocarcinoma (18). Furthermore, the expression of four PRG

features strongly predicted a breast cancer patient’s prognosis

(19). Nonetheless, the predictive merit of pyroptosis gene

signatures in the prostate has not been completely clarified.

Long non-coding RNA (lncRNA) does not have the protein-

coding capacity, and its length exceeds 200 nucleotides (20).

LncRNA has been shown to play key functions in a variety of

biological and disease processes, including cancer (21, 22).

Growing evidence supports the involvement of lncRNA in

PCa progression, including cell proliferation, apoptosis,

metastasis, and invasion (23, 24). For example, overexpression

of lncRNA PCAT14 inhibits the invasion of PCa cells and

correlates with a good prognosis of PCa, which can be a

diagnostic marker (25, 26). However, the role of pyroptosis-

related lncRNAs (PRLs) in PCa still requires further exploration.

Thus, exploring lncRNA biomarkers associated with pyroptosis

in PCa is of clinical importance.

Machine learning is a branch of artificial intelligence that has

been rapidly developed and applied in the field of medicine (27).

Predictive models of diseases based on machine learning have

been extensively mined (28). For example, Wu et al. used an

ensemble of machine learning to develop a novel pyroptosis

scoring system based on six lncRNAs to predict the prognosis of

patients with low-grade glioma (29). In the present study, we
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used a machine learning approach to construct a PRL risk

signature for PCa prognosis. Then, we investigated the

associations of risk score models and clinical features, immune

microenvironment, immune checkpoints, genetic mutations,

and drug sensitivity to provide potential diagnostic and

prognostic biomarkers for PCa. This study may help to

understand the effect of PRL on PCa prognosis.
Materials and methods

Data sets and pretreatments

The Cancer Genome Atlas (TCGA)-PRAD (Prostate

Adenocarcinoma) dataset was downloaded from UCSC Xena

(https://xenabrowser.net/). The data processing was performed

to obtain FPKM data directly from TCGA and convert it into

TPM value, normalized by log2 (TPM+1). The GSE116918

(GPL25318) dataset was from Gene Expression Omnibus

(GEO) (https://www.ncbi.nlm.nih.gov/gds/). For this validation

cohort, 248 localized/locally advanced PCa patients

commencing radical radiotherapy (with androgen deprivation

therapy (ADT)) were included. The Affymetrix platform was

utilized to generate raw data from the GSE116918 (GPL25318)

dataset. The robust multi-chip averaging (RMA) algorithm was

used to achieve background correction and normalization.
Construction of a machine learning
prognostic model for pyroptosis-
related lncRNA

Forty-four pyroptosis genes (AIM2, APIP, CASP1, CASP3,

CASP4, CASP5, CASP6, CASP8, CASP9, DHX9, DDX58,

ELANE, GSDMA, GSDMB, GSDMC, GSDMD, GSDME, IFI16,

IL18, IL1B, MAPK8, MAPK9, NAIP, NFKB1, NFKB2, NLRC3,

NLRC4, NLRP1, NLRP12, NLRP2, NLRP3, NLRP6, NLRP7,

NLRP9, NOD1, NOD2, PJVK, PLCG1, PRKACA, SCAF11,

TIRAP, TNF, GPX4, and IL6) were obtained from the literature

(30–37). The names and abbreviations of the 44 pyroptosis-related

genes are shown in Table 1. Gene set variation analysis (GSVA) was

used to derive the pyroptosis score. LncRNA was then used to do

correlation analysis with pyroptosis score and select the genes with |

correlation coefficient| > 0.3 and p < 0.05. These genes were

subjected to univariate analysis, p < 0.05, and the single-factor

meaningful genes were selected. Then, survival random forest was

used to perform dimensionality reduction analysis to screen

important genes. The screening criteria were rel. importance >

0.2. Next, important gene variables were screened out, and these

important gene variables were used for the least absolute shrinkage

and selection operator (Lasso) regression to construct a risk score

model. The risk score was the sum of gene expression values ×

coefficients. The flowchart of this study is presented in Figure S1.
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Pathway and immune-infiltration evaluation

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was used to quantify the abundance of 28 immune
TABLE 1 Pyroptosis gene members.

Genes Full names

AIM2 Absent in melanoma 2

CASP1 Cysteine-aspartic acid protease-1

CASP3 Cysteine-aspartic acid protease-3

CASP4 Cysteine-aspartic acid protease-4

CASP5 Cysteine-aspartic acid protease-5

CASP6 Cysteine-aspartic acid protease-6

CASP8 Cysteine-aspartic acid protease-8

CASP9 Cysteine-aspartic acid protease-9

ELANE Elastase, neutrophil expressed

GPX4 Glutathione peroxidase 4

GSDMA Gasdermin A

GSDMB Gasdermin B

GSDMC Gasdermin C

GSDMD Gasdermin D

GSDME Gasdermin E

IL18 Interleukin 18

IL1B Interleukin 1 beta

IL6 Interleukin 6

NLRC4 NLR family CARD domain containing 4

NLRP1 NLR family pyrin domain containing 1

NLRP2 NLR family pyrin domain containing 2

NLRP3 NLR family pyrin domain containing 3

NLRP6 NLR family pyrin domain containing 6

NLRP7 NLR family pyrin domain containing 7

NOD1 Nucleotide-binding oligomerization domain containing 1

NOD2 Nucleotide-binding oligomerization domain containing 2

PJVK Pejvakin/deafness, autosomal recessive 59

PLCG1 Phospholipase C gamma 1

PRKACA Protein kinase cAMP-activated catalytic subunit alpha

SCAF11 SR-related CTD-associated factor 11

TIRAP TIR domain-containing adaptor protein

TNF Tumor necrosis factor

APIP Apoptotic protease activating factor 1-interacting protein

DHX9 DExH-box helicase 9

NLRP9 NLR family pyrin domain containing 9

NAIP NLR family apoptosis inhibitory protein

IFI16 Interferon gamma inducible protein 16

NFKB1 Nuclear factor kappa B subunit 1

DDX58 Retinoic acid-inducible gene I

MAPK8 Mitogen-activated protein kinase 8

NLRC3 NLR family CARD domain containing 3

NLRP12 NLR family pyrin domain containing 12

MAPK9 Mitogen-activated protein kinase 9

NFKB2 Nuclear factor kappa B subunit 2
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cells (38) in PRAD and to compare immune infiltration with

prognostic scores. Stromal score, Immune Score, ESTIMATE

Score, and Tumor Purity were assessed with the ESTIMATE

package, and the relationship between these scores and

prognostic scores was compared. The GSVA package was used

for GSVA analysis of Gene Ontology (GO) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG). The correlation

analysis was performed with prognostic and functional

enrichment pathway scores. Correlation analysis was

performed with prognostic scores and all genes, and then gene

set enrichment analysis (GSEA) was performed by the

clusterProfiler package.
Gene mutation and copy number
variation analysis

The gene mutations of the two groups were compared, and

the gene mutation patterns were checked. The somatic

mutations and somatic copy number variation (CNV) profiles

were gathered from the TCGA-PRAD datasets. The Genomic

Identification of Significant Targets in Cancer (GISTIC) analysis

was performed to evaluate the genomic features. The CNV

landscape based on ITGA5 levels and the copy number gains

or losses at the amplified or deleted peaks were assessed by

GISTIC 2.0 analysis (https://gatk.broadinstitute.org).
Drug prediction

Information on the sensitivity of tumor cell lines to potential

drugs was downloaded from Cancer Therapeutics Response

Portal 2 (CTRP v2) and Profiling Relative Inhibition

Simultaneously in Mixtures (PRISM). The lower the area under

the curve (AUC) of the cell line, the higher the sensitivity to the

potential drug. Expression of cancer cell lines was downloaded

from Cancer Cell Line Encyclopedia (CCLE). Predictions were

made using the R package of pRRophetic.
Cell culture and quantitative reverse
transcription PCR

DU145 cells (BLUEFBIO, Shanghai, China) were grown in

Dulbecco’s modified Eagle’s medium (DMEM) (complemented

with 10% fetal bovine serum (FBS) and 1% penicillin–

streptomycin (P/S)). PC-3 cells (Pricella, Wuhan, China) were

grown in Ham’s F-12Kmedia (complemented with 10% FBS and

1% P/S). RWPE1 cells (Abiowell, Changsha, China) were

cultured in keratinocyte serum-free medium (K-SFM)

(complemented with 50 mg/ml of bovine pituitary extract, 5

ng/ml of epidermal growth factor (EGF), and 1% P/S).
Frontiers in Oncology 04
Total RNA was obtained using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) from RWPE1, PC-3, and DU145 cells. RNA

was reverse transcribed into cDNA using an mRNA reverse

transcription kit (CW2569, CWBIO, Beijing, China). LncRNA

expression was detected using the SYBR method (CW2601,

CWBIO, China) and quantitative reverse transcription PCR

(RT-qPCR) analysis with GAPDH as an internal reference.

The primer sequences are shown in Table 2. The relative

expression levels of genes were investigated by 2−DDCt.
Cell transfection

The small interference RNA (siRNA) specifically targeting

AC005253.1 (si-AC005253.1-1: 5′-CCGCAAGAAGAAGU
GUGGUCATT-3′, 5′-UGACCACACUUCUUCUUGCGGTT-3′,
si-AC005253.1-2: 5′-GCGUCCCAAGAAGAAGGUCAATT-3′,
5′-UUGACCUUCUUCUUGGGACGCTT-3′ and si-AC005253.1

-3: 5′-GCGUCUGAUAUUUGCCGGCAATT-3′, 5′-UUGCCGG
CAAAUAUCAGACGCTT-3′) and the corresponding

negative controls (si-NC: 5′-UUCUCCGAACGUGUCACGUTT-
3 ′ , 5 ′ -ACGUGACACGUUCGGAGAATT-3 ′ ) we r e

obtained from Sangon Biotech (Shanghai, China). According to

the manufacturer’s protocol, cells were transfected with

Lipofectamine 3000 reagent (Thermo Fisher, Waltham, MA,

USA) (39).
Cell counting kit-8 assay

Cells were digested, counted, and seeded in a 96-well plate

(5 × 103 cells/well, 100 ml). After adherent cell culture, 10 ml of
Cell Counting Kit-8 (CCK-8) solution (NU679, Dojindo, Tokyo,

Japan) was added. The cells were incubated at 37°C with 5% CO2
TABLE 2 Primer sequences.

Genes Sequences (5′–3′)

GAPDH F: ACAGCCTCAAGATCATCAGC

R: GGTCATGAGTCCTTCCACGAT

AC005253.1 F: AAGCCTTCCCTGATTACTGC

R: CATGGTCAAACAGCCTACCTC

AC068580.3 F: CACAGCCAAAACCAAACTCCT

R: TGGGTTGCCATTCACTGACT

AC127502.2 F: CTTCTGAATCTTTCCGGCGAAC

R: GCGAACAACCTTCCTTGCAAA

AC129507.1 F: CTTCACTCGCACGGAGCAAC

R: CCTCCTTGCTGCCGAGTCA

LIMD1-AS1 F: TTTGATGCCGCTTTGCTCAC

R: TGCCACTTTTCCAGGTGTGT

LINC01852 F: GCCGGAGAACGAATGTGATG

R: TCTTTTTGTTTACCGGAGTTCCA
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for 4 h, and the optical density (OD) value at 450 nm was

measured with a Bio-Tek microplate reader (MB-530,

HEALES) (40).
5-Ethynyl-2′-deoxyuridine assay

The 5-ethynyl-2′-deoxyuridine (EDU) assay kit (Guangzhou
RiboBio, Guangzhou, China) was used to monitor cell

proliferation. The cells were inoculated into 96-well plates (1 ×

104/well) until 80% confluence. Each well was added with 100 ml
of EDU solution and incubated for 2 h. The cells were incubated

with 4% paraformaldehyde at room temperature for 30 min.

Then, the cells were treated with 100 ml of 1× Apollo® staining

reaction solution for 30 min. Next, 100 ml of Hoechst 33342

reaction solution was added to each well and incubated for 30

min. A microscope (DSZ2000X, Beijing Cnmicro Instrument

Co., Ltd., Beijing, China) was used to observe and take pictures.
Wound healing assay

Cells (1 × 105/well) were plated in 6-well plates until they

achieved about 90% confluence. A 1-ml pipette tip was used to

create scratch wounds, and photographs of the wounds

(time 0 h) were immediately taken. Then, the cells were

cultured in a serum-free medium. After incubation with 5%

CO2 at 37°C for 48 h, photographs were taken again.
Transwell assay

The invasion ability of cells was evaluated using the transwell

assay. Transwell chambers (3428, Corning, New York, NY, USA)

were pre-cooled overnight at 4°C one day in advance. Then, 100

ml of Matrigel dilute in serum-free medium was added to each

well. The transfected cells were suspended in a serum-free

medium and added to the transwell chamber; 500 ml of 10%
fetal bovine serum complete medium was placed into the lower

chamber. The cells were incubated at 37°C for 48 h. The upper

chamber was removed and washed three times with phosphate-

buffered saline (PBS), and the cells in the upper layer of the

membrane were wiped off with a cotton ball. Cells were fixed

with 4% paraformaldehyde for 20 min and stained with 0.1%

crystal violet solution for 5 min. Cells were observed under an

inverted microscope, and three fields of view were taken. The

number of invasive cells was recorded.
Western blotting

Total prote in was extracted from the cel ls by

radioimmunoprecipitation assay (RIPA) lysate (AWB0136,
Frontiers in Oncology 05
Abiowell, China). Then, the protein was transferred to the

polyvinylidene fluoride membrane after 10% sodium dodecyl

sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) treatment.

Themembrane was sealed with 5% skimmilk (AWB0004, Abiowell)

at room temperature for 2 h. AIM2 (1:1,500, 20590-1-AP,

proteintech, Chicago, IL, USA), NLRC4 (1:1,000, ab201792,

abcam, Cambridge, UK), NLRP3 (1:1,000, 19771-1-AP,

proteintech), GSDMD-N (1:1,000, ab215203, abcam), ASC

(1:2,000, 10500-1-AP, proteintech), caspase-1 (1:1,000, ab179515,

abcam), IL-18 (1:8,000, 10663-1-AP, proteintech), IL-1b (1:1,000,

16806-1-AP, proteintech), and b-actin (1:5,000, 66009-1-Ig,

proteintech) were incubated with the membrane at 4°C overnight.

Then, the corresponding secondary antibodies were incubated with

the membrane at room temperature for 2 h. The membrane was

incubated with SuperECL Plus (AWB0005, abiowell), and then the

protein bands were visualized by a chemiluminescence imaging

system (ChemiScope 6100, Clinx, Shanghai, China).
Statistical analysis

The data were mainly visualized using the R package

ggplot2. The Shapiro–Wilk normality test was used to evaluate

for normality of variables. For normally distributed variables,

significant quantitative differences were determined by two-

tailed t-tests or one-way ANOVA. For non-normally

distributed variables, significant quantitative differences were

determined by the Wilcoxon test or the Kruskal–Wallis test.

The Benjamini–Hochberg method was used, which converts p-

values to false discovery rate (FDR) to identify significant genes.

The log-rank test was used to determine the statistical differences

in each dataset. The Survminer R package was used to generate

survival curves. Receiver operating characteristic (ROC) curves

were drawn using the pROC package. All heatmaps were

generated based on pheatmap. All statistical analyses were

performed in R (https://www.r-project.org/). p < 0.05 was

considered statistically significant.
Results

Construction of pyroptosis-related
lncRNA signatures

Forty-five pyroptosis genes were obtained from the literature,

and the pyroptosis score was calculated by the GSVA method. The

correlation between lncRNAs and pyroptosis scores was analyzed

by Spearman’s correlation test. The lncRNAs with |correlation

coefficient| > 0.3 and p < 0.05 were selected, and 553 lncRNAs

were obtained. These lncRNAs were subjected to univariate

analysis, and 27 lncRNAs (p < 0.05) were screened (Figure 1A).

The single-factor meaningful genes were selected for survival

random forest analysis, and six important lncRNAs were
frontiersin.org
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screened (Figure 1B, Figure S2A). These important gene variables

were then used for Lasso analysis to build a risk scoring model

(Figure 1C). The risk score was 0.4242 × AC005253.1 + 0.8249 ×

LIMD1-AS1 − 1.6456 × LINC01852 + 0.3408 × AC127502.2 +

1.5518 × AC068580.3 − 1.7451 × AC129507.1. With the median

risk score as the cutoff value, PCa patients were categorized into

high-score and low-score groups. PCa patients in the high-score

group had poorer overall survival than those in the low-score group

(Figure 1D). Furthermore, the AUC values of the 1-, 3-, and 5-year

ROC curves were 1, 0.93, and 0.92, respectively (Figure 1E). The

clinical characteristic score showed that the risk score of patients

aged ≥45 was higher than that of patients aged <45, but there was

no significant difference (p = 0.15). Patients with stage N1 had a

higher risk score than patients with stage N0 (p = 0.00039). T4 stage

patients had higher risk scores than T3 stage and T2 stage patients,

and T3 stage patients had higher risk scores than T2 stage patients

(p = 0.0014). Moreover, patients with the status alive had a lower

risk score than patients with the status dead (p = 0.001) (Figure 1F).

A publicly available dataset (GSE116918) was used to validate the
Frontiers in Oncology 06
reliability of the constructed risk scoring model. Consistent with the

findings from the TCGA-PRAD cohort, survival analysis showed

that patients in the high-score group had lower survival rates than

those in the low-score group (Figure S2B). In addition, the AUC

values of the 1-, 3-, and 5-year ROC curves were 0.7, 0.71, and 0.77,

respectively (Figure S2C). To investigate whether the constructed

risk scoring model was independent of clinicopathological

parameters, univariate and multivariate Cox regression analyses

were performed on age, T stage, N stage, and risk score. Risk score

was the parameter independently predicting overall survival

(Figures S2D, E). The predictive model could be considered an

independent prognostic factor in PCa patients.
Correlation of risk scores with pyroptosis
genes and immune infiltration

We surveyed the relationship between model genes and risk

scores. Risk scores were favorably associated with LIMD1-AS1,
A

B

D E

F

C

FIGURE 1

Construction of pyroptosis-related lncRNA signatures. (A) Correlation gene screens for genes of univariate significance. (B, C) Six PRL signatures
were constructed through a random forest and Lasso analysis. (D) Survival curves. (E) ROC curves. (F) Clinical feature scores. lncRNA, long non-
coding RNA; PRL, pyroptosis-related lncRNA; Lasso, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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AC127502.2, AC005253.1, and AC06850.3 and negatively

associated with LINC01852 and AC129507.1 (Figures 2A, B).

Next, we constructed a heatmap of risk scores and pyroptosis

gene correlations. The results showed that ARRDC1-AS1, GPX4,

GSDMD, GSDME, and NLRP3 were substantially associated

with the risk score (Figure 2C). We used the ESTIMATE package

and ssGSEA algorithm to evaluate immune infiltration. Among

them, Stromal score, Immune Score, and ESTIMATE Score were

negatively associated with risk score, while Tumor Purity was

positively associated with risk score (Figure 2D). B cell, T cell,

Macrophage, and Natural killer cell were significantly associated

with risk score (Figure 2D). For example, Activated B cell,

Activated CD8 T cell, and Activated dendritic cell were

negatively associated with risk scores. Activated CD4 T cell

was positively associated with risk score.
Immune checkpoint

We determined the expression of seven classes of immune

checkpoint molecules in low- and high-risk-scoring populations.

As shown in the Antigen present classification, HLA-A, HLA-B,
Frontiers in Oncology 07
HLA-DPA1, HLA-DPB1, HLA-DQB2, HLA-DRB1, and MICA

were expressed at a low level in the high-score group. In Cell

adhesion, SELP was expressed at a high level in the low-score

group. In Ligand, CCL5, CX3CL1, and TGFB1 were expressed at

a high level in the low-score group. In Receptor, CD27, CD40,

EDNRB, and TLR4 were expressed at a high level in the low-

score group. In Co-inhibitor, CD276 was expressed at a low level

in the low-score group, and PDCD1LG2 and VTCN1 were

expressed at a high level in the low-score group. In addition,

HMGB1 was expressed at a low level in the low-score group,

while ENTPD1 and PRF1 were expressed at a high level in the

low-score group (Figure 3).
Functional analysis of risk score

We used the GSVA package for GO and KEGG enrichment

analyses. Most samples were enriched for pathways closely

related to tumorigenesis. Examples included DNA replication,

cell cycle, and mTOR signaling pathway. These pathways were

positively associated with risk scores (Figure 4A). Correlation

analysis with risk score and functional enrichment pathway
A B

DC

FIGURE 2

Correlation of risk scores with pyroptosis genes and immune infiltration. (A) The expression of LIMD1-AS1, AC127502.2, AC005253.1, AC068580.3,
LINC01852, and AC129507.1. (B) Expression correlation plots of risk scores and model genes. (C) Heatmap of risk score associated with pyroptosis
genes. (D) Heatmap of the relationship of the risk score to immune infiltration. *p < 0.05. **p < 0.01. ***p < 0.001 ****p < 0.0001.
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score was performed. In addition to the immune checkpoint, risk

scores were significantly associated with 16 other pathways

(Figure 4B). Risk scores were positively correlated with cell

cycle, DNA replication, DNA damage repair, and WNT target

while negatively correlated with CD8 T effector and antigen

processing machinery. We conducted a relevant analysis with

the risk score and all genes and then performed a GSEA with the

clusterProfiler package (Figure S3). The Hippo signaling

pathway was downregulated.
Copy number variation and mutation
analysis in high- and low-score groups

In this study, we compared the gene mutation status of two

groups. Amplification frequency was mainly concentrated in 2p,

2q, 3p, 3q, 5p, 8p, 8q, 9p, 14p, 19p, and 20p, while deletion

frequency was mainly concentrated in 4p, 4q, 5q, 8p, 8q, 10p,

10q, 12p, 15q, 17p, 17q, 18p, 18q, 21q, and 22q. In addition,

there was a significant difference between the high-risk and low-

score groups at the focal somatic copy number alterations

(SCNA) level (Figure 5A). A waterfall plot was used to

visualize the mutation frequency and type of the top 30 genes

with the highest gene mutation frequency. The results showed

that in the high-risk group, the top five genes with the highest

mutation frequency were TP53 (17%), TTN (16%), FOXA1

(14%), SPOP (11%), and SPTA1 (10%), while in the low-risk

group the top five genes were SPOP (11%), TP53 (10%), TTN

(9%), MUC16 (5%), and KMT2D (5%) (Figure 5B).
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Drug sensitivity analysis of risk scores in
two groups

We downloaded information on the susceptibility of tumor

cell lines to potential drugs from the CTRP v2 and PRISM. The

lower the AUC of the cell line, the higher the sensitivity to the

potential drug. These data revealed that among anticancer drugs,

including ML258, 16-beta-bromoandrosterone, VU0155056,

BRD-K02251932, BRD-K85133207, imiquimod, temoporfin,

SGI-1027, and eptifibatide, the sensitivity of patients in the

high-score group to the drugs was significantly increased than

in the low-score group (Figure 6).
Risk score gene expression identification

Expression of AC129507.1, AC005253.1, AC127502.2,

AC068580.3, LIMD1-AS1, and LINC01852 was verified by

RT-qPCR in RWPE1 cells and PCa cell lines (PC-3 and

DU145). The results showed that AC129507.1, AC005253.1,

AC068580.3, and LIMD1-AS1 were upregulated in PC-3 and

DU145 cells relative to RWPE1 cells. However, AC127502.2 and

LINC01852 were only upregulated in DU145 cells (Figure 7).
Silencing of AC005253.1 affected
prostate cancer cell proliferation,
migration, and invasion

To explore the role of AC005253.1 in the development of

PCa, we transfected si-AC005253.1-1, si-AC005253.1-2, si-

AC005253.1-3, and si-NC in PC-3 and DU145 cells. RT-qPCR

results showed that si-AC005253.1-1, si-AC005253.1-2, and si-

AC005253.1-3 could reduce the expression of AC005253.1 in

PC-3 and DU145 cells, among which si-AC005253.1-2 had a

best silencing effect (Figure 8A). Therefore, si-AC005253.1-2

was used as a follow-up experiment. Silencing of AC005253.1

decreased the cell viability and proliferation of PC-3 and DU145

cells (Figures 8B, C). The wound healing assay and transwell

assay results showed that after silencing AC005253.1, the

migration and invasion abilities of PC-3 and DU145 cells were

reduced (Figures 8D, E).
Silencing of AC005253.1 promoted
pyroptosis of prostate cancer cells

We further tested the effect of AC005253.1 on the pyroptosis

of PC-3 and DU145 cells by Western blotting experiment. The

results showed that after silencing AC005253.1, the expression of

the inflammasomes (AIM2, NLRC4, and NLRP3) was altered

(Figure 9A). Compared with the si-NC group, the expression of
FIGURE 3

Immune checkpoint. Immune checkpoint molecule expression
in low- and high-score groups. *p < 0.05. **p < 0.01. ***p <
0.001 ****p < 0.0001. ns, not significant.
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AIM2 was increased in the si-AC005253.1 group, and the

difference was most obvious (Figure 9A). Furthermore, after

silencing AC005253.1, the expressions of GSDMD-N, ASC,

cleaved caspase-1, IL-18, and IL-1b proteins were increased in

PC-3 and DU145 cells (Figure 9B). These results suggested that

silencing of AC005253.1 promoted pyroptosis in PCa cells.
Discussion

PCa is one of the most common tumors in men. Due to its

heterogeneity and progressive nature, it remains incurable (41).

Valid prognostic models based on specific biomarkers can

accurately predict survival outcomes for the effective

management of PCa patients (42). Pyroptosis-related lncRNA

risk prediction models have been reported to be expected to
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assist in the treatment and management of various tumors (43,

44). Our study used a novel risk model of six PRLs (AC129507.1,

AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and

LINC01852) developed using Lasso analysis. AC129507.1,

AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and

LINC01852 were identified as PRLs for the first time. The

results showed that the risk score model had the best ability to

distinguish clinical characteristics between the high-risk and

low-score groups significantly. In our proposed model, the

AUC values of the ROC curves for 1-, 3-, and 5-year PCa were

1, 0.93, and 0.92, respectively. In addition, the 1-, 3-, and 5-year

AUC values in the test set also had desirable results. Our risk

model had excellent predictive power compared to other

published pyroptosis-based prognostic models in PCa (45, 46).

Different from the direct use of Lasso to build a prognostic

model of eight pyroptosis-related genes in the study of
A

B

FIGURE 4

Functional analysis of risk score. (A) Heatmap for GO and KEGG analyses using GSVA package. (B) Correlation of risk score with functional
enrichment pathways. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis. *p < 0.05.
**p < 0.01. ***p < 0.001 ****p < 0.0001.
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A

B

FIGURE 5

CNV and mutation analysis in high- and low-score groups. (A) CNV maps for groups with high and low score. (B) Top 30 gene mutation
frequencies in two groups. CNV, copy number variation. *p < 0.05
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Wang et al. (47), we used random forest dimensionality

reduction and screening methods and further used Lasso

analysis to build a predictive model. This analytical approach

may help improve the predictive accuracy of the risk

model signature.

It has been reported that pyroptosis is closely related to the

tumor immune microenvironment. The release of inflammatory

factors is caused by pyroptosis triggers powerful antitumor

immunity (48). The infiltration of CD8+ T cells and natural

killer cells in the pyroptosis-activated immune microenvironment

can promote pyroptosis and form a positive feedback loop (49).

Previous studies have shown that increased CD8+ T-cell

infiltration is independently associated with improved survival

after radical prostatectomy (50). Men with more CD4+ T cells in

the prostate tumor environment have an increased risk of dying

from PCa (51). B-cell activation is thought to be a driver of the

PCa immune response and improves postoperative survival (52).

Overall, the poor prognosis and outcome of PCa are closely

related to pyroptosis-triggered immune cell infiltration, which is

consistent with our results. Our results showed that the risk score

was negatively correlated with activated B cells, CD8 T cells, and

dendritic cells while positively correlated with activated CD4 T

cells. Infiltration levels of B cells, CD8 T cells, and dendritic cells

decreased with increasing risk scores, consistent with shorter

survival times in patients with high scores.
FIGURE 6

Drug sensitivity analysis of risk scores in two groups. Information on the sensitivity of tumor cell lines to potential drugs was downloaded from
CTRP v2 and PRISM. Prediction of drug susceptibility in two groups using pRRophetic. The lower the AUC of the cell line, the higher the
sensitivity to the potential drug. AUC, area under the curve. ***p < 0.001
FIGURE 7

Risk score gene expression identification. RT-qPCR to detect the
AC129507.1, AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1,
and LINC01852 expression in RWPE1, PC-3, and DU145 cell. *p <
0.05, vs. RWPE1.
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We compared the expression of immune checkpoints in the

high-risk and low-risk groups and found that some immune

checkpoints such as HLA and MICA were expressed at a high

level in the low-risk group. PCa downregulated the expression of

the HLA-1 antigen processing machinery (APM) and had defects

in the antigen presentation pathway (53). Low expression of MICA

is associated with poorer overall survival in PCa and is associated

with aggressiveness (54). This suggests that our signature could

effectively identify the status of immune checkpoints in different

PCa patients, providing new ideas for their treatment.

CNVs were regions of the genome with integer copy number

changes, including amplifications and deletions of DNA

sequences, that could drive cancer’s rapid adaptive evolution

and progression (55). The CNV results uncovered significant

differences in mutation status between the high-score and low-

score groups. In the high-score group, the gene with the highest

mutation frequency was TP53 (17%), while in the low-risk

group, it was SPOP (11%). TP53 mutation was the most

common genetic alteration that played a major role in the

pathogenesis of PCa (56, 57). SPOP mutations were associated
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with improved overall survival, whereas TP53 mutations were

associated with poorer survival in secondary metastatic

hormone-sensitive PCa (58). These data implicated that the

high-score group might have more tumorigenic gene mutations.

To better assess the risk model’s clinical feasibility, we

analyzed information on the sensitivity of tumor cell lines to

potential drugs. The results showed that the high-risk group cell

lines were significantly less sensitive to drugs such as

importazole and imiquimod. Importazole, a specific inhibitor

that alters the interaction of KPNB1 with RanGTP, has a good

inhibitory effect on PCa progression (59). Imiquimod (also

known as a TLR7 agonist) inhibits the growth of mouse

(TRAMP C2) and human PCa cells and can be used as an

alternative therapy for locally generated PCa (60). Our findings

suggest that the low-risk group is more likely to benefit from

these drugs. Collectively, these findings may provide prospective

treatment options for PCa patients.

Notably, RT-qPCR analysis confirmed high expression of

AC129507.1, AC005253.1, AC127502.2, AC068580.3, LIMD1-

AS1, and LINC01852 in PCa cell lines. AC129507.1,
A
B D

E

C

FIGURE 8

Silencing of AC005253.1 affected PCa cell proliferation, migration, and invasion. (A) RT-qPCR detection of AC005253.1 expression in PC-3 and
DU145 cells. (B) CCK-8 assay was used to measure the cell viability in PC-3 and DU145 cells. (C) EDU assay results showed the effect of si-
AC005253.1 on cell proliferation. (D) Wound healing assay was performed to detect the migration in PC-3 and DU145 cells. (E) Transwell assay
was used to detect the invasion of PC-3 and DU145 cells. #p < 0.05, vs. si-NC group. PCa, prostate cancer; CCK-8, Cell Counting Kit-8.
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B

FIGURE 9

Silencing of AC005253.1 promoted pyroptosis of PCa cells. (A) AIM2, NLRC4, and NLRP3 levels were identified by Western blotting. (B) GSDMD-
N, ASC, caspase-1, IL-18, and IL-1b proteins were identified by Western blotting in PC-3 and DU145 cells. #p < 0.05, vs. si-NC group. PCa,
prostate cancer.
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AC068580.3, and LIMD1-AS1 were thought to play important

roles in different cancers, while AC005253.1, AC127502.2, and

LINC01852 were identified for the first time. AC129507.1 was

identified as an on-risk gene in risk models for prognosis patients

with gastric adenocarcinoma (61). AC068580.3 was identified as an

autophagy-related lncRNA as an indication of prognosis for colon

adenocarcinoma (62). LIMD1-AS1 inhibited lung cancer

progression by inhibiting cell multiplication and promoting

apoptosis (63). Our study demonstrated that inhibiting the

expression of AC005253.1 could inhibit cell viability, migration,

and invasion. We further detected the expression of the

inflammasome (AIM2, NLRC4, and NLRP3) and found that

silencing of AC005253.1 could significantly increase the

expression of the AIM2 inflammasome. Activation of the AIM2

inflammasome can promote pyroptosis (64). We also found that

inhibition of AC005253.1 could promote pyroptosis in PCa cells.

Therefore, we speculate that AC005253.1 may affect pyroptosis

through the AIM2 inflammasome in PCa. In the present study, we

report for the first time the relationship between AC005253.1 and

pyroptosis in PCa.

In conclusion, we successfully established an efficient forecast

PCa model based on six PRLs, including AC129507.1,

AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and

LINC01852. This well-validated model built on these six PRLs

will provide new insights into identifying PCa prognosis. Through

in vitro experiments, we verified that silencing of AC005253.1

could inhibit the proliferation, migration, and invasion of PCa

cells. In addition, silencing of AC005253.1 might promote

pyroptosis by affecting the expression of AIM2 in PCa.
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A flowchart of the study.

SUPPLEMENTARY FIGURE S2

Analysis of prognostic characteristics of risk score. (A) Univariate analysis

of lncRNAs in TCGA. (B) Survival analysis of GSE116918. (C) ROC curves of
GSE116918. (D, E) Univariate and multivariate Cox analysis.

SUPPLEMENTARY FIGURE S3

Enrichment analysis of risk score-related genes. After risk score

correlation analysis with all genes, GO and KEGG functional enrichment
analysis was performed by GSEA.
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